OBSIDIAN PROJECTILE POINTS AND HUMAN MOBILITY AROUND THE BIRCH CREEK SITE (35ML181), SOUTHEASTERN OREGON

By

ERIN WALLACE

A thesis submitted in partial fulfillment of The requirements for the degree of

MASTER OF ARTS IN ANTHROPOLOGY

WASHINGTON STATE UNIVERSITY Department of Anthropology

May 2004

To the Faculty of Washington State University:

1

•

The members of the Committee appointed to examine the thesis of ERIN WALLACE find it satisfactory and recommend that it be accepted.

Wie Hair

mehloben $\mathbf{\lambda}$

ACKNOWLEDGEMENTS

I thank my committee members for their insight and support during the thesis writing process. To Dr. William Andrefsky, Jr., thank you for giving me the opportunity to work at the Birch Creek Site and for three wonderful summers along the Owyhee River. I will never forget your many stories. To Dr. Gary Huckleberry, thank you for your personal and professional example and your support of my future goals. To Dr. William Lipe, thank you for always asking the difficult questions that challenge my ideas about prehistory.

Thank you to the Vale District BLM for their help with the Birch Creek Archaeological Project. I would like to extend a special thanks to Paul and Rita Krause for their hospitality during my visits to the Birch Creek and Morrison ranches. I would also like to thank all the students, teachings assistants, and faculty who have worked at the Birch Creek Site over the last six years.

Ľ

To Craig Skinner, thank you for your expertise and financial support. Your answers to my many questions greatly improved my understanding of obsidian procurement in southeastern Oregon.

Most importantly, I would like to thank my family and friends for their love and support.

iii

OBSIDIAN PROJECTILE POINTS AND HUMAN MOBILITY AROUND THE BIRCH CREEK SITE (35ML181), SOUTHEASTERN OREGON

Abstract

by Erin Wallace, M.A. Washington State University May 2004

Chair: William Andrefsky, Jr.

This thesis explores prehistoric human land-use and mobility around the Birch Creek Site (35ML181), Southeastern Oregon. My research evaluates Julian Steward's (1938) ethnographic model of hunter-gatherer land-use to assess continuity of human land-use through time around the Birch Creek Site. The Stewardian model is tested using artifact data in the form of x-ray fluorescence analysis of artifact obsidian. The point data collected from x-ray fluorescence analysis of these artifacts outlines a procurement range around the site, which thus acts as a proxy measure for the scale of land-use exhibited over time by the users of the site.

Three separate lines of evidence are used to explore patterns of human land-use through time: stratigraphic superposition of artifacts, temporally diagnostic projectile points, and radiocarbon dates. Based on the continuity of obsidian procurement through time at the site, it is possible to extend the Stewardian model for low population density huntergatherers, organized at the family-level, at least 6,600 years into prehistory, and potentially 9,500 years, at the Birch Creek Site.

iv

TABLE OF CONTENTS

1

Ĩ

F

ł

N. C.

ľ

Page
ACKNOWLEDGEMENTS iii
ABSTRACT iv
LIST OF TABLES
LIST OF FIGURES
DEDICATION
CHAPTERS
1. INTRODUCTION 1
Site Location 3
Past Environment 4
Great Basin 6
Columbia Plateau
Ethnographic Background 8
Regional Archaeology 12
Project Background 16
2. REGIONAL XRF ANALYSES
Literature Review
Lake Owyhee Reservoir Survey
FTV Western Fiber Build Project
Jack Rabbit Roasting Site (35HA3055)
Lost Dune (35HA792)
Wilson Butte Cave (10JE6)

Peninsula Site (35KL87) 31
Skull Creek Dunes Locality-6 (35HA412)
Indian Grade Spring Site (35HA1421)
Carlon Village (35LK2736) 32
Pine Creek Drainage
Steamboat Falls Site (35DO497) 32
Nightfire Island (4SK4)
Kawumkan Springs
Surprise Valley
Regional Patterning
Methods
Sampling Issues
Relative Percentage of Obsidian in an Assemblage
Relative Percentage of Most Popular Source
Range of Distances to Exploited Obsidian Sources
Discussion
Previous XRF Analysis at the Birch Creek Site
3. RESEARCH DESIGN
Steward's Ethnographic Model 41
Ecological Determinants 41
Social Determinants
What is XRF Analysis? 43
XRF Analysis and Human Land-Use

1

[

ľ

T'

Predictions for Obsidian Procurement
Obsidian XRF Sample 46
Sample Selection 46
Sample as it Relates to Overall Assemblage
Projectile Point Chronology
4. RESULTS OF OBSIDIAN ANALYSIS
Overall Obsidian Procurement at the Birch Creek Site
Artifact Types and Implications for Human Mobility
Temporally Diagnostic Projectile Points
Stratigraphic Superposition of Artifacts
Radiocarbon Dates and Implications for Continuity
5. INTERPRETATIONS
6. SUMMARY AND CONCLUSIONS
REFERENCES CITED
APPENDIX
A. XRF ANALYSIS

ŀ

ľ

L

ľ

[

LIST OF TABLES

A

internet in the second s

4

-

[

Table	Page
Table 1.1	Cultural chronologies from the Owyhee River region with diagnostic projectile points
Table 1.2	Radiocarbon dates from the Birch Creek Site
Table 2.1	Summary data for excavated sites
Table 2.2	New source assignments for previously unknown sources
Table 3.1	Chipped stone artifact frequencies
Table 3.2	Percentages represented by sourced artifact obsidian
Table 3.3	Definition of artifact types
Table 3.4	Age ranges for projectile point types
Table 3.5	Proposed projectile point chronology for southeastern Oregon 53
Table 4.1	Frequencies and percentages of artifacts by source
Table 4.2	Distance and direction to known sources from the Birch Creek Site 57
Table 4.3	Summary of artifact types for source obsidian artifacts
Table 4.4	Frequencies by artifact type and known source locations for all sourced material
Table 4.5	Average procurement distance and median procurement distance by projectile point type
Table 4.6	Artifact frequencies for known source locations from Feature 2 64
Table 4.7	Artifact frequencies for known source locations for N1057-1058 trench 66
Table 4.8	Projectile point types from Feature 2 for known source locations
Table 4.9	Projectile point types from the N1057-1058 trench for known source locations
Table 4.10	Radiocarbon dates from the Birch Creek Site

	Sourced obsidian artifact frequencies associated with calibrated radiocarbon dates	72
Table 5.1	Cumulative frequencies for sourced artifact obsidian from 35ML181	.77

10 L

.

LIST OF FIGURES

Ł

1

Į

1

ł

Part of the second seco

[

1999

[

ł

l

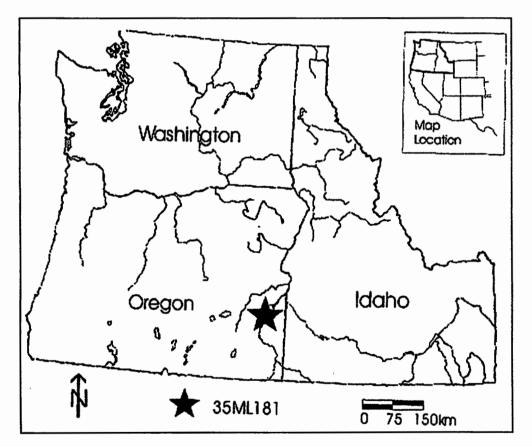
Figure	Page
Figure 1.1	Location of the Birch Creek Site
Figure 1.2	Relief map showing location of project area
Figure 1.3	Great Basin and Columbia Plateau hydrologic regions
Figure 1.4	Great Basin culture area 9
Figure 1.5	Location of DSR and Nahas Cave
Figure 1.6	Location of 1998-1999, and 2001-2003 excavation units
Figure 1.7	Stratigraphy of Housepit 1, Feature 2
Figure 1.8	Composite profile of the south wall of N1057 trench
Figure 2.1	Location of excavated sites 30
Figure 3.1	Age ranges for projectile point types in the Great Basin
Figure 4.1	Location of obsidian sources identified at the Birch Creek Site 55
Figure 4.2	Calibrated (Calib©) radiocarbon age ranges

For Mom and Dad

.

CHAPTER ONE

My thesis investigates prehistoric human settlement systems and mobility around the Birch Creek Site (35ML181), southeastern Oregon. This research evaluates Julian Steward's (1938) ethnographic model of hunter-gatherer land-use to assess continuity of prehistoric land-use over time in the northern Great Basin. The primary goal of this research is to test whether or not artifact data in the form of x-ray fluorescence (XRF) analysis conform to the Stewardian model and how land-use may have changed through time around the Birch Creek Site.


With a primary focus on ecological and social determinants, Steward (1938) developed an ethnographic model for human land-use in the Great Basin (presented in detail in Chapter Three). Because of the scarcity of resources and generally poor quality of the environment, Steward (1938) argued for family-level organization throughout much of the Great Basin. The environment could not support large, permanent settlements; therefore, extended family groups were the stable economic unit in the Great Basin (Steward 1938). Family groups, by necessity, remained highly mobile throughout much the year and traveled within a 20-30 mile radius, basing their movements on the availability of seasonal resources. Habitation of winter villages, often located in canyons or river valleys, marked one of the few relatively permanent settlements in the region (Steward 1938). In general, however, the northern Great Basin was inhabited by low population density hunter-gatherers, living in extended family groups, who were highly mobile throughout much of the year. The goal of the present study is to test this ethnographic model for human land-use at the Birch Creek Site using artifact data.

The Birch Creek Site works as the geographic center for this analysis, a constant location from which to explore human land-use through time. XRF of artifact obsidian from the site is used as a proxy measure for human land-use. XRF analysis identifies signature chemistry for obsidian artifacts and enables archaeologists to identify specific locations from which obsidian was procured. The dates of the analyzed artifacts can be inferred from other archaeological data (i.e. associated chronometric dates and typological seriations). The obsidian source locations indicate an obsidian procurement range that acts a proxy measure for human land-use. These patterns of human land-use through time are used to explore human settlement systems and mobility around the Birch Creek Site. Obsidian XRF as a method and its implications for human mobility are discussed in detail in Chapter Three.

Chapter One introduces the Birch Creek Site, reviews past environmental data for the region, highlights regional ethnographic literature and culture history, and summarizes the Birch Creek Archaeological Project to date. Chapter Two examines regional XRF data in order to answer questions about obsidian procurement from the area surrounding the Birch Creek Site. Chapter Three outlines the research design for the present study and includes a discussion on the utility of XRF data for examining human land-use patterns. Chapter Three also addresses sample selection, artifact classification, and presents projectile point chronologies for the region. Chapter Four presents the results of the analysis, specifically addressing patterns associated with artifact type, directionality and distance to source, and projectile point chronologies. Radiocarbon dates and associated sourced obsidian artifacts are also considered in Chapter Four. Chapter Five addresses the results of the analysis and their implications for human settlement systems and mobility around the Birch Creek Site. Finally, Chapter Six summarizes the present study and presents concluding remarks.

The Birch Creek Site is located in southeastern Oregon (Figure 1.1), approximately 60 km northwest of Jordan Valley, Oregon. The site is situated on an alluvial terrace sequence of the Owyhee River (Walker 2001; Figure 1.2), a tributary of the Snake River. The site is identified by a surface scatter of artifacts located approximately 60 m from the edge of the Owyhee River. The surface scatter of artifacts extends 200 m along the shore of the river (Andrefsky et al. 2003).

Figure 1.1. Location of the Birch Creek Site, 35ML181 (from Andrefsky et al. 2003).

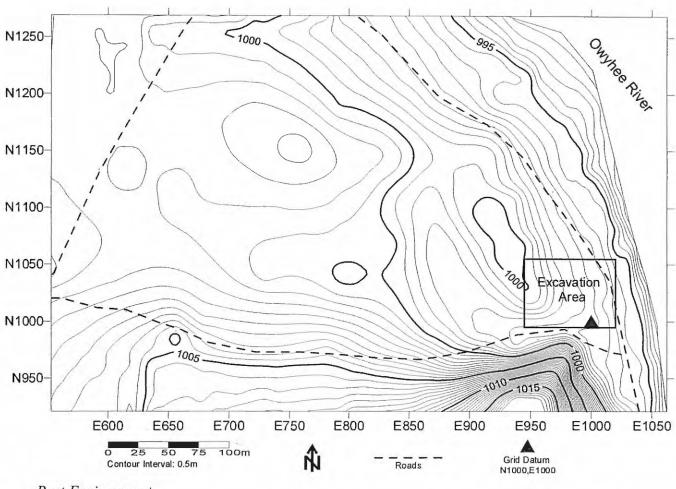


Figure 1.2. Relief map showing location of project area (from Andrefsky et al. 2003).

The present study investigates human settlement systems through time around the Birch Creek Site, and this section outlines past environmental data in order to provide historical context for changes that may have occurred in the region through time.

The Birch Creek Site, located in the Owyhee Uplands, is situated near the convergence of two major physiographic regions: the southern Columbia Plateau and the northern Great Basin. The Columbia Plateau is most commonly defined as an outwardly drained region that includes the Columbia River and its major tributaries. The Great Basin, on the other hand, is a large region encompassing much of Nevada and parts of Utah,

Past Environment

California, and Oregon that is not outwardly drained (Fenneman 1931; Thornbury 1965; Figure 1.3).

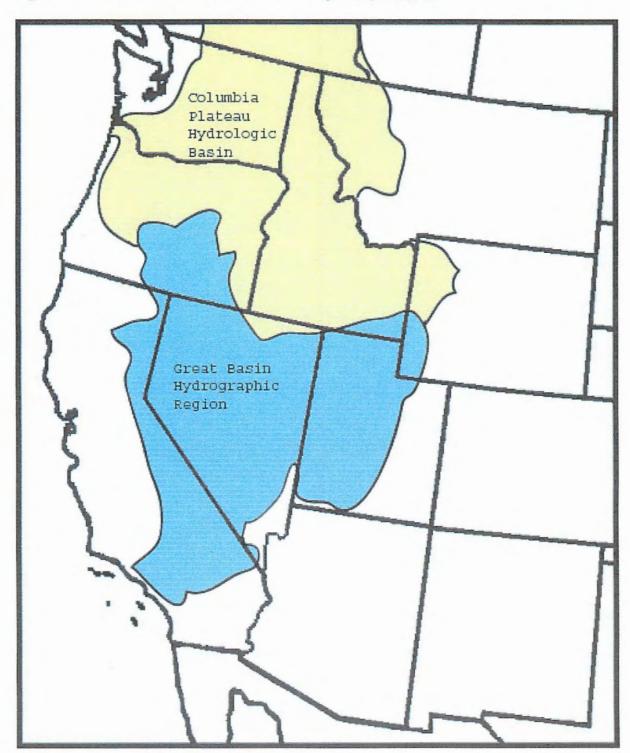


Figure 1.3. Great Basin and Columbia Plateau hydrologic regions.

Although the projectile points recovered from the site would suggest strong ties to the Great Basin, the location of 35ML181 is more typical of the riverside settlements associated with the Columbia Plateau (Ames et al. 1998). This section reviews past environmental data for both the Great Basin and Columbia Plateau regions.

Great Basin

The most recent dramatic environmental change in the Great Basin was the transition from relatively wet conditions to much drier conditions approximately 12,000 years ago. Prior to 12,600 BP, the pluvial lakes in the Great Basin were much larger and more numerous than they are in modern times (Mehringer 1986). All radiocarbon ages presented in text are uncorrected ¹⁴C years unless otherwise noted. These relatively wet conditions began to disappear between 12,600 BP and 10,600 BP. Arid conditions continued for thousands of years. Reduced effective moisture continued until 5,100 BP, and increased temperatures persisted until 4,000 BP (Mehringer 1986). Approximately 6,700 BP (Mehringer et al. 1977), the eruption of Mt. Mazama marked a period of high volcanic activity in Oregon, including recurrent volcanic activity at Newberry Craters in central Oregon. After the cessation of this volcanic activity, wetter and cooler conditions prevailed until approximately 2,000 BP (Mehringer 1986).

Grayson (1993) also presents a review of the paleoenvironmental data for the Great Basin. Grayson divides the Holocene into three periods: Early Holocene (10,000-7,500 BP), Middle Holocene (7,500-4,500 BP), and Late Holocene (4,500 BP to present). Paleoenvironmental data from plants, animals, and lakes suggest that the Early Holocene was marked by cooler and wetter conditions. The Middle Holocene, however, was marked by increased temperatures and reduced moisture. Finally, Grayson (1993) concludes that cooler

and wetter conditions prevailed in the Late Holocene, though not as drastic as the early Holocene. Relatively modern climatic conditions prevailed in the Great Basin during the late Holocene.

A more recent review of the paleoenvironmental data from the Great Basin is presented by Benson et al. (2002). Benson et al. argue that the period between 11,600 and 10,000 cal yr BP was marked by a general drying trend, but included a brief wet period (200 yr) at 10,300 cal yr BP. Following these arid conditions, wetter conditions prevailed in the Great Basin until 8,000 cal yr BP (Benson et al. 2002). The period between 6,500 and 3,800 cal yr BP is marked by drought conditions in the Great Basin that resulted in shrinking of lakes throughout the region. Benson et al. (2002) place the onset of relatively modern conditions (late Holocene) at approximately 3,000 cal yr BP.

Columbia Plateau

The period between 11,000 BP and 9,500 BP was generally warm and dry throughout much of the Columbia Plateau. Similarly, Mehringer (1996) notes a period of increased temperatures between 12,000 and 10,000 BP in the region. In the northern Columbia Plateau, the period following 9,500 BP was marked by an increase in effective precipitation; however, regions farther south experienced relatively drier conditions (Chatters 1998). Mehringer (1996), however, argues that the period between 10,000 and 7,000 BP marks a period of maximum aridity in the Columbia Plateau during the Holocene. The general pattern between 6,500 BP and 4,500 BP shows a trend toward decreasing temperatures with increasing moisture, primarily between 6,400 BP and 6,000 BP. Increased precipitation and decreasing temperatures continued through 2,800 BP, and following 2,800 BP a transition

toward modern environmental conditions occurred. Relatively little environmental change has occurred on the Columbia Plateau for the last 2,000 years (Chatters 1998).

Ethnographic Background

Although the focus of this research is on prehistoric settlement systems and mobility, the ethnographic record offers valuable insight into human lifeways at the time of contact with European settlers. Ethnographic literature provides information about human behavior that cannot always be obtained from archaeological data. The use of ethnographic accounts alongside archaeological data is a powerful tool that allows researchers to develop more complete interpretations about human prehistory.

In addition to a physiographic province, the Great Basin is also identified as a culture area (Steward 1938). Figure 1.4 shows the location of the Great Basin culture area and identifies Native American populations within the region.

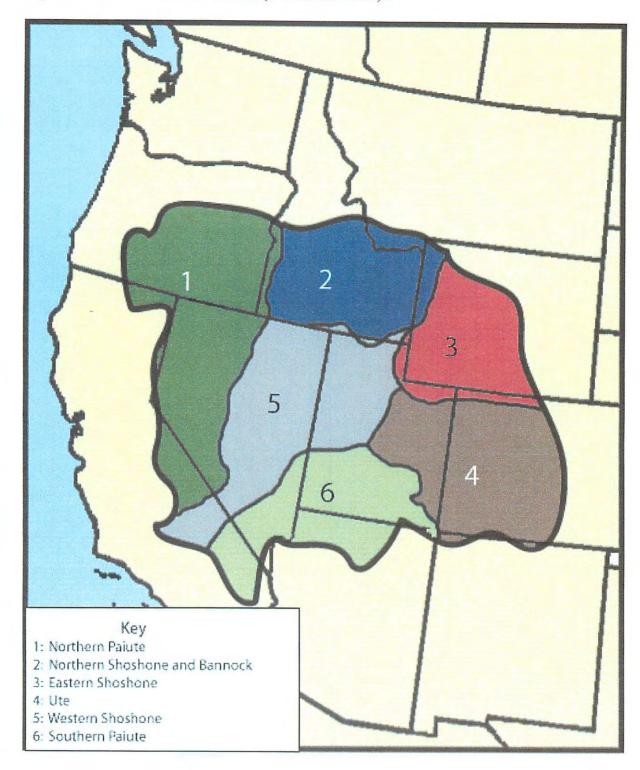


Figure 1.4. Great Basin culture area (D'Azevedo 1986).

The Northern Paiute occupied areas of Nevada, Oregon, California, and Idaho (Figure 1.4). The Western Shoshoni occupied the region to the east of the Birch Creek Site, and the Southern Paiute were located to the southeast of 35ML181 in Utah and southern Nevada. Although cultural boundaries are fluid, most ethnographic accounts identify the Northern Paiute as occupying the region surrounding the Birch Creek Site. Therefore, the Northern Paiute provide the ethnographic focus for the following section.

Although my research area is southeastern Oregon, the ethnographic writing included in this paper extends beyond a discussion of only the Northern Paiute in southeastern Oregon. There is a paucity of literature on the Northern Paiute in southeastern Oregon around the turn of the last century. White settlers avoided southeastern Oregon for two reasons: the fear of the Northern Paiute and the scarcity of resources. The fear of encountering the Northern Paiute kept white immigrants out of the region for many years. Plentiful resources were available after crossing the Cascade Mountains heading west, so the valleys in southeastern Oregon did not attract many settlers (Horr 1974).

In addition to keeping out white settlers, the terrain of southeastern Oregon had a tremendous effect on how indigenous people in the area lived. Because the land was arid and sparse, a hunting and gathering lifestyle was the most advantageous. Nonetheless, subsistence in this region was extremely difficult. Unlike other tribes, the Northern Paiute did not have access to the major anadromous fish runs on the Columbia River. Salmon were available in the Owyhee, Malheur, and Snake Rivers, but these were often dominated by the Bannock and Shoshoni tribes from the east (Horr 1974).

Subsistence varied from season to season and with the availability of resources. Seeds and roots were gathered in the summer and autumn and salmon in the spring. It was

often difficult to rely on plant resources because they were greatly affected by seasonal rainfall. Fish would have been a stable resource, but limited access to salmon runs and limited storage facilities prevented the Northern Paiute from depending on anadromous fish. Hunting was also part of the subsistence strategy, and animals including antelope, mountain sheep, deer, elk, and rabbits were hunted throughout the year. The Northern Paiute were able to make a living in southeastern Oregon, but the marginal environment prevented any sense of security (Horr 1974).

The Northern Paiute generally moved within a 20-30 mile radius (roughly 32-48 km), and land-use varied from season to season due to the availability of resources (Steward 1938; Steward and Wheeler-Voegelin 1974). In the spring and summer, groups inhabited the valleys in small villages. If resources were stable, many Northern Paiute would winter in the mountains. If plant resources were poor, however, groups remained in valley villages year round. Fall was the only part of the year when large groups of Northern Paiute came together. When seeds were gathered in the fall, groups gathered at villages for a few days of dancing, gambling, and communal hunting. Seed gathering marked one of the only communal activities by the Northern Paiute (Steward 1933).

With the exception of large congregations in the fall, Northern Paiute lived in extended family groups. Due to environmental factors and the division of labor, Steward (1938) argues that family-level sociopolitical organization was the primary economic unit in the Basin-Plateau region. In regards to subsistence, the acquisition of plant resources and most game was done by independent family units. However, the hunting or fishing of certain animals, including buffalo, rabbits, and fish, required a collective effort on the part of multiple family units. As mentioned previously, annual seed harvesting was another activity

in which independent family units merged. Overall, however, "ecological and social determinants" resulted in family-level organization for much of the Basin-Plateau region (Steward 1938).

Steward (1938) identified three types of sociopolitical organization for low population density hunter-gatherers: unilineal band, composite band, and family-level organization. Unilineal bands are patrilineal and patrilocal and were generally exogamous because groups consisted of actual relatives. Unilineal bands were most often found in areas in which the environment did not allow for group size to exceed 100 members (Steward 1938). Composite bands were made up of unrelated families and groups were generally larger than unilineal bands, often exceeding 100 people. Steward noted, however, that Western Shoshoni, Southern Paiute, and Northern Paiute did not necessarily fit the description for unilineal or composite bands. Due to ecological factors, such as an emphasis on seed gathering, Steward asserted that family-level organization was the "only stable social and political unit" in these regions (Steward 1938:260).

Regional Archaeology

Archaeological excavations in the Owyhee Uplands are extremely limited; Dirty Shame Rockshelter (DSR) (Aikens et al. 1977; Hanes 1988) and Nahas Cave (Plew 1986) are the largest excavation projects in the region (Figure 1.5). DSR is of particular importance to the Birch Creek Site because 121 obsidian artifacts were submitted for trace element analysis (Hanes 1988). Unfortunately, the results of the analysis are not replicable due to calibration issues at the lab where the analysis was originally conducted. This section briefly reviews the chronological sequences identified for Nahas Cave (Plew 1986) and Dirty Shame Rockshelter (Hanes 1988), and Table 1.1 presents a summary of these chronologies.

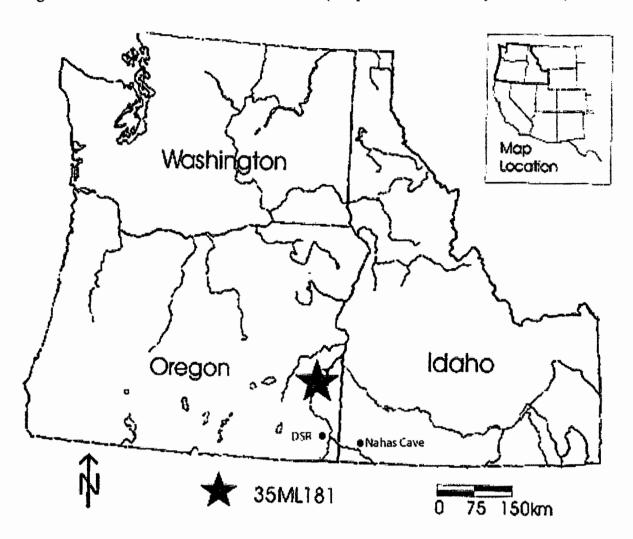


Figure 1.5. Location of DSR and Nahas Cave (Adapted from Andrefsky et al. 2003)

1

- AND - AND

(jiwr)

-

Points.	Diam (1096)	H (1000)
	Plew (1986)	Hanes (1988)
500 BP	Camas Creek IV: Desert Side-Notched, Cottonwood Camas Creek III: Rose Spring-Eastgate series points	Late Archaic Occupational Period: transition from dart
1,500 BP	Camas Creek II : Elko series projectile points	to bow and arrow technology; Rosegate, Desert series projectile points
2,500 BP		
3,500 BP 4,500 BP 5,500 BP	Camas Creek I : Humboldt and Pinto series projectile points	Hiatus at Dirty Shame Rockshelter
		Mid Archaic Occupational
6,500 BP		Period: Northern Side- Notched, Elko, Humboldt
7,500 BP		Early Archaic Occupational Period: stemmed lanceolate projectile points; Great Basin
8,500 BP		Stemmed, Windust, and Plano
9,500 BP		

l

 Table 1.1. Cultural Chronologies from the Owyhee Region with Diagnostic Projectile Points.

Plew (1986) proposed a "working chronology" for the south-central Owyhee region based largely on survey. Camas Creek I, dated between 6000 BP and 2700 BP, is dominated by Humboldt and Pinto series projectile points. Camas Creek II, dated between 2700 BP and 1400 BP, is identified only by the presence of Elko series projectile points (Plew 1986). Camas Creek III, dated between 1400 BP and 800 BP, is typically defined by the presence of Rose Spring-Eastgate series projectile points. The final phase, Camas Creek IV, dates between 800 BP and 700 BP and is marked by the presence of Desert Side-Notched and Cottonwood series projectile points.

A cultural chronology has also been proposed for Dirty Shame Rockshelter (Hanes 1988). The Early Archaic Occupational Period, dated between 9500 BP and 6800 BP, is dominated by the presence of stemmed lanceolate projectile points, including Great Basin Stemmed, Windust, and Plano projectile points. The Mid Archaic Occupational Period, dated between 6800 BP and 5900 BP, shows a move away from lanceolate stemmed points toward notched projectile points, including Northern Side-Notched, Elko and Humboldt series, and Pinto style projectile points. The late Archaic Occupational Period, dated between 2700 BP and 400 BP, marks the shift from dart technology to bow and arrow technology, including Rosegate and Desert series projectile points.

The gap in the archaeological record at Dirty Shame Rockshelter between 5900 BP and 2700 BP is unfortunate because the majority of radiocarbon dates from the Birch Creek Site fall within that time period. However, the contemporaneity of the Dirty Shame Rockshelter hiatus and the occupation of the Birch Creek Site may reflect changing settlement strategies in such a low population density region. As is clear from the archaeological investigations conducted in the Owyhee Uplands, much work remains to be

done toward developing a general cultural chronology for the region. Projectile point types, their stratigraphic provenience, and their chronological implications at the Birch Creek Site are discussed in detail in Chapter 4.

Project Background

As a stratified and excavated site, 35ML181 provides an excellent context for identifying and exploring possible changes in human land-use and settlement systems through prehistory. This section reviews all archaeological investigations conducted at the Birch Creek Site (Andrefsky and Presler 2000; Andrefsky and Satterwhite 2002; Andrefsky and Nauman 2003; Andrefsky et al. 2003) so readers are familiar with site components discussed in later chapters.

The Birch Creek Site was initially recorded by Reg Pullen (1976) during a survey for the Bureau of Land Management (BLM) along the Owyhee River. The site was later rerecorded in 1992 by BLM archaeologist Alice Bronsdon after a major flooding of the Owyhee River exposed cultural materials along the river. Excavations began in the summer of 1998 when Washington State University, in conjunction with the BLM, began its multiyear investigation at the Birch Creek Site. During the summers of 1998 and 1999, Washington State University conducted archaeological field schools that focused on the excavation of a large housepit block located on the second of three terraces of the Owyhee River (Figure 6). Ground penetrating radar and magnetometry surveys were conducted during the 2000 field season. The summers of 2001 and 2002 saw the return of the Washington State University Field School when these excavations concentrated on the investigation of a second housepit, located approximately 50 meters north of the housepit block excavated in 1998-1999 (Figure 1.6). During the 2003 field season, the principal

investigator, Dr. William Andrefsky Jr., and a small crew of graduate students returned to Birch Creek to continue excavating a cultural component that was initially identified during the 2002 field season.

(internet)

Ĕ.

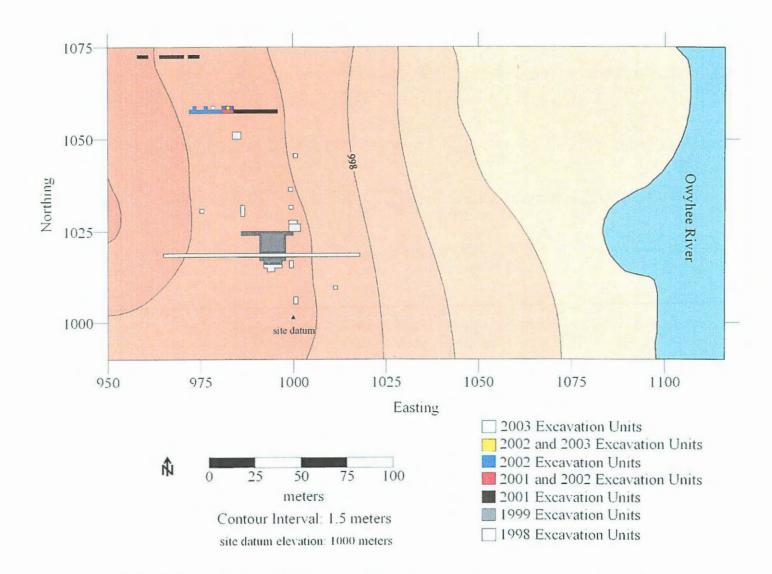


Figure 1.6. Location of 1998-1999, and 2001-2003 excavation units (from Andrefsky et al. 2003).

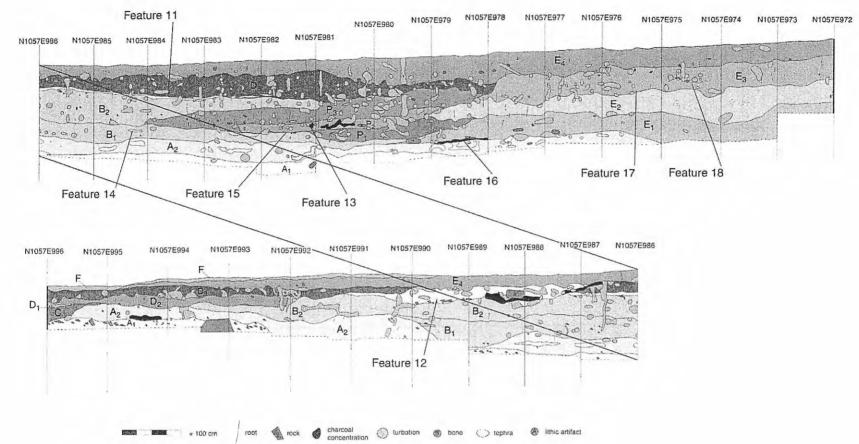
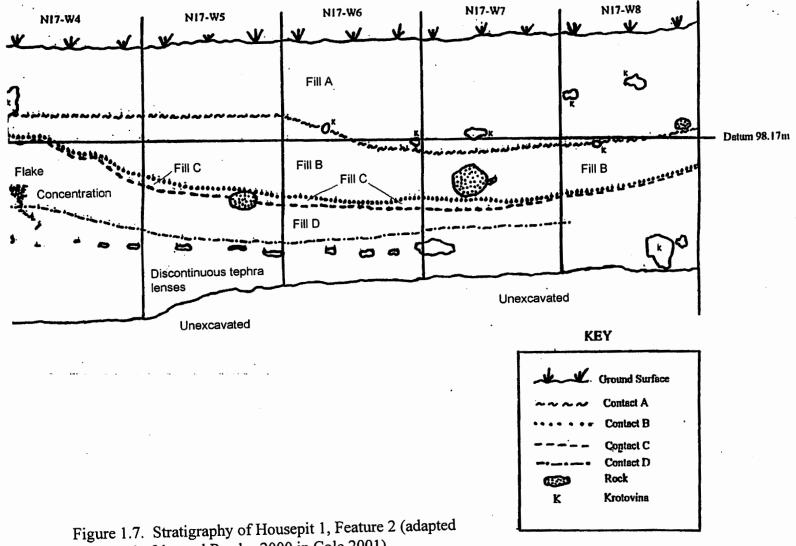


Figure 1.8. Composite profile of the south wall of the N1057 trench, from Andrefsky et al. (2003).

The 2003 field investigations at the Birch Creek Site focused on the further identification and excavation of the cultural component resting below the pithouse, initially identified in 2002. The cultural component rests directly above Mazama tephra. Charred material, collected directed below a metate resting on the Mazama tephra, was dated to 6640 \pm 40 BP (Beta-181782). Table 1.2 is a summary of radiocarbon dates from the Birch Creek Site used in the present study. These radiocarbon dates, in addition to the feature stratigraphy presented in this section, provide the chronological control for the sourced obsidian artifacts used in this analysis.

Measured Radiocarbon Age (yr BP)	Unit	Level	Conventional ¹¹ C Age (yr BP)	2 Sigma Calibrated (yr BP)	2 Sigma Calibration BC / AD	Likely Fill or Contact	Sample No.	Radiocarbon Lab
2430 ± 60	N17 W7	13	2410 ± 60	2725 - 2335	775 – 385 BC	Contact II (B)	130363	Beta Analytic
2460 ± 70	N16 W6	10	2420 ± 70	2735 - 2330	758 – 380 BC	Fill B	130362	Beta Analytic
2620 ± 40	N17 W8	5	2620 ± 40	2780 - 2730	830 – 780 BC	Fill A	145557	Beta Analytic
2760 ± 110	N19 W 6	16	2760 ± 110	3160 - 2730	1210 – 780 BC	Fill B	144771	Beta Analytic
3980 ± 50	N1017 E992	NA	3990 ± 50	4560 4350 and 4330 4300	2600 – 2400 and 2380 – 2360 BC	Contact III (C)	165407	Beta Analytic
4480 ± 70	N17 – W4	55	4480 ± 70	5315 - 4865	3365 – 2915 BC	Contact IV (D)	142362	Beta Analytic
3980 ± 50	N1057 E981	26	3970 ± 50	4540 - 4280	2580 – 2330 BC	Feature 15 living surface	165408	Beta Analytic
6640 ± 40	N1057 - E980	31	6660 ± 40	7595 – 7460	5645 – 5510 BC	Pre- housepit surface	181782	Beta Analytic


Table 1.2. Radiocarbon Dates from the Birch Creek Site, adapted from Andrefsky et al. (2003)

The 1998-1999 excavations at the Birch Creek Site focused on the excavation of a prehistoric housepit designated Housepit 1, Feature 2 (Figure 1.7). Four living surfaces, Contacts A-D, interspersed with multiple fill episodes, were identified during field investigations.

20

from Andrefsky and Presler 2000 in Cole 2001).

Contact D is the lowermost cultural component identified in Feature 2. Charred material from the surface of Contact D was collected and returned a date of 4480 ± 70 BP (Beta-142362). All radiocarbon dates are uncorrected ¹⁴C years unless otherwise noted. Fill D is situated between Contact D and Contact C. Although the excavation of Feature 2 ended in 1999, archaeologists working on the 2001 WSU Field School returned to the feature to collect charred material from the previously undated living surface identified as Contact C. The charcoal sample returned a date of 3980 ± 50 BP (Beta-165407). Fill C sits above Contact C and below Contact B. A carbonized wood fragment collected from the surface of Contact B was dated to 2430 ± 60 BP (Beta-130363). Fill B sits between Contacts B and A \and dates to 2460 ± 70 BP and 2760 ± 110 BP (Beta-130363, Beta-144771). The uppermost living surface, identified as Contact A, is ephemeral in nature and its date suggests possible mixing. Charred material collected from the bottom of Contact A returned a date of $2620 \pm$ 40 BP (Beta-145557). Fill A was deposited after the abandonment of Housepit 1. The University of Washington Calib© program (ver. 4.4) was used to calibrate all radiocarbon dates for the present study. The results of the calibration, as well as the implications for potential mixing in the upper contacts and fills of Feature 2, are addressed in Chapter Four.

No archaeological excavations were conducted during the 2000 field season. However, ground penetrating radar and magnetometry surveys were conducted at the site (Carr et al. 2000). Nearly two dozen "interpreted features" were identified during the surveys, and the 2001 field season focused on the excavation of several of these interpreted features. Two of these interpreted features produced little cultural material, but a cultural feature was identified toward the end of the field season.

The 2002 excavations continued to excavate the cultural feature initially identified in 2001; a stratigraphic profile of the N1057 trench was also completed, as shown in Figure 1.8. The cultural feature was interpreted as another prehistoric housepit, designated Feature 15. Charred wood material thought to represent a part of a burned roof beam from the housepit structure, initially collected in 2001, returned a date of 3980 ± 50 BP (Beta-165408). Toward the end of the 2002 field season, another cultural component was identified below the pithouse living surface.

A detailed description of all field investigations at the Birch Creek Site, as well as all post-field investigations, can be found in Andrefsky and Presler (2000), Andrefsky and Satterwhite (2002), Andrefsky and Nauman (2003), and Andrefsky et al. (2003).

E.

. . .

ſ

]

J

CHAPTER TWO

REGIONAL XRF ANALYSES

In the region surrounding the Birch Creek Site, many studies focus on the initial characterization of geologic sources of obsidian and the representation of these sources at archaeological sites. Ambroz (1997) characterized 622 obsidian samples from Oregon using neutron activation analysis. In order to identify obsidian procurement patterns at Wilson Butte Cave, Idaho, Bailey (1992) had to first visit 76 localities in the lower Snake River Plain so that obsidian could be collected for trace-element characterization. These sources were then compiled into a source library and artifacts from Wilson Butte Cave were matched to them. Nelson (1984) is another example of the initial characterization of geologic sources of obsidian. Other researchers have worked to synthesize trace-element characterizations of specific geologic sources of obsidian and document their presence in archaeological sites throughout Oregon, Washington, and California (Thatcher 2000).

Certain studies, however, use obsidian trace-element studies to investigate specific questions about human behavior. Hess (1997) used distance-decay effects to study obsidian acquisition and mobility in Oregon and Washington. More specifically, Hess compared the Late Pre-Mazama Period (8500-6850 BP) and Late Prehistoric Period (2000-250 BP). He concluded that groups from both periods exhibited similar ranges, although Late Pre-Mazama groups may have made more residential moves throughout the year. Lyons et al. (2001) used obsidian XRF analysis to identify travel patterns during four prehistoric periods at the Lost Dune and McCoy Creek sites in southeastern Oregon.

One of the more recent and comprehensive contributions in obsidian trace-element studies in the Great Basin is the Jones et al. (2003) study of Paleoarchaic foraging territories. Of particular interest in this study is that Jones et al. identify changes in foraging ranges that correlate with climatic events in the region.

The present study centers on the identification of human settlement systems and mobility around the Birch Creek Site. Because trace element analysis of artifact obsidian provides the proxy measure for human land-use, it is important to investigate regional patterns of obsidian acquisition. Any regional patterns identified help determine how the Birch Creek Site fits in to the larger human settlement system in the northern Great Basin and southern Columbia Plateau.

This chapter attempts to address four primary questions: 1) Does the number of artifacts sourced correlate to the number of obsidian sources represented in an assemblage? In other words, does the number of obsidian sources represented in an assemblage increase with sample size? 2) Is the overall percentage of obsidian in a lithic assemblage related to the distance to obsidian sources? For example, does the percentage of obsidian in an assemblage increase as distance to obsidian sources decreases? 3) Is the closest represented source of obsidian most represented in an assemblage? and 4) How does the overall range in distance to obsidian sources correlate to the abundance of obsidian the assemblage? For example, will a preference for certain obsidian sources be evident when obsidian sources are of similar distances from a site?

This chapter begins by reviewing and summarizing the available XRF data from reports of both surveys and excavations in the region surrounding the Birch Creek Site. Second, linear regression analyses are used to explore the four previously mentioned

questions. Finally, this chapter reviews XRF data previously obtained for the Birch Creek Site and how these results have been updated over the last three years.

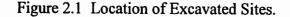
Literature Review

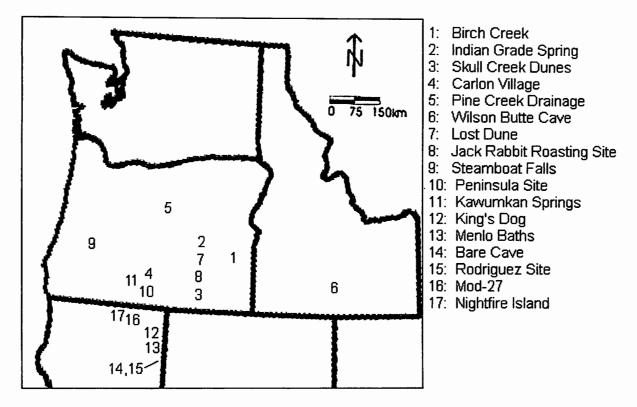
Lake Owyhee Reservoir Survey

The Class III cultural resources survey (Luttrell 2000) on the Lake Owyhee Reservoir in southeastern Oregon recorded 43 prehistoric and historic sites in 1994 and 1995. Although only 16 obsidian artifacts were analyzed using XRF analysis, the results of the analysis are of primary importance to the Birch Creek Site. When the XRF analyses were originally conducted on the Lake Owyhee Reservoir survey material in 1995 and 1997, only four artifacts were assigned to known source locations; the rest of the artifacts were assigned to unknown source locations. A field survey conducted in 1999 by William Lyons identified two of the unknown sources: Sourdough Mountain and Coyote Wells (Luttrell 2000; William Lyons, personal communication). Sourdough Mountain and Coyote Wells are the two most abundant sources represented in the Birch Creek assemblage (Andrefsky et al. 2003; Skinner 2000, 2002, 2003).

FTV Western Fiber Build Project

Northwest Research Obsidian Studies Laboratory, in conjunction with Northwest Archaeological Associates, conducted XRF analysis on 618 obsidian artifacts from 34 archaeological sites in central Oregon (Skinner and Thatcher 2003). The sites parallel Highway 20 from Deschutes County, Lake County, Harney County, and Malheur County. Forty known geologic sources of obsidian were identified by XRF analysis of artifacts. The sample of artifacts from each site ranges between one and forty artifacts, with most sites


represented by twenty artifacts. The number of sources identified at each site ranges between one and twelve known sources of obsidian (Skinner and Thatcher 2003).


Jack Rabbit Roasting Site (35HA3055)

The Jack Rabbit Roasting Site was identified during the Bureau of Land Management Beatys Butte fire rehabilitation survey in the late summer of 2000 (Thomas et al. 2002; Figure 2.1). Chert and obsidian lithic material, as well as unburned and burned bone fragments, were present on the surface. Two archaeologists, Scott Thomas and Don Braden, later returned to the site and excavated six 1x1 meter units and two 0.5x1 meter units. It was concluded that the Jack Rabbit Roasting Site likely represents a single-use hunting camp. Seventeen artifacts were submitted for XRF analysis. One unknown and three known sources of obsidian were identified (Thomas et al. 2002).

Lost Dune (35HA792)

Numerous seasons of excavation discovered four prehistoric periods of occupation at the Lost Dune and McCoy Creek sites in southeastern Oregon: 3,500-2,000 BP, 2,000-500 BP, AD 1400s, and AD 1500s. Ninety obsidian artifacts were analyzed using trace element analysis. Seventeen known and four unknown geologic sources of obsidian were identified. Coyote Wells/Coyote Wells East and Venator are the two most represented obsidian sources at the site (Lyons et al. 2001).

Wilson Butte Cave (10JE6)

Excavations at Wilson Butte Cave were initially conducted during the summers of 1959 and 1960. Researchers returned to the site during the 1988 and 1989 field seasons to conduct further excavations (Bailey 1992). The cave is located 125 meters above the Snake River Plain, and due to the lack of any nearby water source, it is argued that Wilson Butte Cave was a short-term occupation site primarily used in winter and spring. Five major strata have been identified at the site, with the lowermost stratum dating to $15,000 \pm 800$ BP, and the uppermost stratum dating to 425 ± 150 BP. Two-hundred and forty artifacts were submitted for trace element analysis. Sixteen known geologic sources of obsidian are represented; Big Southern Butte and Brown's Bench obsidian are the two most represented sources (Bailey 1992).

Peninsula Site (35KL87)

Excavations at the Peninsula Site were conducted during the summer of 1986 by the University of Oregon Field School, in conjunction with the Bureau of Land Management (Silvermoon 1994). Twenty-eight circular rock features were identified at the site and they are argued to represent habitation structures. The Peninsula Site likely represents a winter and summer village occupied periodically between 4,000 and 1,000 BP. Thirty two artifacts were submitted for XRF analysis. Eight known geologic sources of obsidian are represented; Drews Creek/Butcher Flat is the most represented obsidian source (Silvermoon 1994). Skull Creek Dunes Locality-6 (35HA412)

Research began at Skull Creek Dunes in 1979, and excavations at Locality-6 were conducted during the summer of 1996 by the Washington State University Field School (Wegener 1998). Twenty-eight artifacts were selected for trace element analysis. Four known and four unknown geologic sources of obsidian were identified at Locality-6. Beatys Butte obsidian dominates the assemblage.

Indian Grade Spring Site (35HA1421)

The Indian Grade Spring Site (Jenkins and Connolly 1990) is argued to be a huntinggathering site and three cultural components have been identified. Component III dates between 2,000 and 1,400 BP; Component II was dated to 1150 BP; and Component I was dated to 530 BP. One hundred six artifacts were submitted for XRF analysis. Eight known and three unknown geologic sources of obsidian were identified. Unfortunately, the majority of the analyzed artifacts (82%) come from two unknown source locations (Jenkins and Connolly 1990).

Carlon Village (35LK2736)

Carlon Village, located in the Fort Rock Basin, contains eight large, prehistoric boulder-foundation houses (Wingard 1999). Radiocarbon dates suggest that there were two major periods of occupancy, roughly 1,800 BP and 600 BP. One hundred sixty artifacts were submitted for trace element analysis. Fourteen known and two unknown geologic sources of obsidian were identified in the assemblage. The Silver Lake/Sycan Marsh source is the most abundant obsidian in the assemblage (Wingard 1999).

Pine Creek Drainage

The Pine Creek Drainage is located on the John Day River in central Oregon. The XRF analysis data comes from the following ten sites: 35WH7, 35WH14, 35WH2, 35WH13, 35WH21, 35WH42, 35WH46, 35WH164, 35WH166, and 35WH168 (Endzweig 1994). Ninety artifacts were submitted for trace element analysis. Twelve known geologic sources of obsidian are represented; White Water Ridge and Little Bear Creek are the two most abundant obsidian sources in the assemblage (Endzweig 1994).

Steamboat Falls Site (35DO497)

During late spring 2002, Statistical Research, Inc. conducted archaeological testing at the Steamboat Falls Site (Maxwell et al. 2003). 35DO497 likely represents a short-term camp occupation with an emphasis on the exploitation of fish resources. Nineteen artifacts were submitted for XRF analysis. Six known geologic sources of obsidian are represented; the majority of obsidian artifacts are made from Silver Lake/Sycan Marsh obsidian (Maxwell et al. 2003).

Nightfire Island (4SK4)

Nightfire Island (Hughes 1986) was excavated by the University of Oregon during the mid 1960s. Three hundred ten artifacts were selected for trace element analysis. Seventeen known geologic sources of obsidian were identified. The Grasshopper Flat, Lost Iron Well, and Red Switchback obsidian sources dominate the assemblage (Hughes 1986).

Kawumkan Springs

The Kawumkan Springs midden was excavated during the late 1940s and early 1950s (Hughes 1986). Ninety seven artifacts were submitted for XRF analysis. Eleven known geologic sources of obsidian were identified, with Spodue Mountain obsidian dominating the assemblage (Hughes 1986).

Surprise Valley

Four separate sites are examined in the Surprise Valley region: Bare Cave (CA-Las-202), Rodriguez Site (CA-Las-194), Menlo Baths (CA-Mod-197), and King's Dog (CA-Mod-204). Eighty two artifacts were sourced at Bare Cave, fifty four artifacts were sourced at the Rodriguez Site, seventy artifacts were sourced from Menlo Baths, and one hundred seventy five artifacts were sourced from King's Dog (Hughes 1986).

Regional Patterning

<u>Methods</u>

I recorded seven key variables were recorded for this analysis: 1) project type (survey or excavation; 2) number of obsidian artifacts sourced; 3) number of known geologic sources of obsidian represented; 4) percentage of obsidian in the overall lithic assemblage; 5) range of distances (km) from site to obsidian sources (for example, 25-150 km); 6) distance (km) from site to most abundant obsidian source in the assemblage; and 7) percentage of

sourced obsidian from most abundant source (for example, the most abundant obsidian source represented 65% of the XRF sample). The data is summarized in Table 2.1. Due to the nature of some reports, it was not possible to record all variables for all sites, and some sites, such as the group from the Pine Creek Drainage, are multiple sites that have been collapsed into one. Linear regressions were calculated to explore relationships between these variables in order to investigate regional patterns of obsidian acquisition. SPSS version 11.0 was used for all regression analyses.

Table 2.1. Summary Data for Excavated Sites

Site	Artifacts Sourced (n)	Known Sources Represented (n)	Percentage of Obsidian in Lithic Assemblage	Range of Distances (km)	Distance from site to most abundant source (km)	Percentage of Obsidian from most abundant source
Indian Grade						
Spring	106	7		40-170		•
Steamboat Falls	19	6	25	80-330	175	47
Lost Dune	90	17		44-162	47	19
Pine Creek					140	
Basin	90	12	1-29	120-200		41
Carlon Village	160	14	95	25-160	25	25
Skull Creek					30	
Dunes	28	4	80	30-40		
Nightfire Island	310	17		34-193	47	57
Kawumkan					27	
Springs	97	11		16-145		59
Bare Cave	82	10		7-133	27	39
Rodriguez	54	8		7-133	27	33
Mod-27	38	8		23-100	24	32
Menlo Baths	70	13		10-135	38	34
King's Dog	175	14		24-125	24	51
Wilson Butte					120	
Cave	240	16		35-280		33
Jack Rabbit					133	
Roasting Site	17	3	22	"periphery"-145		76
Peninsula Site	32	8	77	45-88	26	56

Sampling Issues

Before exploring any regional patterning that may exist, it was necessary to first determine the effects of sample size. It would be premature to make site to site comparisons about the number of obsidian sources exploited without considering the effects of sample size. Linear regression was used to determine how the number of artifacts sourced relates to the number of obsidian sources identified. Not surprisingly, the number of artifacts sourced was positively correlated with number of obsidian sources represented (r^2 =.625, p<.000). As sample size increases, so does the number of obsidian sources in the assemblage. Because of this relationship, it is inappropriate to make direct comparisons between sites based on the number of obsidian sources exploited alone.

Relative Percentage of Obsidian in an Assemblage

The overall percentage of obsidian in the chipped stone assemblage for each of the sites examined ranged roughly between 20% and 95%, and it was expected that this percentage may reflect the relative availability of obsidian in regards to distance from site to source. At nearly half of the sites examined in this analysis, prehistoric peoples were not collecting obsidian from the closest available source. The percentage of obsidian in the overall assemblage was compared both with distance to the closest source and distance to most abundant source. Strong correlations were found between both sets of variables (% of obsidian vs. distance to most abundant source $[r^2=.858, p=.008]$; % of obsidian vs. distance to most abundant source $[r^2=.962, p=.003]$). In other words, sites with a large percentage of obsidian in the overall assemblage are closer to obsidian sources than sites containing a small amount of obsidian.

Relative Percentage of Most Popular Source

Due to the strong correlation between the relative percentage of obsidian in the overall lithic assemblage and distance, it was also expected that the relative percentage of the most abundant obsidian source in the sample would also be related to distance. It was predicted that sites exhibiting a heavy preference for a certain obsidian source was likely to be relatively close to that source of obsidian. The percentage of the most abundant obsidian source in the sample ranges between 19% and 76%. Contrary to expectations, the distance to the most popular source was not correlated with its relative percentage in the sample of analyzed artifacts (r^2 =.061, p=.395).

Range of Distances to Exploited Obsidian Sources

The final set of relationships investigated examined how the "range" of distances to exploited obsidian sources may affect the relative percentages of exploited obsidian in the assemblage. It was predicted that sites exhibiting a large range in distance to exploited obsidian sources would show a strong preference for more local obsidian sources. It was also predicted that sites exhibiting a small range (i.e. the distance from site to exploited obsidian sources was relatively constant) would not show a preference for certain obsidian sources. Due to the nature of the data, this relationship was not investigated quantitatively. Instead, this relationship was investigated on a site by site basis. The relative percentage of the most abundant obsidian in the sample ranged roughly between 25% and 50%, regardless of distances to exploited sources. For example, in the Pine Creek Drainage, distances from site to exploited obsidian sources are essentially the same (approx. 140-150 km). However, a strong preference is still shown for one geologic source of obsidian.

Discussion

The review of the available XRF data in the northern Great Basin and southern Columbia Plateau, as well as the linear regression analyses, helped to highlight general patterns of obsidian acquisition. The most surprising pattern identified was the strong preference for one obsidian source at each of the sites or site clusters examined. Approximately half of the sites examined showed a preference for obsidian that was not the closest source to the site; the remaining half of the sites primarily exploited the closest geologic obsidian source. Prehistoric peoples showed a preference for certain resources, and these preferences may have related to the quality of the raw material, social pathways, or ease of travel.

In general, sites located relatively close to known geologic sources of obsidian contained a much higher percentage of obsidian in the overall lithic assemblage. In regards to the exploited sources of obsidian, sites relatively close to one another in regions with numerous local obsidian sources exhibited very different patterns of obsidian acquisition. Conversely, sites only 5 km apart in a region containing few obsidian sources displayed very similar patterns of obsidian acquisition.

Previous XRF Analysis at the Birch Creek Site

Initial obsidian trace element analyses were conducted on materials from the Birch Creek Site in 2000 (Cole 2001; Skinner 2000). 108 obsidian artifacts were submitted to Northwest Research Obsidian Studies Laboratory for energy dispersive XRF analysis. The original sample returned 11 known and 14 unknown geologic sources of obsidian. In the spring of 2002, 19 additional obsidian artifacts were submitted to Northwest Research

Obsidian Studies Laboratory for XRF analysis (Skinner 2002). The sample returned nine known geologic sources of obsidian and two unknown sources.

Ongoing survey in southeastern Oregon has helped to locate and characterize previously unknown geologic sources of obsidian (Skinner, personal communication; Lyons, personal communication). Fourteen unknown geologic sources of obsidian were initially represented at the Birch Creek Site, and the continued work in the region has reduced this number to eight. Table 2.2 lists the numbers of the previously unknown sources and their new identifications. Through continued communication with Craig Skinner at Northwest Research Obsidian Studies Laboratory, many artifacts previously assigned to unknown sources have been reassigned to known geologic sources of obsidian in southeastern Oregon.

Previously Unknown	New Source Assignment	
Unknown 1	Barren Valley	
Unknown 2	Sourdough Mountain	
Unknown 3	Bretz Mine	
Unknown 4	Unknown 4	
Unknown 5	Coyote Wells	
Unknown 9	Unknown 5 (GGOV)	
Unknown 10	Sourdough Mountain	
Unknown 11	Unknown 3	
Unknown 13	Coyote Wells East	
Unknown 14	Unknown 1	

 Table 2.2. New Source Assignments for Previously Unknown Sources

In addition to these changes, the artifacts originally submitted for Cole's (2001) research were later reanalyzed and some artifacts were reassigned to different source locations. As increasing samples are characterized from known geologic sources of obsidian, the chemical signature of certain sources can change. While some geologic sources of obsidian are extremely homogenous in their chemical composition, others are much more variable. Characterization studies of these relatively more variable sources helps to more correctly identify their chemical composition. Therefore, artifact obsidian that was initially thought to belong to an unknown source may actually belong to a more variable known source. Also, some artifacts no longer have a confident chemical source assignment due to their small size and were not used in the present study. All updated tables can be found in Appendix A.

ł

CHAPTER THREE

RESEARCH DESIGN

The primary goal of this thesis is to evaluate Steward's (1938) ethnographic model for hunter gatherer land-use and assess continuity of land-use through time around the Birch Creek Site. Steward's model is presented in detail in the following section. Five sub-goals are also addressed in this chapter, which are instrumental in evaluating Steward's (1938) model at the Birch Creek Site: 1) Explain x-ray fluorescence analysis and why it is important to the present study; 2) Present expectations regarding the exploitation of obsidian sources under the Stewardian model; 3) Address sample selection and how the sample relates to the overall lithic assemblage at the Birch Creek Site; 4) Introduce the artifact typology employed for the present study; and 5) Present a projectile point chronology developed from regional archaeological investigations.

Steward's Ethnographic Model

Steward's (1938) goal in the Basin-Plateau region was to evaluate what affect ecology had on sociopolitical organization. With a primary emphasis on ecological and social determinants, Steward developed an ethnographic model for human land-use in the Great Basin. The following sections present the ecological and social determinants, as evaluated by Steward (1938), and discuss how these affect economic and social group organization in the Great Basin.

Ecological Determinants

Social groups in the Great Basin depended largely on the natural environment. Characteristics such as population density, group size, distribution of groups, and mobility

were principally determined by attributes of the natural environment (Steward 1938). The collection of plant foods was the primary subsistence activity in the region, and the scarcity of such resources prevented the settlement of large, permanent groups under most circumstances. Individual family units were the primary economic group in the region (Steward 1938).

Plant foods were critical in regards to subsistence, but hunting was also extremely important to survival and was usually done independently by families. Cooperative hunts were limited and varied by species, so predictable yearly hunts were rare (Steward 1938).

Although the availability of plant and animal resources prevented economic groups larger than the family unit throughout most of the year, some resources, including pine nuts, crickets, grasshoppers, and salmon, were collected by larger groups depending on their location (Steward 1938). In general, however, the scarcity of resources made it necessary to travel in small groups throughout much of the year over a very large area. The Northern Paiute generally traveled within a 20-30 mile radius during their seasonal movements throughout the year (Steward 1938; Steward and Wheeler-Voegelin 1974). Seasonal activities varied depending on the availability of resources and kept populations on the move for much of the year. Groups generally wintered in canyons or valleys, paying particular attention to the availability of water (Steward 1938).

The scarcity of resources also greatly affected population densities in the region. Areas with abundant resources saw relatively high population densities, while relatively poor environments had extremely low population densities (Steward 1938). For Basin-Plateau groups generally, the scarcity of resources and poor environment created very low population densities throughout much of the region.

Social Determinants

Three primary social activities brought family groups together during the year: festivals, the sweat house, and warfare. Festivals were often the result of a temporary increase in certain food resources in specific areas. The relative temporary abundance of resources allowed larger social groups to form for brief periods during the year (Steward 1938).

Sweat houses and warfare also brought larger groups of people together. However, many groups were too small and "unsettled" to invest time and resources in these structures (Steward 1938:237). Warfare also resulted in larger social groupings, but this was only witnessed in the eastern region of the Great Basin (Steward 1938).

In summary, these ecological and social determinants resulted in family-level organization throughout much of the Great Basin. Particularly among regions with scarce resources, it was impossible for families to remain in large, permanent settlements throughout the year and population densities generally remained extremely low. Groups were highly mobile for much of the year, generally moving within a 20-30 mile radius during their seasonal hunting and gathering activities (Steward 1938; Steward and Wheeler-Voegelin 1974).

The following sections turn their attention to the five sub-goals presented in the introduction of this chapter.

What is XRF Analysis?

X-ray fluorescence analysis is a non-destructive technique that identifies trace element concentrations in obsidian samples. This trace element concentration is often referred to as a chemical "fingerprint." X-ray fluorescence analysis measures trace element

concentrations (Ti, Mn, Fe₂O₃, Zn, Ga, Rb, Sr, Y, Zr, Nb, and Ba) in obsidian in order to identify these unique chemical fingerprints (Northwest Research Obsidian Studies Laboratory webpage).

Each geologic source of obsidian has a unique chemical composition. After known geologic sources of obsidian are analyzed using x-ray fluorescence, a reference library of obsidian trace element concentrations can be developed. Obsidian artifacts should be analyzed using the same technique. It should be noted, however, that it is also possible to identify obsidian chemistry through neutron activation analysis. It is then possible to match the trace element concentrations of artifact obsidian to the trace element concentrations of known geologic sources of obsidian. This chemical match up reveals the location where the raw material obsidian was initially procured. Occasionally, the trace element concentration of an obsidian artifact does not match up with any known source of geologic obsidian. This is referred to as an unknown source of obsidian because it has yet to be located and characterized in the geologic universe.

XRF Analysis and Human Land-Use

Obsidian x-ray fluorescence analysis is a powerful tool that enables archaeologists to gather point data about specific artifacts. For example, if an obsidian biface from the Birch Creek Site is chemically matched to the Sourdough Mountain source, it is possible to pinpoint the location on a map where the tool stone was originally procured. For any artifact from the Birch Creek Site that has been identified to the Sourdough Mountain source, we know, minimally, that the piece of obsidian traveled the 38 km distance from Sourdough Mountain to 35ML181.

Using Binford's (1979) concept of embedded procurement, the working assumption is that obsidian tool stone was collected by hunter-gatherers during their movements across the landscape. As a hunter-gatherer moves across the landscape, obsidian was collected from numerous sources of geologic obsidian. When prehistoric people returned to the Birch Creek Site, artifact obsidian from different geologic sources may have entered the archaeological record. The point data collected from x-ray fluorescence analysis of these artifacts outlines a procurement range around the site, which thus acts as a proxy measure for the scale of landuse exhibited over time by the users of that site.

Predictions for Obsidian Procurement

The present study centers on pattern recognition in human land-use in order to answer questions about human settlement systems and mobility. This section discusses expectations regarding obsidian tool stone procurement and its implications for human mobility. For example, what types of patterns should we expect to see if prehistoric occupants of the Birch Creek Site were employing a land-use strategy similar to Steward's (1938) ethnographic model? Are there patterns that may suggest prehistoric occupants were using a different settlement strategy? What obsidian procurement patterns should we expect to see if land-use around the Birch Creek Site changed through time?

The main implications of Steward's (1938) model for obsidian tool stole procurement are 1) If prehistoric occupants of the Birch Creek Site were employing a settlement strategy similar to the Stewardian model, obsidian sources falling within a 48 km radius of 35ML181 should be abundant at the site; and 2) 35ML181 should exhibit high obsidian source variability if prehistoric occupants exhibited a land-use pattern similar to the model described by Steward (1938).

In regards to the first expectation, a radius of 48 km around 35ML181 was selected because the Northern Paiute generally traveled within a 32-48 km (20-30 mile) radius during their seasonal moves in the northern Great Basin (Steward 1938; Steward and Wheeler-Voegelin 1974). Because the majority of movements are occurring within this 48 km range, the majority of obsidian sources encountered should also fall within this range.

For the second expectation, we must return once again to Binford's (1979) concept of embedded procurement. If hunter gatherers are collecting obsidian tool stone during their movements across the landscape, highly mobile groups are likely to encounter numerous obsidian sources in a region with many geologic sources of obsidian, such as southeastern Oregon. Therefore, the obsidian procurement pattern at the Birch Creek Site should exhibit high source variability.

The present study attempts to test the Stewardian model for land-use at the Birch Creek Site, but also to investigate how land-use patterns may or may not change through time. It is assumed that a consistent obsidian procurement pattern throughout site occupation reflects continuity in human settlement systems and mobility. Similarly, changes in obsidian procurement pattern have implications for changes in human mobility and settlement strategies through time.

Obsidian XRF Sample

This section addresses sample selection and how the sample relates to the overall lithic assemblage at the Birch Creek Site.

Sample Selection

In addition to the obsidian artifacts that were previously sourced in 2001 and 2002 (Cole 2001; Skinner 2000, 2002), a lab grant from Northwest Research Obsidian Studies

Laboratory as well as funding from the College of Liberal Arts, Meyer Fund allowed for 60 additional artifacts to be submitted for trace element analysis (see Skinner 2003).

Physical size was the initial consideration for selection of the 60 artifacts submitted in the fall of 2003. As outlined by Northwest Research Obsidian Studies Laboratory, samples for trace element analysis must be at least 10 mm in diameter and at least 1.5 mm thick. Preferably, samples should be at least 15 mm in diameter and at least 2 mm thick, as "larger samples produce better trace element results and higher-quality results mean a greater number of successful source assignments" (Northwest Research Obsidian Studies Laboratory webpage).

Because the method of analysis for the present study identifies patterns of human land-use through time, artifacts that provided the greatest chronological control were selected for trace element analysis. Specifically, temporally diagnostic projectile points were favored over any other artifact type. While a piece of debitage out of context may not provide any chronological control, a temporally diagnostic projectile point may be able to. Quite simply, a Northern Side-Notched projectile point in the Great Basin is assumed to be much older than a Rosegate series projectile point. In regards to testing Steward's (1938) model, if all Northern Side-Notched projectile points are made from tool stone originating from 100+ kilometers away from 35ML181, while all Rosegate series points are made from tool stone originating less than 45 kilometers from the site, it would be argued that prehistoric populations associated with the Rosegate series projectile point tradition are more likely to fit the Stewardian model than prehistoric populations who manufactured Northern Side-Notched series points. Projectile point chronologies for the region surrounding the Birch Creek Site are presented later in this chapter.

Consideration was also given to artifact provenience such that artifacts were selected throughout the stratigraphic sequence at 35ML181. Preference was also given to artifacts from the 2001-2003 excavations because all prior x-ray fluorescence analysis at the Birch Creek Site was conducted on artifacts from the earlier housepit excavations of Feature 2. Finally, obsidian artifacts were selected from the pre-housepit component initially identified in 2002 and excavated in 2003. Sample as it Relates to Overall Assemblage

As mentioned in Chapter 2, Northwest Research Obsidian Studies Laboratory reanalyzed the 2001 materials and updated all reports prepared for the Birch Creek Archaeological Project. As a result, some artifacts were deemed too small to be confidently characterized and assigned to a specific geologic source of obsidian. After all analysis and updates were completed, 163 obsidian artifacts were confidently assigned to both known and unknown source locations.

Although 163 artifacts is a relatively large sample of obsidian source characterizations, the sample must be considered in relation to the overall population of obsidian artifacts at the Birch Creek Site, as well as the overall population of chipped stone artifacts. Table 3.1 shows artifact frequencies by type for all chipped stone artifacts from 35ML181, all obsidian recovered, and the sourced obsidian sample. Table 3.2 shows what percentage of the total chipped stone population, and the obsidian population, is represented by sourced artifact obsidian. Artifact types listed in Table 3.1 and Table 3.2 are as defined in Andrefsky et al. (2003). Table 3.3 provides the detailed artifact typology utilized in the present study.

Artifact Type	Total Count	Obsidian	Sourced Obsidian
Points	141	106	64
Point tips or	82	57	9
Midsections			
Drills	25	3	0
Other Bifaces and	356	117	24
Preforms			
Scrapers	48	4	0
Cores	497	22	2
Proximal Flakes	79,724	15,176	37
Flake Shatter	113,193	21,974	16
Angular Shatter	71,637	3,184	7
Retouched Flakes	995	129	4
Retouched Cobble	18	3	0
Spalls			
Other Chipped Stone	75	2	0
Total	286,791	40,777	163

 Table 3.1. Chipped Stone Artifact Frequencies

Į

......

ł

ł

l

. Minte

in the second se

ł

ł

l

Table 3.2. Percentages Represented by Sourced Artifact Obsidian

Artifact Type	Percentage of Chipped	Percentage of Obsidian
	Stone Population	Population
Points	45.4%	60.4%
Point tips or Midsections	11.0	15.8
Drills	0	0
Other Bifaces and Preforms	6.7	20.5
Scrapers	0	0
Cores	.40	9.1
Proximal Flakes	.05	.24
Flake Shatter	.01	.07
Angular Shatter	.01	.22
Retouched Flakes	.40	3.1
Retouched Cobble Spalls	0	0
Other Chipped Stone	0	0
Overall Percentage	.06%	.40%

Artifact Type	Definition	References
Angular Shatter	Debitage without a platform or bulb of percussion; no identifiable dorsal or ventral surface	Andrefsky et al. (2003) Andrefsky (1998)
Core	Non-bifacial tool produced during chipped stone manufacture	Andrefsky et al. (2003) Andrefsky (1998)
Elko Corner-Notched	Corner-notched projectile point; triangular blade; concave base; narrow, deep notching; prominent, downward projecting shoulders	Hanes (1988) Justice (2002) Heizer and Hester (1978)
Elko Drill	Elko point resharpened as a drill; evidence of haft element	
Elko Eared	Corner-notched projectile point; triangular blade; straight base; narrow, deep notching; shoulder barbs wider than basal ears	Hanes (1988) Justice (2002) Heizer and Hester (1978)
Flake Shatter	Debitage without a platform or bulb of percussion; identifiable dorsal and ventral surface	Andrefsky et al. (2003) Andrefsky (1998)
Gatecliff	Contracting stem projectile point; bifurcate stem; marked basal indentation	Thomas (1981)
Gypsum	Contracting stemmed projectile point; triangular blade; haft element widens as it meets the blade	Justice (2002) Heizer and Hester (1978)
Humboldt	Lanceolate in form; leaf-shaped blade; maximum width is typically halfway between tip and base	Hanes (1988) Heizer and Hester (1978) Justice (2002)
Lanceolate Leaf-Shaped	Lanceolate in form; leaf-shaped blade; considerably wider than Humboldt series	Hanes (1988)
Pinto	Triangular blade; indented or bifurcate base; expanding stem; often regarded as crude	Hanes (1988) Heizer and Hester (1978) Justice (2002)
Preform	Refined biface lacking evidence of haft element; represents final stage of hafted biface production prior to hafting/notching	Andrefsky et al. (2003) Andrefsky (1998)
Proximal Flake	Debitage with a platform and bulb of percussion; identifiable dorsal and ventral surface	Andrefsky et al. (2003) Andrefsky (1998)
Retouched Flake	Flake tools exhibiting use wear or intentional chipping	Andrefsky et al. (2003) Andrefsky (1998)
Rosegate	Small, triangular shape; corner or basally-notched; bow and arrow technology	Hanes (1988) Thomas (1981) Justice (2002)
Side-Notched	Triangular blade; side-notched; straight or concave base	
Biface Fragment, Other Biface, Unidentified Biface	Refined bifaces too small to classify or unidentifiable to temporally diagnostic biface categories	

Table 3.3.	Definition	of Artifact	Types
------------	------------	-------------	-------

Į

(internet of the second s

ήψ.

Although projectile points, point tips and midsections, performs, and bifaces are well represented in the sample of sourced obsidian artifacts, it is important to note that this is only a small fraction of the overall chipped stone population from the Birch Creek Site. Fewer than 200 sourced obsidian artifacts are being used to make broad implications about human behavior in and around the Birch Creek Site. For example, confident conclusions may be drawn regarding projectile points in which 45% of all projectile points recovered from the site, and 60% of all obsidian points recovered from the site, have been sourced. However, it is necessary to proceed with some caution when making interpretations about certain artifact types, such as cores or debitage, when less than 1% of the obsidian population has been submitted for trace element analysis.

Projectile Point Chronology

Projectile point chronologies developed for the Great Basin have largely emphasized sites located in the heart of the Great Basin physiographic province (Thomas 1981; Heizer and Hester 1978; Hockett 1995; O'Connell and Inoway 1994). Hockett's (1995) projectile point chronology developed for northeastern Nevada and O'Connell and Inoway's (1994) chronology developed for Surprise Valley, California are two good examples of how archaeologists have attempted to reconcile the issue of projectile points as chronological markers in the Great Basin. However, chronologies such as these clearly demonstrate that the effectiveness of projectile points as time markers is largely region specific. As Figure 3.1 shows, projectile point types can have vastly different chronological implications in the Great Basin depending on geographic location and the interpretation of individual archaeologists. For example, Holmer (1986) places Elko series projectile points as early as 7000 BP while

other researchers (Clewlow 1967, O'Connell 1975, Thomas 1981) place the introduction of

Elko series points at approximately 2500 BP.

110way (1994)				
Time (¹⁴ C years	Short Chronology	Surprise Valley	Monitor Valley	Long Chronology
BP)	(Clewlow 1967)	Chronology	Chronology	(Holmer 1986)
		(O'Connell 1975)	(Thomas 1981)	
0	Desert series	Desert Side- notched	Desert series	Desert series
1000	Rosegate series	Rosegate series	Rosegate series	Rosegate, Elko series
2000	Elko series	Elko series	Elko series	Gatecliff Contracting-stem
3000				Conducting-stem
4000		Bare Creek series		Gatecliff, Elko series
5000	Pinto series	Northern Side-	Gatecliff series	Northern Side-
6000		notched		notched
7000				Northern Side- notched, Elko
8000				series Pinto series

Figure 3.1. Age Ranges for Projectile Point Types in the Great Basin, from O'Connell and Inoway (1994)

The Birch Creek Site is situated on the northern edge of the Great Basin and it may be inappropriate to apply projectile point chronologies that were developed for the Great Basin proper. This research looks to local archaeological investigations to develop a projectile point chronology for the region surrounding the Birch Creek Site. Projectile point chronologies from reports at Dirty Shame Rockshelter (Hanes 1988), the south-central Owyhee Region (Plew 1986), and the Steens Mountains region (Wilde 1985) are summarized

in Table 3.4. The final column in the table is summarized from Justice (2002) and provides a

general chronology for the Great Basin.

Table 3.4. Age Ranges for Projectile Point Types: Dirty Shame Rockshelter (Hanes 1988), South-central Owyhee Region (Plew 1986), Steens Mountains (Wilde 1985), and Great Basin and California (Justice 2002).

Projectile Point	Dirty Shame	South-central	Steens	Great Basin
Туре	Rockshelter	Owyhee Region	Mountains	and California
Lanceolate Leaf-Shaped	9500-6800 BP			
Northern Side- Notched	6800-5900 BP		7000-4000BP	8000-5000 BP
Humboldt	6800-5900 BP	6000-2700 BP	5200-4000 BP	8000-1400 BP
Elko	6800-5900 BP	2700-1400 BP	7000-1500 BP	3500-1400 BP
Pinto	6800-5900 BP	6000-2700 BP		8000-5000 BP
Gatecliff			4000-2800 BP	5000-2300 BP
Gypsum			4000-2800 BP	4000-2800 BP
Rosegate	2700-400BP	1400-800 BP	2800 BP-contact	1500-700 BP
Desert Series	2700-400BP	800-700 BP	1500 BP-contact	900 BP-contact

As Table 3.4 shows, there is still some dispute regarding age ranges for certain projectile point types. For the present study, the earliest and latest dates are selected for projectile point age ranges (Table 3.5). This chronology is used in the following chapter to highlight patterns of human land-use through time at 35ML181.

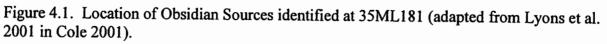
Table 3.5.	Proposed Pro	jectile Point	Chronology for	Southeastern Oregon

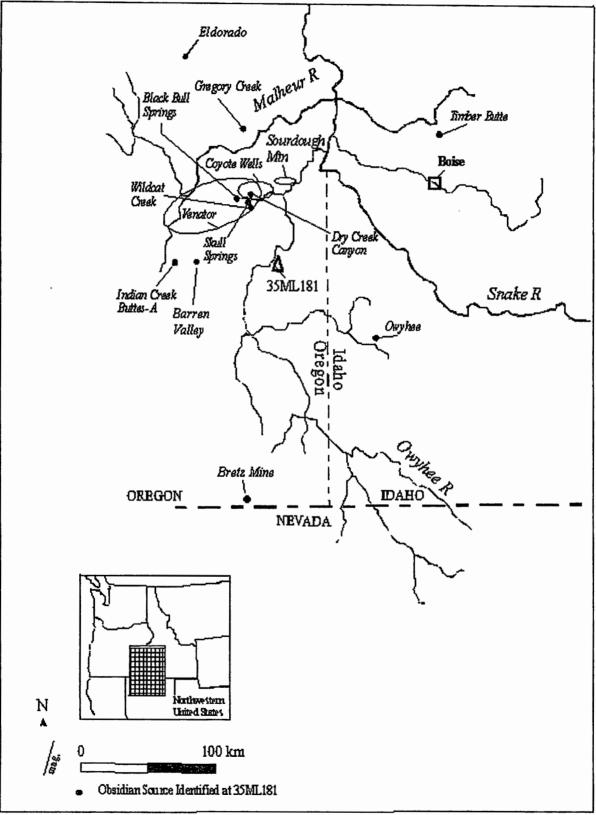
Projectile Point Type	Age Range
Lanceolate Leaf-Shaped	9500-6800 BP
Northern Side-Notched	7000-4000 BP
Humboldt	6800-2700 BP
Elko	7000-1400 BP
Pinto	6800-2700 BP
Gatecliff	4000-2800 BP
Gypsum	4000-2800 BP
Rosegate	2800 BP-contact
Desert Series	2700 BP-contact

CHAPTER FOUR

RESULTS OF OBSIDIAN ANALYSIS

This chapter presents the results of the obsidian x-ray fluorescence analysis from the Birch Creek Site and begins by addressing the overall procurement pattern observed at 35ML181. From there, this analysis moves on to discuss patterns regarding distance to source, directionality, and projectile point chronology and what these imply about human land-use through time around the Birch Creek Site.


Overall Obsidian Procurement at 35ML181


This section reviews the obsidian procurement pattern at the Birch Creek Site for all sourced artifacts regardless of artifact type or provenience.

~ .

I able 4.1.	Frequencies and Percentages	s of Artifacts by Source.
	· · · •	

Source	Count	Percentage
Barren Valley	11	6.75%
Bretz Mine	1	.61
Coyote Wells	23	14.11
Coyote Wells East	3	1.84
Dry Creek Canyon (GGOV)	2	1.23
Eldorado	1	.61
Gregory Creek	8	4.91
Indian Creek Buttes-A	13	7.98
Owyhee	8	4.91
Skull Springs	6	3.68
Sourdough Mountain	52	31.90
Sourdough Mountain Unknown A	1	.61
Timber Butte	5	3.07
Twin Springs Bench (GGOV)	1	.61
Venator	18	11.04
Wildcat Creek	2	1.23
Unknowns (n=7)	8	4.91
Total	163	100%

The overall obsidian procurement pattern suggests a strong preference for Sourdough Mountain obsidian (Table 4.1). Nearly one-third of the sourced artifacts from the Birch Creek Site are assigned to the Sourdough Mountain source, located to the nortbeast of 35ML181 (Figure 4.1). Of the remaining artifacts, the Coyote Wells and Venator sources are most abundant, while all other obsidian sources individually represent less than 10% of the sourced obsidian. In other words, most obsidian sources represented at the Birch Creek Site are far less abundant than Sourdough Mountain.

Table 4.1 also clearly demonstrates the high obsidian source variability at the site, with 15 known and 7 unknown geologic sources of obsidian represented. Unknown sources of geologic obsidian provide no point data in which to explore human land-use patterns; therefore, unknowns are not considered for the remainder of this analysis.

In addition to obsidian source variability, distance from site to source also plays an important role in evaluating the Stewardian model at 35ML181. Table 4.2 lists the distances from the Birch Creek Site to each source, as well as directionality by quadrant. Any obsidian source that falls between due north and due west of the Birch Creek Site is placed in the NW quadrant; any obsidian source situated between due north and due east of the site is placed in the NE quadrant, etc.

Source	Direction (by quad)	Distance (km)		
Wildcat Creek	NW	31		
Dry Creek Canyon (GGOV)	NW			
Skull Springs	NW	32		
Venator	NW	32		
Coyote Wells East	NW	35		
Coyote Wells	NW	30		
Twin Springs Bench (GGOV)	NW	37		
Gregory Creek	NW	55		
Eldorado	NW	130		
Sourdough Mountain	NE	38		
Timber Butte	NE	122		
Barren Valley	SW	40		
Indian Creek Buttes-A	SW	48		
Bretz Mine	SW	125		
Owyhee	SE	76		

1 able 4.2.	Distance and	Direction to	Known	Coursea	from t	b. D: 1	0 1 0
		- moon ton to	TYTO WILL	Douices	II OID I	ne sirch	Teel Site

Tall

One of the most striking patterns in Table 4.2 is that the large majority of exploited obsidian sources at the Birch Creek Site are located to the north of the site, primarily to the northwest. Also equally striking is that the most represented source, Sourdough Mountain, is not the closest obsidian source to the Birch Creek Site. There are seven sources of obsidian represented at the Birch Creek Site that are located closer than Sourdough Mountain, but they are individually represented at 35ML181 in much fewer numbers. If the relative abundances of these seven sources (Wildcat Creek, Dry Creek Canyon, Skull Springs, Venator, Coyote Wells East, Coyote Wells, and Twin Springs Bench) are combined, they represent almost 34% of all sourced obsidian from the Birch Creek Site. It is important to note, however, that Sourdough Mountain is one of the first obsidian sources one would encounter traveling downstream along the Owyhee River from the Birch Creek Site.

It is also important to note the skewed spatial distribution of the obsidian sources represented at 35ML181. There are no obsidian sources represented at the Birch Creek Site

that are located within 30 km of the site, while nine of the fifteen obsidian sources represented at the site are located between 30 km and 40 km of the site.

The overall pattern of obsidian procurement at the Birch Creek Site shows high source variability and a strong preference for obsidian sources within 40 km from the site. As predicted in Chapter Three, high obsidian source variability and exploited obsidian *sources* within a 48 kilometer radius of the site is indicative of the Stewardian hunter gatherer land-use strategy. The following sections of this chapter use artifact types, stratigraphic superposition of artifacts, projectile point chronologies, and radiocarbon dates to further identify and investigate patterns of human land-use around the Birch Creek Site. *Artifact Types and Implications for Human Mobility*

The following section turns its attention to artifact types in order to identify obsidian procurement patterns through time. Table 4.3 shows the artifact types, as defined in Chapter 3, which have been sourced at the Birch Creek Site. Table 4.4 shows summary data for all sourced material from 35ML181 organized by artifact type and increasing distance to source. All artifacts falling within a 48 km radius of the Birch Creek Site are highlighted. Table 4.4 clearly shows that the source material for a large majority of the artifacts from 35ML181 was procured within a 48 kilometer radius of the site.

rubie 1.5. Summary of minute Types for Sourced Obstatian minutes.	Table 4.3. Summar	ry of Artifact Types for Sourced Obsidian Artifa	acts.
---	-------------------	--	-------

(MAR)

1

ŀ

ł

[

[

L

{

[

Artifact Type	Artifact Count
Angular Shatter	7
Core	2
Elko Corner-Notched	8
Elko Drill	1
Elko Eared	16
Flake Shatter	16
Gatecliff	4
Gypsum	1
Humboldt	13
Lanceolate Leaf-Shaped	3
Pinto	3
Preform	2
Proximal Flake	37
Retouched Flake	4
Rosegate	. 1
Side-Notched	6
Biface Fragments, Other Bifaces, Unidentified Biface	39
Total	163

	Wildcat Creek (31 km)	Dry Creek Canyon (32 km)	Skull Springs (32 km)	Venator (35 km)	Coyote Wells East (36 km)	Coyote Wells (37 km)	Twin Springs Bench (37 km)	Sourdough Mountain (38 km)	Barren Valley (40 km)	Indian Creek Buttes-A (48 km)	Gregory Creek (55 km)	Owyhee (76 km)	Timber Butte (122 km)	Bretz Mine (125 km)	Eldorado (130 km)
Angular Shatter						2		5							
Flake Shatter				1		2		7	2		1				
Proximal Flake	2	· 「「」」 「「」」 「」」	.	5	1	7		15	3	$\sim 10^{-1}$	2				
Retouched Flake						² 1	1	1		1					
Core				$\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \right]$		1									
Elko CN					1 .	1 - 17		3		1		2			
Elko Drill			1												
Elko Eared		地理 小学生		3		1		6	1			1	1		1
Gatecliff				1				(中国各) [7]		1					
Gypsum		建建造影响		21	建制建筑		요즘 한 일어는								
Humboldt	建全部行	《 集合案件》		3		.2	南和南山	2		2	2		2		
Lanceolate Leaf- Shaped		F.	2							1					
Pinto			1	1								1			
Preform			1			en en anne dan Basar		1							
Rosegate	and the star								1						
Side- Notched						2		1	1	1.	1				
Other Bifaces		2	1	3	1	4,		11	3	5	2	4	2	1	

Table 4.4. Frequencies by Artifact Type and Known Source Location for all Sourced Material. Highlighted values denote obsidian sources located within 48 km of 35ML181.

Temporally Diagnostic Projectile Points

As discussed in Chapter 3, projectile point types offer chronological control that other artifact types cannot offer. Using the obsidian source locations of projectile point types with known age ranges allows for patterns to be identified regarding human land-use through time. For example, if Humboldt series projectile points are all manufactured from local obsidian and Rosegate series projectile points are manufactured from obsidian sources 75 kilometers away, it could be argued that populations associated with Rosegate series projectile points are not likely to represent a settlement system or land-use strategy similar to each other or to the Stewardian model.

For each projectile point type, average distance from the Birch Creek Site to obsidian source was calculated. For example, three Gatecliff projectile points have been sourced using trace element analysis: one from Venator (35 km), one from Coyote Wells (37 km), and one from Indian Creek Buttes-A (48 km). Therefore, the average distance between 35ML181 and obsidian source for Gatecliff projectile points is 40 km. Table 4.5 shows the average procurement distances and median procurement distances for temporally diagnostic projectile points from the Birch Creek Site.

Projectile Point Type	Sample Size (n)	Age Range	Average Distance (km)	Median Distance (km)
Lanceolate Leaf- Shaped	3	9500-6800 BP	37.3	32
Side-Notched	6	7000-4000 BP	42.5	39
Humboldt	13	6800-2700 BP	54.2	38
Elko*	23	7000-1400 BP	50.3	38
Pinto	3	6800-2700 BP	47.7	35
Gatecliff	3	4000-2800 BP	40	37
Gypsum	1	4000-2800 BP	35	35
Rosegate	1	2800 BP-contact	40	40
All Projectile Points	53		48.5	38

Table 4.5. Average Procurement Distance and Median Procurement Distance by Projectile Point Type.

*Elko Corner-notched, Elko Eared, Elko Drill

For the Birch Creek Site, the average distance for each projectile point type ranges between 35 and 54.2 km, with Humboldt series projectile points exhibiting the highest average distance. Although the average procurement distance for Humboldt and Elko series projectile points is slightly larger than the 48 kilometer distance predicted by the Stewardian model, the difference is very slight. The median procurement distance for each projectile point type ranges between 32 and 40 km and the median procurement distance for all projectile points is 38 km. Once again, the pattern of continuity at the Birch Creek Site is striking. Based on projectile point age ranges and radiocarbon dates from 35ML181, it is possible to extend the Stewardian model for human land-use minimally 6600 years back into prehistory and potentially 9500 years. *Stratigraphic Superposition of Artifacts*

The following section of this chapter works to identify patterns related to the stratigraphic superposition of artifacts and obsidian source location. The underlying assumption is that the relative depth of obsidian artifacts, and their associated source location, should also reveal patterns about human land-use. For example, if all sourced obsidian from the earliest and

deepest contacts came from obsidian sources less than 35 kilometers away, and artifacts associated with the most recent, uppermost contacts are associated with obsidian sources more than 60 kilometers away, it can be argued that a change in human land-use occurred. It can also be argued that earlier populations are more representative of the Stewardian model than later inhabitants of the site.

Table 4.6 shows frequencies for obsidian artifacts grouped by fills and contacts for Housepit 1, Feature 2, as defined by Cole (2001); obsidian sources are arranged by increasing distance from 35ML181.

Fill D	Contact C: 3980 ± 50 BP	Fill C	Contact B: 2430 ± 60 BP	Fill AB: 2430 ± 60 BP 2460 ± 70 BP 2760 ± 100 BP	
1	$ \frac{1}{2} 1$	1 1			Wildcat Creek (31 km)
					Dry Creek Canyon (32 km)
		1			Skull Springs (32 km)
J	2	1 1 2	anti- ini - Angli - Angli Carlos Carlos	2 2 2	Venator (35 km)
			and the first state of the stat		Coyote Wells East (36 km)
2	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		2 2	3 3	Coyote Wells (37 km)
			$\sum_{i=1}^{n+1} \frac{1}{n} \sum_{i=1}^{n+1} \frac{1}{n$		Twin Springs Bench (37 km)
$\mathbf{L}^{(i)}$		8	9	14	Sourdough Mountain (38 km)
				2	Barren Valley (40 km)
2	1	1	2	N	Indian Creek Buttes-A (48 km)
		3			Gregory Creek (55 km)
1		1		2	Owyhee (76 km)
					Timber Butte (122 km)
1					Bretz Mine (125 km)
					Eldorado (130 km)

Table 4.6. Artifact Frequencies for Known Source Locations from Feature 2. Highlighted values denote obsidian sources located

....

and the

The overall pattern for the sourced obsidian artifacts from Housepit 1, Feature 2 is extremely continuous. There are no distinct changes in obsidian source procurement through the stratigraphic sequence. High source variability and an emphasis on obsidian from sources 48 km or less from the Birch Creek Site are exploited throughout the stratigraphic sequence. Venator, Sourdough Mountain, Barren Valley, and Indian Creek Buttes-A are consistently exploited through time, and all four sources fall within the predicted procurement range for hunter gatherers employing the Stewardian model for human land-use. The consistency in obsidian procurement patterns for all fills and contacts suggests inhabitants of Housepit 1, Feature 2 exhibited similar settlement and land-use strategies through time. Table 4.7 shows artifact frequencies for sourced obsidian artifacts located within the N1057-1058 trench excavated during the 2001-2003 field seasons. The table is organized by

N1057-1058 trench excavated during the 2001-2003 field seasons. The table is organized by depth (relative to site datum), and by obsidian source, as they increase in distance from the Birch Creek Site.

	Wildcat Creek (31 km)	Dry Creek Canyon (32 km)	Skull Springs (32 km)	Venator (35 km)	Coyote Wells East (36 km)	Coyote Wells (37 km)	Twin Springs Bench (37 km)	Sourdough Mountain (38 km)	Barren Valley (40 km)	Indian Creek Buttes-A (48 km)	Gregory Creek (55 km)	Owyhee (76 km)	Timber Butte (122 km)	Bretz Mine (125 km)	Eldorado (130 km)
1001.64-1001.625*	1.2000年		e an in	S. Martin		1		5 L .	1.000						
1001.28-1001.23	が記録	stills a start	建設		9 (S. 18)	1	经历期								
1001.23-1001.18	4.65	S. H. S.				An		Sec. A	11		1				
1000.33-1000.28	1.111	* * · · · · · · · · · · · · · · · · · ·	1.17		1	1		in the second	X/(1				
1000.28-1000.20			an tang	1.19° S. 1.1.	- http://	the let	Staffe	1 log	antig in	1					
1000.20-1000.15				1997 - 1997 1997 - 1997 1997 - 1997	15 Z		2.200	X XX		Reference Contorce					
1000.13-1000.08				2				61. A. A.							
1000.08-1000.03		515.7 355 44 6 6 6 7 5	1	50				1							
999.98-999.93	T T		\$30 Q									1			
999.89-999.78			Cher L		CAL SE AND SEA			3.,				1			
999.70-999.65	A. O. O.	被称 了		5.4° 64.5° 6	1,33+74		eger selenge Na Silva A	- P.C. 31					1		
999.62-999.57	7.6 G.S.				1.1.1.1			i daga ye		1. 			1		
999.56-999.25			2	2	1	2		1	3		2		1		
999.25-999.10	- Jacober	Internet	1.	2.440	1.1.1	-1	1	at sparter	1013 (<u>)</u>	- 1 × .					
999.08-999.03	i TARACA	1999 - 1997 - 19		5.4555800 1	1. M. AV.	1	Alexad	17219(())	35.35				1		
999.03-998.98	1401		Sec. 4	19.10 M	-46-62	2		256-11-	15 1 1 1 2				1		
998.95-998.90	121427									1					
998.88-998.73	1.1.1.1.1		1.4			3		1			1				

Table 4.7. Artifact Frequencies for Known Source Locations for N1057-1058 Trench. Highlighted values denote obsidian sources located within 48 km of 35ML181.

*Depth relative to site datum. Datum elevation is 1000 m.

Obsidian sources falling within the Stewardian range are heavily favored through time at the Birch Creek Site. The Coyote Wells and Sourdough Mountain sources are exploited throughout the stratigraphic sequence. Both sources are between 37 and 38 km of the site, falling well within the predicted range for hunter gatherers under the Stewardian model.

As another cross-reference, Table 4.8 and Table 4.9 have the same layout as Table 4.6

and Table 4.7, but instead of artifact frequencies, projectile point types are placed in the tables.

Elko Corner-Notched=EC; Elko Drill=ED; Elko Eared=EE; Gatecliff=G; Humboldt=H; Notched=S	Fill D	Contact C	Fill C	Contact B	Fill AB		Table 4.8. Projectile Point Types from Feature 2 for Known Source Locations. with 48 km of 35Ml181.
er-Notche						Wildcat Creek (31 km)	Projectile of 35Ml1
;d=EC; E						Dry Creek Canyon (32 km)	Point Ty 81.
lko Drill		an a	Þ	1		Skull Springs (32 km)	pes* fror
=ED; Ell	H				EE	Venator (35 km) Coyote Wells	n Feature
ko Eared						East (36 km)	e 2 for K
=EE; Ga					EE	(37 km) Twin Springs	nown Sc
tecliff=(ਹੁੰਜ	EE .	Bench (37 km) Sourdough	ource Loo
3; Humb	S			EC	<u>, EE</u>	Mountain (38 km) Barren Valley	cations.
oldt=H;]	S	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				(40 km) Indian Creek	Highligh
anceola					G	Buttes-A (48 km) Gregory Creek (55 km)	ted value
anceolate Leaf-Shaped=L; Pinto=P; Side-					EC, I	Owyhee (76 km)	nted values denote obsidian sources located
haped=I					EC EE	Timber Butte (122 km)	obsidiar
.; Pinto=						Bretz Mine (125 km)	1 sources
P; Side-						Eldorado (130 km)	located

}

1

L9

righighted valu			USIUI	11 50	uices	Tocal		<u>шп 40</u>	KIII (1110	1.			
	Wildcat Creek (31 km)	Dry Creek Canyon (32 km)	Skull Springs (32 km)	Venator (35 km)	Coyote Wells East (36 km)	Coyote Wells (37 km)	Twin Springs Bench (37 km)	Sourdough Mountain (38 km)	Barren Valley (40 km)	Indian Creek Buttes-A (48 km)	Gregory Creek (55 km)	Owyhee (76 km)	Timber Butte (122 km)	Bretz Mine (125 km)	Eldorado (130 km)
1001.64-1001.625**	1000 C 2010		44.44			G.	4+		22954						
1001.28-1001.23	4. Alto Tak			10.00	£	نې <u>دې دې</u>		1997 - 1997 - 1997 - 1995 -	7735						
1001.23-1001.18				48.5~		-35 N. S. 	h.92425	1- 43- 49			H				
1000.33-1000.28				<u>с</u> п		ан Салар (1)			244,498. 24	New yo					
1000.28-1000.20		78.445		154	12073	45.5	7 41 A	- BE .,	1. Antipage						
1000.20-1000.15			122	的现在	認定支援		35.50		EE						
1000.13-1000.08		(inter-the	14.4.9	$n\mathbf{G}$				and the second sec		149.5					
1000.08-1000.03		T. Market	ED	nin a	G-2-5-14			EE ,		555 4					
999.98-999.93	÷.	12.27 AU A.		5.50 E.S.		Zecent.									
999.89-999.78	-	- 1. SP-1	2	a as as		Sec. 10 met	a analysis	Sec.				EE			
999.70-999.65		indianitis and a fr		1. A		T_{r}	725 Y 5		i frige	Street W					
999.62-999.57	d with the	1		2					<i>a</i>				H		
999.56-999.25	and the second		L :		EC		(148)	4747 (1919) (11. 11. 11. 11. 11. 11. 11. 11. 11. 11.			Н		H		
999.25-999.10			i	Strate	98. a. 198		Subara	13 Artis	-	ંડિંગ્સ					
999.08-999.03		225.5	2		1.085 (1972) 31.1976 (1972)				799.797.494 2012-00-00-00-00-00-00-00-00-00-00-00-00-00	an an an Araba an Ar Araba an Araba an Arab					
999.03-998.98			i vista	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		∵S.	ار چېلې د د او د د کې د و کېلې کې								
998.95-998.90						in an				: `L .,					
998.88-998.73			يوسطه ولا	180.000	11. 9						S				

Table 4.9. Projectile Point Types* from the N1057-1058 Trench for known source locations. Highlighted values denote obsidian sources located within 48 km of 35ML181.

*Elko Corner-Notched=EC; Elko Drill=ED; Elko Eared=EE; Gatecliff=G; Humboldt=H; Lanceolate Leaf-Shaped=L; Side-Notched=S

**Depth relative to site datum. Datum elevation is 1000 m.

Table 4.8 and Table 4.9 provide support for the projectile point chronology proposed in the present study. Although the locations of two Humboldt projectile points in Table 4.9 are slightly problematic (1001.23-1001.18, Gregory Creek; 1000.28-1000.20, Indian Creek Buttes-A), a general transition from Lanceolate Leaf-Shaped and Northern Side-Notched projectile points, to Humboldt and Elko series points, and finally to Gatecliff points is observed. These tables again provide support for the argument that a relatively continuous pattern of obsidian procurement is observed through time at the Birch Creek Site.

Radiocarbon Dates and Implications for Continuity

The section examines radiocarbon dates from the Birch Creek Site (Table 4.10) and the sourced obsidian artifacts in direct association with each date. A detailed review of the

radiocarbon dates used in this analysis was presented in Chapter One. The following discussion reviews the results of calibrating (Calib©) radiocarbon dates from 35ML181 and its implications for the present study.

Measured Radiocarbon Age (yr BP)	Unit	Level	Conventional ¹⁴ C Age (yr BP)	2 Sigma Calibrated (yr BP)	2 Sigma Calibration BC / AD	Likely Fill or Contact	Sample No.	Radiocarbon Lab
2430 ± 60	N17 W7	13	2410 ± 60	2725 – 2335	775 – 385 BC	Contact II (B)	130363	Beta Analytic
2460 ± 70	N16 W6	10	2420 ± 70	2735 – 2330	758 – 380 BC	Fill B	130362	Beta Analyti
2620 ± 40	N17 W8	5	2620 ± 40	2780 - 2730	830 – 780 BC	Fill A	145557	Beta Analyti
2760 ± 110	N19 W 6	16	2760 ± 110	3160 - 2730	1210 – 780 BC	Fill B	144771	Beta Analyti
3980 ± 50	N1017 E992	NA	3990 ± 50	4560 – 4350 and 4330 – 4300	2600 – 2400 and 2380 – 2360 BC	Contact III (C)	165407	Beta Analyti
4480 ± 70	N17 – W4	55	4480 ± 70	5315 - 4865	3365 – 2915 BC	Contact IV (D)	142362	Beta Analyti
3980 ± 50	N 1057 E981	26	3970 ± 50	4540 - 4280	2580 – 2330 BC	Feature 15 living surface	165408	Beta Analyt
6640 ± 40	N1057 - E980	$41 - 6660 \pm 40$		7595 – 7460	5645 – 5510 BC	Pre- housepit surface	181782	Beta Analyt

Table 4.10. Radiocarbon Dates from the Birch Creek Site, adapted from Andrefsky et al. (2003).

Calibrated radiocarbon age ranges for Contact A, Fill B, Contact B, Contact C, and Contact D (located in Feature 2), as well as Feature 15 and the pre-housepit component resting below, are shown in Figure 4.2.

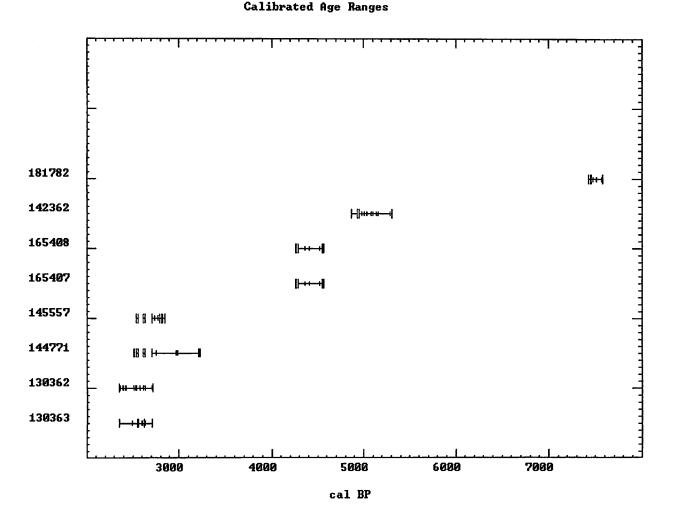


Figure 4.2. Calibrated (Calib©) radiocarbon age ranges.

The calibrated radiocarbon ages for Contact A, Fill B, and Contact B suggest that these three stratigraphic components should not be treated as separate chronological events. It is also clear from these radiocarbon age ranges that Contact C and Feature 15 should not be treated as separate chronological events. Contact D and the pre-housepit component resting below Feature 15, however, clearly represent separate chronological events. For the present study, all obsidian artifacts associated with Contact A, Fill B, and Contact B are condensed into Fill AB (see Cole 2001 for similar discussion). In addition, all obsidian artifacts associated with Contact C of Feature 2 and Feature 15 are placed into one chronological zone. Finally, all artifacts associated

with the pre-housepit component resting below Feature 15 represent a separate chronological zone. Unfortunately, no obsidian artifacts are in direct association with Contact D.

As seen in Table 4.11, the extreme continuity in obsidian procurement is again suggested by the artifact obsidian associated with radiocarbon dates. Although there are small differences between the patterns for each age rage, the overall continuity is striking. Once again, obsidian sources within 48 kilometers of the Birch Creek Site are heavily favored through time. A preference is again shown for Coyote Wells and Sourdough Mountain obsidian, which are located 37 and 38 km from 35ML181, respectively. Very few obsidian artifacts fall outside of the predicted range for the Stewardian model of human land-use.

Pre-housepit component	Contact C, Feature 15	Fill AB	
	- sed ad		Wildcat Creek (31 km)
			Dry Creek Canyon (32 km)
			Skull Springs (32 km)
	3	2	Venator (35 km)
			Coyote Wells East (36 km)
4	3	5	Coyote Wells (37 km)
		, 14	Twin Springs Bench (37 km)
ω		20	Sourdough Mountain (38 km)
	2	ω	Barren Valley (40 km)
	1 1 1 1 1	4	Indian Creek Buttes-A (48 km)
1			Gregory Creek (55 km)
		2	Owyhee (76 km)
	1	-	Timber Butte (122 km)
			Bretz Mine (125 km)
			Eldorado (130 km)

Table 4.11. Sourced Obsidian Artifact Frequencies Associated with Calibrated Radiocarbon Dates. Highlighted values denote obsidian sources

7L

All lines of evidence suggest that obsidian procurement around the Birch Creek Site was strikingly consistent throughout site occupation. The projectile point chronology and average procurement range for each projectile point type suggests that the Stewardian model can be extended into prehistory potentially 9500 years. As a second line of evidence, the stratigraphic superposition of artifacts suggested a pattern of continuity throughout the stratigraphic sequences at the Birch Creek Site. Finally, sourced artifact obsidian from the Birch Creek Site associated with radiocarbon dates suggests a pattern of continuity beginning approximately 6600 years ago.

The following chapter addresses the implications this patterning has for human settlement systems and land-use around the Birch Creek Site.

CHAPTER FIVE

INTERPRETATIONS

This chapter discusses the results presented in Chapter 4 and their implications for human settlement systems and land-use around the Birch Creek Site. It is argued in the previous chapter that Julian Steward's (1938) model for hunter gatherer land-use can be extended well into prehistory at the Birch Creek Site. The overall pattern of obsidian procurement at the Birch Creek Site shows extreme continuity in human land-use and suggests that mobile low population density hunter-gatherers occupied 35ML181 for the duration of site occupation.

The overall continuity in obsidian procurement at the Birch Creek Site is striking considering the possibilities. Why were Sourdough Mountain and Coyote Wells so highly exploited while Wildcat Creek, Dry Creek Canyon, and Skull Springs were rarely exploited? Why isn't there strong preference shown for different obsidian sources within a 40 kilometer radius of 35ML181? What can explain such extreme continuity in obsidian procurement patterns?

Given the large number of obsidian sources surrounding the Birch Creek Site in southeastern Oregon, the consistency in obsidian procurement through time at the site is extremely surprising. There is no reason to assume that prehistoric inhabitants of the site should be using the same obsidian resources for thousands of years. However, this is the pattern that is observed at 35ML181. Despite the wide range of possibilities, a heavy preference is shown for certain obsidian sources, specifically Coyote Wells and Sourdough Mountain. Both of these sources are approximately 37-38 km from the site; Coyote Wells is

located to the northwest of the Birch Creek Site, and Sourdough Mountain is located to the northeast.

Although this analysis would be strengthened with a presentation of a map displaying all known obsidian sources surrounding the Birch Creek Site, comprehensive maps of known geologic sources of obsidian have not yet been produced. Further to this, it would be misleading to create such a map because much work remains to be done to locate, identify, and characterize sources of geologic obsidian in the region (Craig Skinner, personal communication).

As previously mentioned, however, there are numerous obsidian sources that are located more closely to the site than Coyote Wells and Sourdough Mountain: Wildcat Creek, Dry Creek Canyon, Skull Springs, and Venator. Based on distance to source alone, is it surprising that these sources are represented in relatively low numbers. One possible explanation for the strong preference for Coyote Wells and Sourdough Mountain obsidian, despite there being more local sources of obsidian, is that prehistoric travel routes may have existed along the Owyhee River and its tributaries. Although certain sources are located closer to the Birch Creek Site in a straight line direction, this may not accurately represent travel pathways between 35ML181 and certain obsidian sources. The more likely scenario is that prehistoric inhabitants of the Birch Creek Site traveled along the Owyhee River and its tributaries to access geologic sources of obsidian. Assuming travel along the river, the Coyote Wells and Sourdough Mountain sources are two of the first obsidian sources one would encounter traveling downstream (north) from the Birch Creek Site. Regardless of the travel pathways that may have existed along the Owyhee River, the point still remains that

the pattern of obsidian procurement at the Birch Creek Site is strikingly continuous throughout site occupation.

The question still remains however, as to why we should expect to see such extreme continuity in human settlement systems and mobility over thousands of years at the Birch Creek Site? The introduction to the present study reviewed the ethnographic literature from the region surrounding the Birch Creek Site and outlined Steward's (1938) concept of ecological and social determinants and their implications for sociopolitical organization. Steward argued that for many low population density hunter-gatherer groups in the Basin-Plateau region, ecological and social determinants allowed only for family-level organization. If, for example, the same ecological and social determinants that were affecting the populations observed by Steward, were affecting the prehistoric populations inhabiting the Birch Creek region prehistorically, it could be argued that family-level organization was the stable form of sociopolitical organization thousands of years ago.

Based on the continuity in human land-use patterns observed at the Birch Creek Site, it may be appropriate to extend Steward's (1938) ethnographic model back into prehistory. The Stewardian model centers on seasonal land-use based on the availability of resources, with Northern Paiute groups typically moving within a 20-30 mile (32-48 km) radius. If the Birch Creek Site was a seasonal occupation one would expect that prehistoric populations were moving primarily within a maximum radius of 48 kilometers from 35ML181. Table 5.1 shows cumulative frequencies of artifacts as distance from the Birch Creek Site decreases.

Source	Distance (km)	All Sourced	Cumulative
		Artifacts	Frequencies
Eldorado	130	0.6%	0.6%
Bretz Mine	125	0.6	1.2
Timber Butte	122	3.1	4.3
Owyhee	76	4.9	9.2
Gregory Creek	55	4.9	14.1
Indian Creek Buttes- A	48	8.0	22.1
Barren Valley	40	6.8	28.9
Sourdough Mountain, Sourdough Mountain Unknown A	38	32.5	61.4
Twin Springs Bench (GGOV)	37	0.6	62.0
Coyote Wells, Coyote Wells East	36-37	16.0	78.0
Venator	35	11.0	89.0
Skull Springs	32	3.7	92.7
Dry Creek Canyon (GGOV)	32	1.2	93.9
Wildcat Creek	31	1.2	95.1
Unknowns		4.9	100
Total		100%	

Table 5.1. Cumulative Frequencies for Sourced Artifact Obsidian from 35ML181

Roughly 80% of all sourced artifacts from the Birch Creek Site were procured within 48 kilometers from the site. It is also important to note that the abundance of material from sources within 40 km of the site is consistent with distance decay expectations (Renfrew 1977). Using obsidian procurement range as a proxy for human land-use, this percentage demonstrates that the majority of movements around the Birch Creek Site fall within the observed movement range for Northern Paiute groups during the ethnographic period.

While it is clear that the overall pattern of obsidian procurement at the Birch Creek Site falls in line with the Stewardian model, one of the goals of the this research was to explore possible changes in human land-use through time. Based on the multiple lines of evidence presented in the previous chapter, it is argued here that the Stewardian model can be extended well into prehistory at the Birch Creek Site based on continuity in obsidian procurement.

Three separate lines of evidence were used to explore possible changes in human land-use through time: stratigraphic superposition of artifacts, projectile point age ranges, and artifacts associated with radiocarbon dates. Based on artifact provenience alone, the obsidian x-ray fluorescence data suggests a pattern of continuity in human land-use through time around the Birch Creek Site. In regards to average procurement distances, the projectile point chronology suggests that the Stewardian model for hunter gatherer land-use may be extended at least 6600 years into prehistory and possibly 9500 years based on the regional projectile point chronology. In addition to these two lines of evidence, the sourced obsidian artifacts in direct association with radiocarbon dates also suggest a pattern of continuity. The present study concludes that Steward's (1938) model for low population density huntergatherers, organized at the family-level, can be extended at least 6600 years into prehistory, and potentially 9500 years, at the Birch Creek Site.

CHAPTER SIX

SUMMARY AND CONCLUSIONS

The Birch Creek Site provides a unique opportunity to explore prehistoric human behavior in the Owyhee Uplands. Archaeological investigations in the region have been extremely limited, and research conducted at the Birch Creek Site can potentially make a large impact on archaeological understanding in the region.

Southeastern Oregon is a unique area due to its high concentration of geologic obsidian sources. Even in the short time that has passed since Cole's (2001) research, the reference library of characterized obsidian sources in southeastern Oregon has increased tremendously, helping to form a clearer picture about obsidian procurement around the Birch Creek Site. As more obsidian sources are characterized through ongoing survey in the region, it is possible to identify more detailed patterns of obsidian procurement. It is hoped that future research in the Owyhee Uplands will continue to use x-ray fluorescence data to explore broader questions about human behavior.

The Birch Creek Site is but one location within the middle Owyhee River drainage. It would be interesting to explore other site locations and the extent to which obsidian was procured over time. A more detailed chronology at other sites where provenience analysis of obsidian is undertaken may strengthen and modify the results found in this study.

The present study concludes that prehistoric inhabitants of the Birch Creek Site were low density population hunter-gatherers who exhibited a settlement strategy similar to Julian Steward's (1938) ethnographic model for family-level sociopolitical organization. It is argued that the same ecological and social determinants affecting ethnographic populations

 affected prehistoric populations at the Birch Creek Site. This continuity in human land-use

 and settlement system is reflected in the extreme continuity in obsidian procurement patterns

 for thousands of years at the Birch Creek Site. The overall pattern of obsidian procurement

 demonstrates that prehistoric inhabitants of the site exhibited similar settlement strategies and

 patterns of human land-use throughout site occupation.

 The goal of this research was to test Steward's (1938) ethnographic model for hunter

 gatherer land-use at the Birch Creek Site, using x-ray fluorescence data as a method of

 analysis. Along with its stated goals, it is hoped that this research has also shown the utility

 of x-ray fluorescence analysis for investigating important questions about human behavior.

REFERENCES CITED

Aikens, C. Melvin, David Cole, and Robert Stuckenrath

1977 Excavations at Dirty Shame Rockshelter, Southeastern Oregon. Tebiwa: Miscellaneous Papers of the Idaho State University Museum of Natural History, No. 4. Pocatello.

Ambroz, Jessica A.

1997 Characterization of Archaeologically Significant Obsidian Sources in Oregon by Neutron Activation Analysis. Unpublished M.S. thesis. Department of Chemistry, University of Missouri, Columbia.

Ames, Kenneth M., Don E. Dumond, Jerry R. Galm, and Rick Minor

1998 Prehistory of the Southern Plateau. In *Plateau*, edited by D.E. Walker, Jr., pp. 103-119. Handbook of North American Indians, Vol. 12, William C. Sturtevant, general editor, Smithsonian Institution Press, Washington, D.C.

Andrefsky, Jr., William, Lisa Centola, Jason Cowan, and Erin Wallace

2003 An Introduction to the Birch Creek Site (35ML181): Six Seasons of WSU Archaeological Field Study, 1998-2003. Center for Northwest Anthropology, Contributions in Cultural Resource Management, No. 69. Washington State University, Pullman.

Andrefsky, Jr., William, and Alissa Nauman

2003 A Preliminary Report on the Birch Creek Site (35ML181): Five Seasons of WSU Archaeological Field School Study 1998-2002. Center for Northwest Anthropology, Contributions in Cultural Resource Management, No. 68. Washington State University, Pullman.

Andrefsky, Jr., William, and Kira Presler

2000 Archaeological Investigations at Birch Creek (35ML181): 1998-1999 Interim Report. Contributions in Cultural Resource Management, No. 66, Center for Northwest Anthropology. Washington State University, Pullman.

Andrefsky, Jr., William, and R. David Satterwhite

2002 Archaeological Investigations at Birch Creek (35ML181): 1998-2001 Interim Report. Center for Northwest Anthropology, Contributions in Cultural Resource Management, No. 67. Washington State University, Pullman.

Bailey, Jeff

1992 X-Ray Fluorescence Characterization of Volcanic Glass Artifacts from Wilson Butte Cave, Idaho. Unpublished MA thesis. Department of Anthropology, University of Alberta, Edmonton. Benson, Larry, Michaele Kashgarian, Robert Rye, Steve Lund, Fred Paillet, Joseph Smoot, Cynthia Kester, Scott Mensing, Dave Meko, and Susan Lindström

2002 Holocene Multidecadal and Multicentennial Droughts Affecting Northern California and Nevada. *Quaternary Science Reviews* 21:659-682.

Binford, Lewis R.

1979 Organization and Formation Processes: Looking at Curated Technologies. *Journal of Anthropological Research* 35:255-273.

Carr, Tom, Tom Bailey, Don Johnson, and R. David Satterwhite

2000 Geophysical Investigations at the Birch Creek Site (35ML181). Hemisphere Field Services Report of Investigation, No. 641. Minneapolis.

Chatters, James C.

1998 Environment. In *Plateau*, edited by D.E. Walker, Jr., pp. 29-48. Handbook of North American Indians, Vol. 12, William C. Sturtevant, general editor, Smithsonian Institution Press, Washington, D.C.

Clewlow, E. William, Jr.

1967 Time and Space Relations of Some Great Basin Projectile Point Types. University of California Archaeological Survey Reports 70:141-150.

Cole, Clint R.

2001 Raw Material Sources and the Prehistoric Chipped-stone Assemblage of the Birch Creek Site (35ML181), Southeastern Oregon. Unpublished M.A. thesis, Department of Anthropology, Washington State University, Pullman.

D'Azevedo, Warren L. (editor)

1986 *Great Basin.* Handbook of North American Indians, Vol. 11, William C. Sturtevant, general editor, Smithsonian Institution Press, Washington D.C.

Endzweig, Pamela E.

1994 Late Archaic Variability and Change on the Southern Columbia Plateau: Archaeological Investigations in the Pine Creek Drainage of the Middle John Day River, Wheeler County, Oregon. Unpublished PhD Dissertation. Department of Anthropology, University of Oregon, Eugene.

Fenneman, N.

1931 Physiology of the Western United States. Academic Press, N.Y.

Grayson, Donald K.

1993 The Deserts' Past: A Natural Prehistory of the Great Basin. Smithsonian Institution Press, Washington D.C.

Hanes, Richard C.

1988 Lithic Assemblages of Dirty Shame Rockshelter: Changing Traditions in the Northern Intermontane. University of Oregon Anthropological Papers No. 40. Eugene.

Heizer, Robert F., and Thomas R. Hester

1978 Great Basin Projectile Points: Forms and Chronology. Publications in Archaeology, Ethnology, and History No. 10. Ballena Press, Ballena.

Hess, Sean C.

1997 Rocks, Range, and Renfrew: Using Distance-Decay Effects to Study Late Pre-Mazama Period Obsidian Acquisition and Mobility in Oregon and Washington. Unpublished Ph.D. dissertation. Department of Anthropology, Washington State University, Pullman.

Hockett, Bryan S.

1995 Chronology of Elko Series and Split Stemmed Points from Northeastern Nevada. Journal of California and Great Basin Anthropology 17(1):41-53.

Holmer, Richard N.

1986 Common Projectile Points of the Intermountain West. In Anthropology of the Desert Wes: Essay in Honor of Jesse D. Jennings, edited by C.J. Condie and D.D. Fowler, pp. 89-115. Anthropological Papers No. 110. University of Utah, Salt Lake City.

Horr, David A.

1974 Paiute Indians III: The Northern Paiute Indians. Garland Publishing, New York.

Hughes, Richard E.

1986 Diachronic Variability in Obsidian Procurement Patterns in Northeastern California and Southcentral Oregon. University of California Publications, Anthropology Volume 17. University of California Press, Berkeley.

Jenkins, Dennis L., and Thomas J. Connolly

1990 Archaeology of Indian Grade Spring: A Special Function Site on Stinkingwater Mountain, Harney County, Oregon. University of Oregon Anthropological Paper No. 42. Department of Anthropology, University of Oregon, Eugene.

Jones, George T., Charlotte Beck, Eric E. Jones, and Richard E. Hughes 2003 Lithic Source Use and Paleoarchaic Foraging Territories in the Great Basin. *American Antiquity* 68:5-38.

Justice, Noel D.

2002 Stone Age Spear and Arrow Points of California and the Great Basin. Indiana University Press, Bloomington.

Luttrell, Charles T.

2000 A Report on a Class III Cultural Resources Inventory at the U.S. Bureau of Reclamation's Lake Owyhee Reservoir, Malheur County, Oregon. Eastern Washington University Reports in Archaeology and History 100-96. Archaeological and Historical Services, Eastern Washington University, Cheney.

Lyons, William H., Scott P. Thomas, and Craig Skinner

2001 Changing Obsidian Sources at the Lost Dune and McCoy Creek Sites, Blitzen Valley, Southeastern Oregon. *Journal of California and Great Basin Anthropology* 23(2): 273-296.

Maxwell, David, Edgar K. Huber, Robert M. Wegener, and Karry L. Blake

2003 The Steamboat Falls Site, Archaeological Testing at 35DO497, Umpqua National Forest, Douglas County, Oregon. Prepared for the U.S. Forest Service. Technical Report 02-70, Statistical Research, Inc, Tucson.

Mehringer, Peter J., Jr.

1986 Prehistoric Environments. In *Great Basin*, edited by W.L. D'Azevedo, pp. 31-50. Handbook of North American Indians, Vol. 11, W.C. Sturtevant, general editor. Smithsonian Institution, Washington D.C.

1996 Columbia River Basin Ecosystems: Late Quaternary Environments. U.S. Forest Service and Bureau of Land Management, Walla Walla, WA.

Mehringer, Peter J., Jr., S.F. Arno, and K.L. Peterson

1977 Postglacial history of Lost Trail Pass Bog, Bitterroot Mountains, Montana. Arctic and Alpine Research 9:345-368.

Nelson, Fred W.

1984 X-Ray Fluorescence Analysis of some Western North American Obsidians. In Richard E. Hughes (ed.) *Obsidian Studies in the Great Basin*. Contributions of the University of California, Archaeological Research Facility, Berkeley.

Northwest Research Obsidian Studies Laboratory webpage 2003 http://www.obsidianlab.com

O'Connell, James F.

1975 The Prehistory of Surprise Valley. Ballena Press Anthropological Papers 4. Ramona, California.

O'Connell, James F., and Cari M. Inoway

1994 Surprise Valley Projectile Points and Their Chronological Implications. *Journal of California and Great Basin Anthropology* 16(2):162-198.

Plew, Mark

1986 The Archaeology of Nahas Cave: Material Culture and Chronology. Archaeological Reports No. 13. Boise State University, Boise.

Pullen, Reg

1976 Archaeological Survey of the Owyhee River Canyon. Report on File, Bureau of Land Management, Vale District. Vale, Oregon.

Renfrew, Colin

1977 Egalitarian Exchange Systems in California: A Preliminary View. In *Exchange Systems in Prehistory*, edited by T.K. Earle and J.E. Ericson, pp. 109-126. Academic Press, New York.

Silvermoon, Jon M.

1994 Archaeological Investigations at the Peninsula Site, 35KL87, Gerber Reservoir, South-Central Oregon. Cultural Resource Series No. 11. U.S. Department of the Interior, Bureau of Land Management, Portland.

Skinner, Craig E.

2000 X-Ray Fluorescence Analysis of Artifact Obsidian from the Birch Creek Site (35ML181), Malheur County, Oregon. Northwest Research Obsidian Studies Laboratory Report 2000-53. Northwest Obsidian Studies Laboratory, Corvallis, Oregon.

2002 X-Ray Fluorescence Analysis of Artifact Obsidian from the Birch Creek Site (35ML181), Malheur County, Oregon. Northwest Research Obsidian Studies Laboratory Report 2002-16. Northwest Research Obsidian Studies Laboratory, Corvallis, Oregon.

2003 X-Ray Fluorescence Analysis of Artifact Obsidian from the Birch Creek Site (35ML181), Malheur County, Oregon. Northwest Research Obsidian Studies Laboratory Report 2003-56. Northwest Research Obsidian Studies Laboratory, Corvallis, Oregon.

Skinner, Craig E. and Jennifer J. Thatcher

2003 X-Ray Fluorescence Analysis and Obsidian Hydration Rim Measurement of Artifact Obsidian from 34 Archaeological Sites Associated with the Proposed FTV Western Fiber Build Project, Deschutes, Lake, Harney, and Malheur Counties, Oregon. Report 98-56 prepared for Northwest Archaeological Associates, Seattle, Washington, by Northwest Research Obsidian Studies Laboratory, Corvallis, Oregon.

Steward, Julian H.

1933 Ethnography of the Owens Valley Paiute. University of California Publications in American Archaeology and Ethnology 33(3):233-350.

1938 Basin-Plateau Socio-Political Groups. Bureau of American Ethnology Bulletin, No. 120.

Steward, Julian H., and Ermine Wheeler-Voeglin

1974 The Northern Paiute Indians. Garland Publishing, New York.

Thatcher, Jennifer J.

2000 The Distribution of Geologic and Artifact Obsidian from the Silver Lake/Sycan Marsh Geochemical Source Group, South-Central Oregon. Unpublished M.A. thesis. Interdisciplinary Studies, Oregon State University, Corvallis.

Thomas, David H.

1981 How to Classify the Projectile Points from Monitor Valley, Nevada. Journal of California and Great Basin Archaeology 3(1):7-43.

Thomas, Scott, Patrick O'Grady, Craig Skinner, and Jennifer Thatcher

2002 Return to a Jack Rabbit Roasting Site (35HA3055) in Southeastern Oregon: The Obsidian Sourcing and Hydration Evidence. Paper presented at the 2002 Northwest Anthropological Conference, Boise, Idaho.

Thornbury, W.D.

1965 Regional Geomorphology of the United States. John Wiley and Sons, N.Y.

Walker, Leanna M.

2001 The 1998 Geoarchaeological Investigation of the Birch Creek Site (35ML181), Southeastern Oregon. Unpublished M.A. thesis. Department of Anthropology, Washington State University, Pullman.

Wegener, Robert M.

1998 Late Holocene Stone Technology and Seed and Faunal Remains from Skull Creek Dunes Locality-6, Catlow Valley, Southeastern Oregon. Unpublished MA thesis. Department of Anthropology, Washington State University, Pullman.

Wilde, James. D.

1985 Prehistoric Settlements in the Northern Great Basin: Excavations and Collections Analysis in the Steens Mountain Area, Southeastern Oregon. Unpublished Ph.D. dissertation, Department of Anthropology, University of Oregon, Eugene.

Wingard, George F.

2001 Carlon Village: Land, Water, Subsistence, and Sedentism in the Northern Great Basin. University of Oregon Anthropological Papers No. 57. Department of Anthropology, University of Oregon, Eugene.

APPENDIX A

Manager .

Son Walkington

September 1

Section Section

Sanda and a second

an established

.

XRF ANALYSIS

Northwest Research Obsidian Studies Laboratory

Table A-1. Results of XRF	Studies: Birch Creek Site	(35-ML-181), Malheur (County, Oregon	INWROSL 2000-531
		(33 ITE IOI/ ITAMIOUI		

	Specimen	1				Trace	Elem	ent Co	oncent	tration	5			Rati	Ratios		
Site	No.	Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba	Fe2O3 ^T	Fe:Mn	Fe:Ti	Geochemical Source	
35-ML-181	2	7747	76 ± 6	19 4	104 3	181 6	27 3	114 5	11 2	952 80	560 45	930 18	1.61 0.11	27.1	53.4	Twin Springs Bench (GGOV	
35-ML-181	3	14541	135 ± 8	19 4	135 3	32 6	32 3	206 5	19 2	662 78	313 45	447 19	0.57 0.11	19.9	29.8	Sourdough Mountain	
35-ML-181	4	14635	71 ± 7	24 4	192 4	34 6	58 3	176 5	33 2	376 78	194 45	189 18	0.82 0.11	48.7	72.9	Indian Creek Buttes A	
35-ML-181	5	14536	67 ± 7	12 4	133 3	36 6	42 3	236 5	21 2	760 79	186 45	502 19	0.75 0.11	47.3	33.1	Sourdough Mountain	
35-ML-181	6	11880	169 ± 8	22 4	100 3	103 6	69 3	385 5	18 2	981 80	353 45	1355 19	2.33 0.11	63.8	73.6	Unknown 1	
35-ML-181	7	7158	60 ± 6	22 3	184 3	27 6	53 3	169 5	32 2	551 78	278 45	140 18	1.30 0.11	48.1	75.3	Indian Creek Buttes A	
35-ML-181	8	7749	51 ± 7	18 4	143 3	36 6	40 3	216 5	22 2	903 79	212 45	463 18	0.92 0.11	48.2	33.3	Sourdough Mountain	
35-ML-181	9	-	94 ± 7	30 4	246 4	10 6	68 3	107 5	48 2	387 78	189 45	23 18	0.43 0.11	28.6	40.4	Barren Valley	
35-ML-181	10	14599	79 ± 6	19 3	132 3	32 6	35 3	212 5	25 2	934 79	327 45	417 18	0.98 0.11	30.6	34.1	Sourdough Mountain	
35-ML-181	12	14611	39 ± 7	13 4	112 3	29 6	27 3	173 5	16 2	424 78	132 45	417 19	0.49 0.11	51.5	41.1	Unknown 2	
35-ML-181	14	14521	59 ± 8	24 4	177 4	28 6	49 3	162 5	34 2	NM NM	NM NM	NM NM	NM NM	53.3	71.8	Indian Creek Buttes A *	
35-ML-181	15	14117	48 ± 8	17 4	207 4	30 6	32 3	106 5	10 2	NM NM	NM NM	NM NM	NM NM	73.2	73.4	Owyhee *	
35-ML-181	16	13100	64 ± 9	29 5	98 4	147 6	26 3	88 5	13 2	NM NM	NM NM	NM NM	NM NM	21.1	51.5	Venator *	
35-ML-181	18	7786A	46 ± 6	18 4	132 3	35 6	36 3	233 5	20 2	956 79	240 45	549 18	1.10 0.11	49.2	37.2	Sourdough Mountain	
35-ML-181	20	7783	65 ± 7	21 4	106 3	157 6	28 3	98 5	16 2	395 78	403 45	805 19	0.76 0.11	19.3	64.6	Venator	
5-ML-181	22	14399	95 ± 8	27 4	103 3	21 6	55 3	381 5	24 2	507 78	232 45	752 20	0.80 0.11	38.0	52.6	Wildcat Creek	

	Specimen			7		Trace	Elem	ent Co	oncent	ration	5			Rati	Ratios		
lite	No.	Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba	Fe2O3 ^T	Fe:Mn	Fe:Ti	Geochemical Source	
35-ML-181	23	14480	38 ± 7	19 4	110 3	30 6	33 3	178 5	18 2	474 78	149 45	411 19	0.59 0.11	50.9	42.8	Unknown 2	
85-ML-181	24	14452	74 ± 6	20 4	143 3	33 6	37 · 3	236 5	24 2	918 79	217 45	503 19	0.82 0.11	42.0	29.4	Sourdough Mountain	
5-ML-181	25	14461	47 ± 9	22 4	133 4	33 6	38 3	203 5	22 2	NM NM	NM NM	NM NM	NM NM	54.4	37.1	Sourdough Mountain *	
5-ML-181	27	14449	66 ± 7	23 4	174 3	31 6	54 3	168 5	30 2	547 78	174 45	NM NM	0.74 0.11	50.5	45.3	Indian Creek Buttes A	
5-ML-181	28	7859	76 ± 6	20 3	109 3	158 6	28 3	103 5	11 2	534 79	500 45	924 19	0.86 0.11	17.0	53.0	Venator	
5-ML-181	29	14456	210 ± 10	44 4	212 4	7 6	95 3	516 6	36 2	783 78	208 45	38 18	1.42 0.11	73.8	57.4	Bretz Mine	
5-ML-181	30	7801	56 ± 7	17 4	136 3	35 6	40 3	237 5	22 2	977 79	226 45	575 18	0.88 0.11	42.6	29.4	Sourdough Mountain	
5-ML-181	31	14478	89 ± 7	17 4	111 3	24 6	64 3	433 5	31 2	1050 80	438 45	765 18	1.65 0.11	36.2	49.5	Coyote Wells	
5-ML-181	33	15599	80 ± 6	14 4	144 3	34 6	36 3	223 5	24 2	1022 79	379 45	451 18	1.11 0.11	29.3	35.1	Sourdough Mountain	
5-ML-181	34	12355	67 ± 6	19 4	134 3	34 6	39 3	241 5	22 2	847 79	203 45	539 18	0.91 0.11	50.4	35.2	Sourdough Mountain	
5-ML-181	35	5991	81 ± 6	21 3	113 3	139 6	29 3	93 5	11 2	378 79	551 45	879 19	0.88 0.11	15.6	76.8	Venator	
5-ML-181	36	6062	73 ±7	25 4	182 3	31 6	51 3	169 5	35 2	318 78	187 45	172 18	0.79 0.11	49.2	83.5	Indian Creek Buttes A	
5-ML-181	37	15219	69 ± 6	21 3	135 3	35 6	42 3	295 5	25 2	791 79	203 45	501 18	0.91 0.11	50.2	37.7	Unknown 3	
5-ML-181	38	6764	80 ± 6	32 3	273 4	8 6	74 3	115 5	49 2	353 78	312 45	15 18	0.85 0.11	28.6	80.4	Barren Valley	
5-ML-181	39	8040	92 ± 6	21 3	112 3	21 6	61 3	434 5	32 2	1407 80	470 45	805 18	1.91 0.11	38.5	42.3	Coyote Wells	
5-ML-181	40	7448	81 ± 6	19 3	140 3	32 6	39 3	214 5	21 2	912 79	299 45	446 18	0.95 0.11	33.1	34.0	Sourdough Mountain	

	Specimen					Trace	Elem	ent Co	oncen	ration	5			Rat	ios	
Site	No.	Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba	Fe2O3 ^T	Fe:Mn	Fe:Ti	Geochemical Source
35-ML-181	41	7112	80 ± 6	18 3	138 3	37 6	38 3	231 5	24 2	1035 79	315 45	503 18	1.11 0.11	36.0	34.5	Sourdough Mountain
35-ML-181	42	6822	40 ± 6	15 3	133 3	32 6	38 3	212 5	20 2	806 79	229 45	397 18	1.04 0.11	49.1	41.7	Sourdough Mountain
35-ML-181	43	5813	104 ± 6	22 3	124 3	23 6	67 3	459 5	31 2	1099 80	412 45	839 19	1.60 0.11	37.6	45.9	Coyote Wells
35-ML-181	44	17865	74 ± 6	23 3	113 3	164 6	28 3	100 5	14 2	518 79	522 45	922 19	1.01 0.11	18.8	63.5	Venator
85-ML-181	45	6871	65 ± 6	20 3	148 3	33 6	38 3	219 5	22 2	935 79	255 45	464 18	1.04 0.11	43.5	36.1	Sourdough Mountain
35-MIL-181	46	14544	92 ± 9	17 5	122 4	31 6	40 3	209 5	17 2	390 78	110 45	401 20	0.29 0.11	43.8	29.1	Sourdough Mountain
35-ML-181	47	12296	87 ± 7	25 4	206 4	9 6	52 3	91 5	35 2	169 77	172 45	14 19	0.43 0.11	31.9	93.2	Unknown 4
35-ML-181	48	14601	156 ± 8	25 4	117 3	24 6	59 3	428 5	27 2	706 79	450 45	800 18	1.06 0.11	23.2	48.7	Coyote Wells
35-ML-181	49	CS-22-10	42 ± 7	21 4	130 3	32 6	37 3	203 5	19 2	602 78	166 45	404 19	0.75 0.11	54.7	41.9	Sourdough Mountain
35-ML-181	50	CS-24-10	54 ± 6	17 4	141 3	35 6	39 3	218 5	23 2	1007 79	255 45	434 18	1.13 0.11	46.8	36.2	Sourdough Mountain
35-ML-181	51	9223	138 ± 7	25 4	112 3	31 6	70 3	480 5	33 2	1145 80	490 45	1113 21	1.73 0.11	33.5	47.4	Coyote Wells East
35-ML-181	52	14599	115 ± 7	23 4	116 3	23 6	63 3	433 5	34 2	1085 80	429 45	781 20	1.36 0.11	30.8	39.8	Coyote Wells
85-ML-181	53	7741	134 ± 8	37 4	278 4	9 6	74 3	116 5	50 2	381 78	289 45	7 22	0.48 0.11	18.7	44.6	Barren Valley
85-ML-181	54	CS-14-11	84 ± 7	22 4	106 3	157 6	26 3	97 5	11 2	710 79	378 45	900 19	0.76 0.11	20.7	35.7	Venator
85-ML-181	56	CS-14-11	62 ± 8	24 4	84 3	126 6	23 3	79 5	7 2	NM NM	NM NM	NM NM	NM NM	19.5	70.0	Venator *
35-ML-181	58	14149	98 ± 7	38 4	298 4	8 6	75 3	120 5	49 2	193 77	253 45	21 19	0.60 0.11	26.6	109.0	Barren Valley

Table A-1 Results of XRF Studies: Birch Creek Site (35-ML-181) Malheur County Oregon [NWROSL 2000-53]

Table A-1. Results of XRF Studies: Birch Creek Site (35-ML-	-181), Malheur County, Oregon [NWROSL 2000-53]
---	--

	Specimen					Trace	Elem	ent Co	oncent	ration	3			Rati	os	
Site	No.	Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba	Fe2O3 ^T	Fe:Mn	Fe:Ti	Geochemical Source
35-ML-181	59	14620	51 ± 6	21 3	132 3	34 6	38 3	227 5	23 2	913 79	246 45	550 18	1.15 0.11	49.4	40.3	Sourdough Mountain
35-ML-181	60	7615	58 ± 7	26 4	112 3	173 6	29 3	106 5	12 2	521 79	423 45	890 20	0.99 0.11	23.3	62.2	Venator
35-ML-181	66	14613	71 ± 8	24 5	94 4	141 6	22 3	91 5	10 2	NM NM	NM NM	NM NM	NM NM	21.9	40.6	Venator *
35-ML-181	67	6664	50 ± 6	18 3	136 3	31 6	39 3	212 5	22 2	835 79	207 45	458 18	0.93 0.11	50.4	36.5	Sourdough Mountain
35-ML-181	68	6791	55 ± 7	14 4	139 3	31 6	36 3	213 5	24 2	697 78	167 45	462 18	0.66 0.11	48.3	32.2	Sourdough Mountain
35-ML-181	69	7498	70 ± 6	36 3	185 3	20 6	46 3	65 5	36 2	435 78	511 45	26 18	0.36 0.11	7.8	30.5	Timber Butte
35-ML-181	71	6775	67 ± 6	16 3	139 3	36 6	38 3	217 5	22 2	989 79	290 45	454 18	1.06 0.11	37.8	34.6	Sourdough Mountain
35-ML-181	72	4869	55 ± 6	22 3	140 3	32 6	38 3	216 5	22 2	1112 79	240 45	443 18	1.27 0.11	55.9	36.3	Sourdough Mountain
35-ML-181	73	13298	38 ± 6	20 3	141 3	36 6	36 3	218 5	22 2	948 79	246 45	438 18	1.14 0.11	49.2	38.7	Sourdough Mountain
35-ML-181	74	14387	71 ± 6	21 3	134 3	30 6	38 3	211 5	23 2	820 79	177 45	469 18	0.82 0.11	54.2	32.9	Sourdough Mountain
35-ML-181	75	7618	113 ± 6	26 3	127 3	25 6	62 3	448 5	32 2	1191 80	498 45	822 19	1.82 0.11	34.5	47.7	Coyote Wells
35-ML-181	76	13298	115 ± 7	18 4	108 3	24 6	59 3	424 5	33 2	1027 79	377 45	796 19	1.44 0.11	37.6	44.5	Coyote Wells
35-ML-181	77	8367	79 ± 6	14 4	135 3	34 6	37 3	211 5	22 2	983 79	321 45	405 18	1.15 0.11	36.3	37.5	Sourdough Mountain
35-ML-181	78	14618	121 ± 8	22 4	104 3	133 6	31 3	92 5	12 2	262 78	490 45	851 19	0.59 0.11	12.4	77.7	Venator
35-ML-181	79	15375	52 ± 7	23 4	209 4	29 6	26 3	106 5	13 2	NM NM	NM NM	NM NM	NM NM	66.2	66.4	Owyhee *
35-ML-181	80	7552	58 ± 6	20 3	132 3	33 6	36 3	209 5	21 2	910 79	213 45	420 18	1.00 0.11	51.6	35.6	Sourdough Mountain

Northwest Research Obsidian Studies Laboratory

Table A-1. Results of XRF Studies: I	Birch Creek Site (35-ML-1	81), Malheur County,	Oregon [NWROSL 2000-53]

	Specimen					Trace	Elem	ent Co	oncen	tration	5			Rat	ios	
Site	No.	Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba	Fe2O3 ^T	Fe:Mn	Fe:Ti	Geochemical Source
35-ML-181	81	7552	79 ± 7	18 4	97 3	20 6	48 3	357 5	26 2	741 79	288 45	636 20	1.01 0.11	36.7	44.4	Wildcat Creek
35-ML-181	82	14452	70 ± 6	20 3	131 3	35 6	36 3	232 5	23 2	1079 79	315 45	511 18	1.17 0.11	37.9	34.8	Sourdough Mountain
3 5-ML-18 1	83	14660	101 ± 7	33 3	271 4	10 6	72 3	118 5	49 2	293 77	342 45	17 18	0.71 0.11	21.7	82.1	Barren Valley
35-ML-181	84	7550	48 ± 7	21 4	161 3	29 6	51 3	152 5	25 2	354 78	187 45	168 18	0.71 0.11	44.4	67.8	Indian Creek Buttes A
35-ML-181	85	13061	57 ± 6	20 4	149 3	37 6	37 3	222 5	25 2	834 79	198 45	443 18	0.91 0.11	51.9	35.6	Sourdough Mountain
35-ML-181	86	13017	62 ± 8	29 4	96 3	175 6	29 3	84 5	10 2	NM NM	NM NM	NM NM	NM NM	15.7	129.9	Gregory Creek *
35-ML-181	87	13017A	57 ± 8	19 4	163 4	40 6	36 3	229 5	20 2	755 78	171 45	379 19	0.72 0.11	50.2	31.8	Sourdough Mountain
35-ML-181	88	13017B	37 ± 7	21 4	136 3	40 6	38 3	225 5	25 2	668 79	177 45	403 20	0.77 0.11	51.3	38.2	Sourdough Mountain
35-ML-181	89	13017C	49 ± 8	26 4	149 4	34 6	39 3	210 5	22 2	NM NM	NM NM	NM NM	NM NM	48.7	37.8	Sourdough Mountain *
35-ML-181	90	13017D	22 ± 9	14 4	104 3	28 6	29 3	171 5	16 2	461 78	127 45	354 19	0.50 0.11	55.3	38.1	Unknown 2
35-ML-181	91	13153	41 ± 8	20 4	134 3	35 6	37 3	239 5	22 2	695 79	176 45	474 18	0.76 0.11	51.1	36.5	Sourdough Mountain
35-ML-181	92	13018	85 ± 7	20 4	96 3	173 6	29 3	88 5	11 2	318 80	525 45	2154 25	0.77 0.11	14.6	81.3	Gregory Creek
35-ML-181	93	13018A	54 ± 8	23 4	189 4	32 6	57 3	165 5	35 2	319 78	175 45	151 19	0.73 0.11	50.0	77.7	Indian Creek Buttes A
35-ML-181	96	15087	139 ± 8	18 4	108 3	15 6	77 3	502 5	33 2	1049 79	608 45	601 19	2.12 0.11	32.1	62.7	Skull Springs
35-ML-181	97	13152	57 ± 6	23 4	147 3	36 6	38 3	222 5	21 2	867 79	190 45	421 19	0.90 0.11	54.1	34.0	Sourdough Mountain
35-ML-181	98	131 52B	45 ± 7	18 4	143 3	36 6	36 3	219 5	23 2	600 78	175 45	409 18	0.71 0.11	48.3	39.8	Sourdough Mountain

	Specimen					Trace	Elem	ent Co	oncen	ration	3			Rati	os	
Site	No.	Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba	Fe ₂ O ₃ ^T	Fe:Mn	Fe:Ti	Geochemical Source
35-ML-181	99	13153	71 ± 7	25 4	94 3	167 6	25 3	86 5	9 2	403 79	365 45	2012 26		15.3	45.1	Gregory Creek
35-ML-181	100	13153A	51 ± 8	19 4	144 4	33 6	35 3	201 5	18 2	NM NM	NM NM	NM NM		55.0	44.3	Sourdough Mountain *
35-ML-181	101	CS-17-11	62 ± 6	8 4	28 3	18 6	13 3	58 5	6 2	680 78	96 45	210 18		62.7	19.0	Unknown 5 (GGOV)
35-ML-181	102	CS-17-10	37 ± 9	21 4	124 4	33 6	37 3	209 5	19 2	NM NM	NM NM	NM NM		47.4	31.8	Sourdough Mountain *
35-ML-181	103	14709	105 ± 8	20 4	126 3	22 6	62 3	453 5	30 2	840 79	337 45	597 20		38.1	48.7	Coyote Wells
35-ML-181	105	14968	50 ± 6	23 3	214 3	45 6	31 3	134 5	13 2	586 79	138 45	525 18		85.7	52.5	Owyhee?
35-ML-181	107	14649	122 ± 7	23 4	145 3	131 6	30 3	329 5	15 2	1748 81	392 45	990 19		40.1	29.1	Dry Creek Canyon (GGOV)
35-ML-181	108	15051	39 ± 7	20 4	129 3	34 6	37 3	225 5	21 2	756 79	198 45	459 19		53.9	41.0	Sourdough Mountain
35-ML-181	109	8039	59 ± 7	22 4	137 3	118 6	33 3	315 5	19 2	1715 81	278 45	979 19		57.6	28.8	Dry Creek Canyon (GGOV)
35-ML-181	110	6794	113 ± 6	29 3	282 4	10 6	74 3	116 5	48 2	310 78	340 45	11 19		27.2	96.0	Barren Valley
35-ML-181	111	9082	53 ± 6	21 3	105 3	161 6	26 3	103 5	12 2	599 79	614 45	917 18	1.26 0.11	19.5	67.6	Venator
35-ML-181	112	15046	76 ± 6	19 3	133 3	32 6	35 3	213 5	18 2	987 79	284 45	487 18	1.07 0.11	39.3	35.1	Sourdough Mountain

	Table A-1. Results of X	RF Studies: Birch Creek Site (35-ML-181), Malheur County.	Oregon [NWROSL 2002-16]
--	-------------------------	--------------------------------	-----------------------------	-------------------------

	Specimen					Trace	Elem	ent Co	oncen	tration	S			Rat	ios	
Site	No.	Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba	Fe2O3 ^T	Fe:Mn	Fe:Ti	Geochemical Source
35-ML-181	1	1065	64 ± 7	20 3	103 3	132 6	30 2	92 6	15 2	753 76	484 46	838 28	1.00 0.11	20.0	43.5	Venator
35-ML-181	2	3641	72 ± 6	30 3	220 3	26 6	29 2	110 6	13 2	488 75	188 46	142 28	0.94 0.11	55.7	63.5	Owyhee
85-ML-181	3	5559	112 ± 7	16 3	114 3	21 6	60 2	431 6	30 2	1358 77	540 46	795 28	1.99 0.11	34.0	46.1	Coyote Wells
35-ML-181	4	6276	68 ± 6	19 3	106 3	134 6	28 2	93 6	13 2	333 75	611 46	923 28	0.94 0.11	14.7	93.2	Venator
35-ML-181	5	7009	108 ± 7	19 3	122 3	21 6	64 2	449 6	34 2	1468 77	523 46	828 28	1.99 0.11	35.1	42.7	Coyote Wells
85-ML-181	6	7173	57 ± 6	19 3	110 3	131 6	29 2	98 6	13 2	691 76	566 46	882 28	1.20 0.11	20.0	56.1	Venator
35-ML-181	7	11687	57 ± 6	16 3	138 3	31 6	40 2	217 6	26 2	1113 76	310 46	417 28	1.47 0.11	46.8	42.2	Sourdough Mountain
35-ML-181	8	12343	96 ± 7	30 3	273 4	11 6	72 2	120 6	51 2	266 74	288 46	19 27	0.80 0.11	29.1	101.2	Barren Valley
35-ML-181	9	12405	44 ± 6	19 3	142 3	35 6	39 2	241 6	25 2	1095 76	351 46	529 28	1.25 0.11	35.1	37.0	Sourdough Mountain
35-ML-181	10	12700	58 ± 6	25 3	102 3	150 6	29 2	97 6	15 2	918 76	518 46	929 28	1.17 0.11	21.5	41.3	Venator
35-ML-181	11	12765	66 ± 7	22 3	107 3	138 6	31 2	96 6	14 2	283 75	535 46	869 28	0.77 0.11	14.2	92.1	Venator
35-ML-181	12	12937	42 ± 6	26 3	220 3	26 6	32 2	113 6	13 2	601 75	173 46	168 27	1.11 0.11	72.2	60.3	Owyhee
35-ML-181	13	13656	97 ± 7	18 4	121 3	23 6	62 2	448 6	37 2	1171 77	419 46	794 28	1.72 0.11	38.8	46.5	Coyote Wells
35-ML-181	14	15663	53 ± 7	24 3	179 3	32 6	53 2	169 6	30 2	441 75	229 46	158 28	1.12 0.11	51.3	82.4	Indian Creek Buttes A
35-ML-181	15	15908	168 ± 7	23 3	117 3	10 6	76 2	504 6	34 2	1284 77	796 46	572 28	2.74 0.11	30.6	66.5	Skull Springs
35-ML-181	16	17228	80 ± 7	23 4	238 4	8 6	62 2	104 6	42 2	174 74	228 46	29 28	0.56 0.11	28.0	113.5	Barren Valley

A - 1

.

Northwest Research Obsidian Studies Laboratory

Table A-1. Results of XRF Studies: Birch Creek Site (35-ML-181), Malheur County, Oregon [NWROSL 2002-16]

	Specimer	n				Trace	Elem	ent Co	oncent	rations	8			Rati	ios	
Site	No.	Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba	Fe2O3 ^T	Fe:Mn	Fe:Ti	Geochemical Source
35-ML-181	17	17525	111 ± 7	26 3	260 4	7 6	66 2	118 6	51 2	730 75	360 46	11 27	0.87 0.11	24.3	39.4	Unknown 6
35-ML-181	18	18368	55 ± 6	16 3	129 3	32 6	39 2	211 6	23 2	822 76	217 46	422 28	0.94 0.11	46.7	37.7	Sourdough Mountain
35-ML-181	19	18369	55 ± 7	23 4	184 3	59 6	28 2	158 6	11 2	985 76	143 46	982 28	0.91 0.11	76.4	30.5	Sourdough Mountain Unknov

All trace element values reported in parts per million; $\pm =$ analytical uncertainty estimate (in ppm). Iron content reported as weight percent oxide. NA = Not available; ND = Not detected; NM = Not measured.; * = Small sample.

	Specimen					Trace	Elem	ent Co	oncen	tration	3			Rat	ios	
Site	No.	Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba	Fe2O3 ^T	Fe:Mn	Fe:Ti	Geochemical Source
35-ML-181	1	2062	162 ± 8	45 5	252 4	8 9	96 3	230 7	47 2	468 75	170 46	58 32	1.45 0.11	94.3	99.1	Unknown 7
35-ML-181	2	6696	54 ± 7	25 4	154 4	36 9	40 3	222 7	24 1	892 76	217 41	432 31	0.97 0.11	45.2	35.6	Sourdough Mountain
35-ML-181	3	7008	47 ± 7	22 4	141 4	33 9	38 3	213 7	22 1	965 76	243 41	451 31	1.20 0.11	48.6	40.1	Sourdough Mountain
35-ML-181	4	7742	40 ± 7	21 4	150 4	34 9	37 3	219 7	23 1	916 76	356 41	479 31	1.08 0.11	29.3	38.5	Sourdough Mountain
35-ML-181	5	8524	38 ± 7	21 4	156 4	36 9	39 3	221 7	21 1	846 76	211 41	448 31	1.02 0.11	49.2	39.4	Sourdough Mountain
35-ML-181	6	10936	41 ± 7	19 4	138 4	33 9	40 3	234 7	23 1	1147 77	400 41	569 31	1.37 0.11	32.2	38.3	Sourdough Mountain
35-ML-181	7.	13248	63 ± 7	23 4	185 4	31 9	54 3	167 7	33 1	531 75	265 41	191 31	1.27 0.11	46.6	76.5	Indian Creek Buttes Variety A
35-ML-181	8	13598	146 ± 8	22 4	87 4	105 9	67 3	353 7	16 1	1207 78	586 41	1401 31	2.95 0.11	45.1	76.1	Eldorado
35-ML-181	9	14054	65 ± 7	32 4	245 4	29 9	62 3	369 7	46 1	1505 78	191 41	575 31	1.96 0.11	101.5	41.0	Unknown 8
35-ML-181	10	15047	46 ± 7	19 4	174 4	31 9	50 3	165 7	30 1	547 75	375 41	192 31	1.23 0.11	31.1	72.1	Indian Creek Buttes Variety A
3 5-ML-18 1	11	15730	39 ± 7	25 4	210 4	30 9	27 3	110 7	11 1	510 75	184 41	224 31	1.09 0.11	60.6	69.0	Owyhee
35-ML-181	12	18207	37 ± 7	18 4	139 4	31 9	35 3	209 7	22 1	1130 76	300 41	470 31	1.37 0.11	44.0	39.0	Sourdough Mountain
35-ML-181	13	18875	87 ± 7	21 4	117 4	20 9	60 3	433 7	30 1	1089 77	409 41	782 32	1.59 0.11	36.2	46.4	Coyote Wells
35-ML-181	14	18876	44 ± 8	19 4	154 4	34 9	39 3	224 7	24 1	707 75	152 41	406 32	0.69 0.11	50.1	33.0	Sourdough Mountain
35-ML-181	15	19413	96 ± 8	20 4	99 4	31 9	65 3	450 7	33 1	1499 78	673 41	1178 31	2.31 0.11	30.8	48.4	Coyote Wells East
5-ML-181	16	19693	66 ± 7	32 4	254 4	8 9	65 3	117 7	46 1	297 74	454 46	21 30	0.90 0.11	19.5	100.7	Barren Valley

Northwest Research Obsidian Studies Laboratory

	Table A-1. Resu	lts of XRF Studies:	Birch Creek Site	(35-ML-181), [Malheur County, Oregon
--	-----------------	---------------------	------------------	----------------	------------------------

	Specimen					Trace	Elem	ent Co	oncen	tration	3			Rat	ios	
Site	No.	Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba	Fe2O3 ^T	Fe:Mn	Fe:Ti	Geochemical Source
35-ML-181	17	19786	53 ± 7	33 4	186 4	16 9	43 3	59 7	36 1	255 74	767 46	39 33	0.39 0.11	5.4	57.2	Timber Butte
35-ML-181	18	19818	137 ± 8	19 4	108 4	16 9	73 3	470 7	34 1	1395 77	840 46	531 31	2.93 0.11	30.8	65.1	Skull Springs
35-ML-181	19	19949	140 ± 8	24 4	109 4	13 9	73 3	485 7	32 1	1324 77	785 46	535 31	2.76 0.11	31.2	64.7	Skull Springs
35 - ML-181	20	20282	62 ± 7	31 4	194 4	17 9	45 3	64 7	36 1	249 74	615 46	40 33	0.37 0.11	6.5	55.4	Timber Butte
35-ML-181	21	20469	47 ± 7	22 4	173 4	28 9	49 3	160 7	29 1	508 75	270 46	173 31	1.22 0.11	46.0	77.5	Indian Creek Buttes Variety
35-ML-181	22	22372	55 ±7	19 4	105 4	123 9	30 3	91 7	14 1	341 75	547 46	891 31	0.84 0.11	14.9	82.1	Venator
35-ML-181	23	22384	44 ± 7	19 4	138 4	34 9	37 3	270 7	20 1	890 76	213 46	515 31	1.07 0.11	53.9	39.2	Sourdough Mountain?
35-ML-181	24	22609	33 ± 7	16 4	139 4	31 9	37 3	213 7	23 1	973 76	364 46	426 31	1.20 0.11	32.3	39.8	Sourdough Mountain
35-ML-181	25	22914	50 ± 7	21 4	189 4	33 9	54 3	168 7	32 1	439 75	384 46	184 31	1.08 0.11	27.7	80.5	Indian Creek Buttes Variety A
35-ML-181	26	23240	61 ± 7	30 4	94 4	165 9	26 3	85 7	12 1	178 76	460 46	2159 33	0.68 0.11	14.9	131.0	Gregory Creek
35-ML-181	27	23340	125 ± 8	27 4	118 4	16 9	72 3	489 7	30 1	1128 77	691 46	631 31	2.43 0.11	31.6	67.2	Skull Springs
35-ML-181	28	23985	77 ± 7	22 4	114 4	20 9	58 3	418 7	29 1	1140 77	482 46	821 31	1.80 0.11	34.7	49.8	Coyote Wells
35-ML-181	29	24116	41 ± 7	27 4	236 4	30 9	31 3	111 7	13 1	511 75	176 46	136 31	0.96 0.11	62.1	62.2	Owyhee
35-ML-181	30	24618	54 ± 7	33 4	247 4	9 9	67 3	106 7	45 1	310 74	343 46	11 30	0.98 0.11	28.6	103.5	Barren Valley
85-ML-181	1	19694	93 ± 7	22 4	120 4	23 9	62 3	440 7	33 1	1226 91	524 28	746 32	1.74 0.11	27.8	47.4	Coyote Wells
5-ML-181	2	20222	133 ± 8	23 4	108 4	14 9	71 3	471 7	29 1	1551 91	893 28	561 32	3.12 0.11	28.7	66.4	Skull Springs

All trace element values reported in parts per million; $\pm =$ analytical uncertainty estimate (in ppm). Iron content reported as weight percent oxide. NA = Not available; ND = Not detected; NM = Not measured.; * = Small sample.

Northwest Research Obsidian Studies Laboratory	
Table A-1 Desults of YPE Studies: Birch Creek Site (35-MI-181) Malheur County Or	eaon

	Specimer	Trace Element Concentrations												os		
Site	No.	Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba	Fe2O3 ^T	Fe:Mn	Fe:Ti	Geochemical Source
35-ML-181	3	20233	48 ± 7	21 4	77 4	143 9	23 3	83 7	12 1	453 91	594 28	2284 33	1.12 0.11	16. 2	81.1	Gregory Creek
35-ML-181	4	20429	42 ± 7	20 4	80 4	148 9	23 3	80 7	12 1	NM NM	NM NM	NM 35	NM NM	17.0	79.0	Gregory Creek *
35-ML-181	5	21705	36 ± 7	24 4	100 4	126 9	26 3	88 7	15 1	447 89	626 28	929 32	1.16 0.11	15.9	84.7	Venator
35-ML-181	6	22021	62 ± 8	21 4	107 4	18 9	59 3	411 7	30 1	NM NM	NM NM	NM 32	NM NM	34.6	43.9	Coyote Wells *
35-ML-181	7	22130	119 ± 7	16 4	101 4	29 9	63 3	439 7	29 1	1563 92	694 28	1165 32	2.44 0.11	29.1	51.9	Coyote Wells East
35-ML-181	8	22304	62 ± 8	19 4	104 4	21 9	55 3	408 7	31 1	1215 91	408 28	882 32	1.71 0.11	35.3	47.1	Coyote Wells
35-ML-181	9	22350	49 ± 7	20 4	74 4	143 9	25 3	73 7	12 1	385 90	547 28	2378 34	0.89 0.11	14.2	75.9	Gregory Creek
35-ML-181	10	22477	43 ± 7	22 4	71 4	137 9	24 3	72 7	14 1	730 91	504 28	2385 34	1.20 0.11	20.4	55.0	Gregory Creek
35-ML-181	11	22944	34 ± 7	19 4	146 4	33 9	40 3	216 7	20 1	1188 90	301 28	481 32	1.25 0.11	35.5	35.6	Sourdough Mountain
35-ML-181	12	23274	50 ± 7	16 4	136 4	33 9	39 3	224 7	21 1	NM NM	NM NM	NM 32	NM NM	48.2	40.8	Sourdough Mountain *
35-ML-181	13	23662	73 ± 7	23 4	110 4	22 9	59 3	420 7	28 1	NM NM	NM NM	NM 33	NM NM	37.5	46.4	Coyote Wells *
35-ML-181	14	23716	26 ± 8	26 4	207 4	49 9	26 3	132 7	9 1	NM NM	NM NM	NM 32	NM NM	69.9	45.6	Owyhee *
35-ML-181	15	23756	48 ± 7	15 4	96 4	126 9	25 3	92 7	14 1	482 89	563 28	897 32	1.07 0.11	16.3	72.9	Venator
35-ML-181	16	23807	73 ± 8	20 5	106 4	19 9	62 3	414 7	34 1	1475 92	509 28	847 32	2.07 0.11	33.8	46.7	Coyote Wells
35-ML-181	17	23809	57 ± 8	45 4	205 4	21 9	41 3	59 7	36 1	NM NM	NM NM	NM 39	NM NM	7.1	49.1	Timber Butte *
35-ML-181	18	23859	53 ± 8	20 4	173 4	23 9	52 3	157 7	31 1	465 88	356 28	126 32	1.23 0.11	29.6	86.3	Indian Creek Buttes Variety

	Specimen No.		Trace Element Concentrations												ios	-
Site		Catalog No.	Zn	Pb	Rb	Sr	Y	Zr	Nb	Ti	Mn	Ba	Fe ₂ O ₃ ^T	Fe:Mn	Fe:Ti	Geochemical Source
35-ML-181	19	23920	66 ± 7	27 4	179 4	16 9	43 3	56 7	35 1	NM NM	NM NM	NM 33	NM NM	7.0	77.8	Timber Butte *
35-ML-181	20	23926	50 ± 10	26 5	160 4	40 9	38 3	223 7	22 2	NM NM	NM NM	NM 34	NM NM	48.5	42.5	Sourdough Mountain *
35-ML-181	21	23930	56 ± 7	19 4	137 4	34 9	37 3	234 7	22 1	1254 90	285 27	578 32	i.39 0.11	41.6	37.4	Sourdough Mountain
35-ML-181	22	23998	87 ± 7	19 4	121 4	22 9	58 3	439 7	33 1	1174 91	413 28	808 34	1.68 0.11	34.2	47.8	Coyote Wells
35 - ML-181	23	24154	89 ± 7	23 4	123 4	23 9	62 3	442 7	34 1	1498 92	557 28	854 33	2.17 0.11	32.4	48.3	Coyote Wells
35-ML-181	24	24165	79 ± 7	22 4	241 4	9 9	68 3	110 7	43 1	287 88	366 28	2 31	1.06 0.11	24.9	116.5	Barren Valley
35-ML-181	25	24397	81 ± 8	22 4	118 4	21 9	59 3	431 7	30 1	NM NM	NM NM	NM 34	NM NM	35.2	48.8	Coyote Wells *
35-ML-181	26	24945	76 ± 7	22 4	106 4	19 9	57 3	418 7	30 1	1379 91	480 28	828 32	1.93 0.11	33.6	46.7	Coyote Wells
35-ML-181	27	24957	88 ± 7	21 4	115 4	23 9	62 3	435 7	29 1	1426 91	514 28	837 33	2.05 0.11	33.2	47.9	Coyote Wells
35-ML-181	28	25006	62 ± 7	28 4	273 4	10 9	69 3	121 7	50 1	347 88	332 28	39 37	1.04 0.11	27.1	96.6	Barren Valley
35-ML-181	29	25007	42 ± 7	19 4	110 4	160 9	27 3	101 7	12 1	512 89	652 28	952 33	1.27 0.11	16.5	81.1	Venator
35-ML-181	30	25076	48 ± 7	14 4	129 4	35 9	37 3	205 7	20 1	NM NM	NM NM	NM 33	NM NM	37.7	38.2	Sourdough Mountain *
NA	RGM-1	RGM-1	23 ± 8	27 4	151 4	103 9	28 3	219 7	8 1	1724 92	276 28	808 32	1.95 0.11	59.4	37.9	RGM-1 Reference Standard

Northwest Research Obsidian Studies Laboratory Table A-1 Results of XRF Studies: Birch Creek Site (35-ML-181) Malheur County, Oregon