OBSIDIAN:
AN INTERDISCIPLINARY BIBLIOGRAPHY

Craig E. Skinner
Kim J. Tremaine

International Association for Obsidian Studies Occasional Paper No. 1
1993
Obsidian:
An Interdisciplinary Bibliography

by

Craig E. Skinner
Kim J. Tremaine

© 1993 by Craig Skinner and Kim Tremaine

International Association for Obsidian Studies
Department of Anthropology
San Jose State University
San Jose, CA 95192-0113

International Association for Obsidian Studies Occasional Paper No. 1

1993
Magma cooled to freezing temperature and crystallized to a solid have to lose heat of crystallization. A glass, since it never crystallizes to form a solid, never changes phase and never has to lose heat of crystallization. Obsidian, supercooled below the crystallization point, remained a liquid. Glasses form when some physical property of a lava restricts ion mobility enough to prevent them from binding together into an ordered crystalline pattern. As the viscosity of the lava increases, fewer particles arrive at positions of order until no particle arrangement occurs before solidification. In a glass, the ions must remain randomly arranged; therefore, a magma forming a glass must be extremely viscous yet fluid enough to reach the surface.

The modern rational explanation for obsidian petrogenesis (Bakken, 1977:88)

Some people called a time at the flat named Tok'. They were going to hunt deer. They set snares on the runway at Blood Gap. Adder had real obsidian. The others made their arrows out of just anything. They did not know about obsidian. When deer were caught in snares, Adder shot and ran as fast as he could to the deer, pulled out the obsidian and hit it in his quiver. The obsidian was very powerful. The others would shoot too, but only sometimes would they kill a deer. Adder always killed them. He killed so many, the blood began running down both sides of the gap into the creeks. That is how the gap got its name. That night they carried the deer back to camp and had a big feast.

The next day the same thing happened. For three or four days this kept on happening. Adder always killed most of the deer. The others became jealous and talked things over among themselves. They decided that Adder must have some very powerful weapon. They told the fast runners like Humming Bird and Fox to watch Adder and race to the deer before Adder could get there.

On the following day the fast runners stationed themselves near Adder. One man called Puimetersubes was near. When Adder shot, all began running. Puimetersubes got there first. He put his hand in the wound and pulled the obsidian out and ran away. When Adder came he put his fingers in the wound and could not find his obsidian. He knew it had been stolen and he was very angry. He went right back to camp and got his things ready to go back down south from where he had come. He told the others his obsidian had been stolen and he was going to get even with the people who had taken it.

Meanwhile Puimetersubes ran up the ridge of Sandhill Crane Mountain. The other people all knew what was going to happen. They knew that Adder was going to set the world on fire. They all got ready to leave.

When Puimetersubes got to the top of the ridge Sandhill Crane was there, and so was Ground Squirrel who was to run with the obsidian. The obsidian was very large by now. Puimetersubes gave Ground Squirrel the pack and told him to run. Sandhill Crane told him to go right away because the fire had already started. He said he would stay on the mountain and watch the fire. He would call to him and tell him how near it was coming. He said, "When you hear my voice getting dim you will know that you are far enough away."

So Squirrel started going. He went north, and went north, and went north. He went past Mount Shasta. He could still hear Crane telling him about the fire. He kept on going until he could hardly hear Crane's voice, then he dropped his load. That is where Glass Mountain is today. That is why Ground Squirrel has a black mark on his back. The obsidian got hot and scorched him.

An alternative explanation of obsidian petrogenesis — a Wintu story about the origin of Glass Mountain, California (DuBois and Demetracopoulou, 1931:305-306)

Its discovery [Obsidian Cliffs] was the result of a hunting trip. Coming one day in sight of a magnificent elk he [Jim Bridger] took quick aim and fired. To his amazement the elk remained immobile, not even flicking an ear. He drew cautiously nearer and took a careful bead and again pressed the trigger. The same result met his effort. A third and fourth shot produced like results. Exasperated, he clubbed his rifle and rushed for the elk, but was brought up cold by a seemingly solid wall, which he discovered to be a mountain of perfectly transparent glass, on the other side of which the elk still grazed, undisturbed. On further investigation the mountain proved to be not only perfectly transparent, but was a veritable telescopic lens, and the elk was in fact twenty miles beyond the glass wall.

The real story of the discovery of Obsidian Cliffs, Yellowstone National Park, as told by Jim Bridger (Bright, 1951:5-6)
Preface and Acknowledgements

This obsidian bibliography would not have been possible without the help of the numerous individuals and organizations who contributed their time, references, comments, and careful editing. Our thanks to Michael Glascock, Foss Leach, Cathy Lindberg, Clem Meighan, Steve Shackley, Carol Winkler, and the University of Oregon (for funding an early version of the bibliography). The annotated bibliography developed by Elena Nilsson and Jan Finney (Nilsson and Finney, 1992) was also a particularly valuable resource (especially in the case of the California contract reports), in our search for elusive gray literature. The University of Oregon and Sonoma State University interlibrary loan departments have been of invaluable assistance over the years in locating countless obscure references.

Our special thanks go to Janet Scalise for the use of her initial extensive obsidian hydration and characterization bibliography (published in Obsidian Dates IV - see Meighan and Scalise, 1988).

The bibliography should be considered as a work in progress and, with this in mind, we have turned it loose in slightly ragged form. Not every reference has been located. Not every citation is complete in every detail. We considered this, however, and thought that it would be better that it sit on your desk in this condition than only on ours. If you would like to contact us about ideas, additions, information, errors, or omissions, please get in touch. We’d like to hear from you.

Craig E. Skinner
Home: 1414 NW Polk • Corvallis, Oregon 97330
(503)753-8078 (Home) • (503)753-2420 (Home Office)
(503)485-3585 (Work - INFOTEC) • (503)485-2438 (Fax - INFOTEC)
Internet: skinncr@kira.csos.orst.edu

Kim J. Tremaine
Work: BioSystems Analysis, Inc., 1017 Front St., Sacramento, California 95814
(916)557-4506 (Work - BioSystems) • (916)557-4511 (Fax - BioSystems)
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface and Acknowledgements</td>
<td>ii</td>
</tr>
<tr>
<td>Contents</td>
<td>iii</td>
</tr>
<tr>
<td>Introduction</td>
<td>vii</td>
</tr>
<tr>
<td>Obsidian: An Interdisciplinary Bibliography</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
</tr>
<tr>
<td>C</td>
<td>21</td>
</tr>
<tr>
<td>D</td>
<td>33</td>
</tr>
<tr>
<td>E</td>
<td>40</td>
</tr>
<tr>
<td>F</td>
<td>44</td>
</tr>
<tr>
<td>G</td>
<td>52</td>
</tr>
<tr>
<td>H</td>
<td>60</td>
</tr>
<tr>
<td>I</td>
<td>77</td>
</tr>
<tr>
<td>J</td>
<td>78</td>
</tr>
<tr>
<td>K</td>
<td>84</td>
</tr>
<tr>
<td>L</td>
<td>90</td>
</tr>
<tr>
<td>M</td>
<td>97</td>
</tr>
<tr>
<td>N</td>
<td>115</td>
</tr>
<tr>
<td>O</td>
<td>119</td>
</tr>
<tr>
<td>PQ</td>
<td>124</td>
</tr>
<tr>
<td>R</td>
<td>129</td>
</tr>
<tr>
<td>S</td>
<td>135</td>
</tr>
<tr>
<td>T</td>
<td>153</td>
</tr>
<tr>
<td>U</td>
<td>159</td>
</tr>
<tr>
<td>V</td>
<td>160</td>
</tr>
<tr>
<td>W</td>
<td>162</td>
</tr>
<tr>
<td>XYZ</td>
<td>171</td>
</tr>
</tbody>
</table>
Figures

1. *Front Cover and Title Page* - *Worldwide distribution of obsidian sources.* Produced from information available in the general literature through 1982, this map is now a bit dated but still includes most major obsidian sources and source areas (Skinner, 1983:11).

2. *Contents* - *Hupa White Deerskin Dance.* The performers in the front of the line are displaying large obsidian ceremonial blades similar to the one pictured in Figure 18. The original photograph appears in Alfred Kroeber's 1925 *Handbook of the Indians of California.* The White Deerskin Dance is described in detail by Goldschmidt and Driver (1943).

3. *Bibliography Title Page* - *Obsidian artifacts from Easter Island.* These artifacts are described by Metraux (1940:166) as obsidian spear heads. Several sources of volcanic glass are found on Easter Island and on an islet located immediately off the coast (Bird, 1988 and Bird, 1988-1989).

4. *A - Obsidian Cliff, Yellowstone.* This major obsidian source, now located within the boundaries of Yellowstone National Park, was widely utilized throughout the Midwest as a prehistoric source of glass. The figure is from Joseph Iddings' classic 1888 description of the source (Iddings, 1888: Plate 9).

5. *B - Glass Buttes, Oregon.* A persistent rumor that glass from this well-known Oregon obsidian source was found in the Hopewell mounds of the Midwest was put to rest by neutron activation characterization studies reported by Griffin et al. (1969). Obsidian Cliff, Wyoming, was found to be the dominant source of obsidian.

6. *C - Oregon obsidian pictograph.* Zoomorphic figure and miscellaneous design elements from a pictograph found on an late Holocene obsidian boulder in Oregon's High Cascades (see figure 9). The figure is from a cultural resource overview of Deschutes National Forest by James Dudley, Rick Bryant, and David Eister (1979).

8. *E - Mono Craters, California.* Map of late Holocene obsidian and rhyolite domes at Mono Craters at the edge of the Long Valley Caldera (Russell, 1889: Plate 40). Dendrochronologic evidence indicates that the eruptive activity at Mono Craters ended no later than A.D. 1368 (Sieh and Bursik, 1986).

9. *F - South Sister obsidian domes, Oregon High Cascades.* This alignment of 16 domes and flows was erupted about 2,000 years ago on the southeastern flanks of South Sister Volcano. The eruption was preceded by eruptions of volcanic tephra which blanketed the area downwind from the vents. The ash today forms a locally significant chronostratigraphic horizon. The eruptions are described in more detail by Scott (1987), Skinner and Radosevich (1990), and Williams (1944).

10. *G - Photomicrograph of asteroidal trichites in obsidian glass.* These spider-like microscopic structures in obsidian glass are known as asteroidal trichites. Trichite and other related microscopic sub-crystalline structures can sometimes be used to characterize specific sources of obsidian.

11. *H - Aerial stereo pair of the Big Obsidian Flow, Newberry Caldera, central Oregon.* This 1,350 year-old obsidian flow and prehistoric site is the youngest of several Holocene obsidian flows located in the summit caldera of Newberry Volcano (also see figures 19 and 27).
12. **I - Photomicrograph of obsidian-like vitrophyre.** This obsidian-like glass was created when an Oligocene ashflow crossed a small lake in the Western Cascades of Oregon, remelting the shards of glass and pumice to a dark black obsidian-like glass. The resultant rock is similar in appearance to a porphyritic obsidian but is distinguishable in thin section because of the clearly visible shards of volcanic ash in the parent ashflow. .. 77

14. **K - Obsidian biface from a western Oregon cache.** One of over 30 obsidian bifaces recovered from a cache (see figure 15) in the Western Cascades of Oregon (Bennett Rogers, 1993). Obsidian hydration measurements from several of the bifaces proved to be consistent with the assumption that the artifacts were all contemporaneously manufactured. .. 84

15. **L - Obsidian biface cache.** A cache of 32 complete obsidian bifaces found in the central Western Cascades of Oregon. All appear to have originated from nearby Obsidian Cliffs, an extensive obsidian quarry site found in the central High Cascades (Bennett Rogers, 1993). See figure 14 for a picture of a single artifact found at the cache. .. 90

16. **M - Motion of idealized obsidian flow.** Fp = finely vesicular pumice; o = obsidian; cp = coarsely vesicular pumice (Fink, 1979:3). .. 97

17. **N - Zoomorphic male carved figure with obsidian eyes.** Found on the Chincha islands of Peru, this Easter Island image was presented to the British Museum in 1872. The eye consists of an obsidian disk inserted in a white shell ring. The figure may have been transported to the Chinca Islands from Easter Island by Peruvian slave traders or may made its way to South America in pre-European times (Heyerdahl, 1975:45-46, 288, Plate 111). See figure 22 for a closeup view of the eye. .. 115

18. **O - Yurok waisted obsidian wealth blade.** This large red obsidian wealth blade, a little over 10 inches in length, displays the waisted shape common in these artifacts. These obsidian blades were considered valuable wealth and ceremonial items among several groups living along the northwest coast of California. Similar blades and their role are described by Kroeber (1905 and 1925), Rust (1905), and Gould (1966). Trace element studies by Richard Hughes of large obsidian blades from California and Oregon sites have placed their geologic origins at several locations in northern California and southern Oregon (Hughes, 1978 and 1990). The original photograph is from Kroeber, 1925:Plate 2). .. 119

19. **PQ - Big Obsidian Flow, Newberry Caldera, Oregon.** The 1350 year-old obsidian flow as seen from the summit of Paulina Peak, Newberry Volcano, Oregon. See figure 11 for an aerial stereo view. .. 124

20. **R - Obsidian hydration rim photomicrograph.** Hydration rim from an obsidian biface recovered from one of the Connley Caves in Oregon's Fort Rock Lake Basin. The deposit where the artifact was found lay under a 7,000 year-old tephra horizon that originated from Mount Mazama (Crater Lake). The hydration rim defined by the arrows is approximately six microns thick. .. 129

21. **S - Aerial stereo pair of Cougar Mountain, Fort Rock Basin, Oregon.** This rhyolite and obsidian dome was a major source of glass for the prehistoric inhabitants of Oregon's Fort Rock Lake Basin. Caves and shelters cut by the wave action of the former Pluvial Fort Rock Lake were occupied throughout much of the Holocene (Bedwell, 1973). The dark rocks on the northern (up) side of the mountain are very late Pleistocene basalt flows whose eruption may have been witnessed by the occupants of these caves. .. 135
22. **T - Obsidian eye set in a shell ring.** See the figure 17 explanation for details. .. 153

23. **U - Obsidian Clovis point.** A slice from this and several other early style Nevada points was removed for slide preparation and hydration rim measurements by Tuohy (1984). The apparent antiquity of the early point styles was confirmed in many cases by the resultant large rim widths. .. 159

24. **V - Mesoamerican polyhedral core.** Pictured in Don Crabtree's 1972 classic, *An Introduction to Flintworking*, this type of core has been found in numerous Mesoamerican sites. Replication studies of similar polyhedral cores are described by Crabtree (1968). .. 160

25. **W - Pressure flaking tool.** This Mesoamerican tool, illustrated and described by Fletcher (1970), was used to remove prismatic blades from obsidian cores. .. 162

26. **XYZ - Obsidian hydration variables.** Major variables affecting the formation of obsidian hydration rims (Skinner, 1983:45). .. 171

27. **Back Cover - Digital elevation model (DEM) of the Newberry Volcano region, central Oregon.** This area is one of the most obsidian-rich in the world. Trace element studies of artifacts from this region show a dramatic shift in obsidian procurement during the mid-Holocene to newly-erupted sources of glass within the summit caldera of Newberry Volcano.
Introduction

Over the past three decades, obsidian studies have begun to draw increased attention in archaeological (and geological) circles throughout the world. Although the importance as a prehistoric raw material had long been recognized and the identification of the geologic sources of archaeological obsidian had been rather haphazardly used since early in the century to infer the existence of prehistoric exchange systems, the analytical techniques needed to reliably solve these problems were not applied to archaeological obsidian until the early 1960's. With the introduction of systematic obsidian trace element studies in the important papers of Cann and Renfrew and their associates (Cann and Ranfrew, 1964; Cann et al., 1970; Renfrew et al., 1966, and Renfrew et al., 1968, to list a few), the science of obsidian characterization entered its current modern era. Only a few years previously, Irving Friedman and his co-workers had introduced the obsidian hydration dating method to the archaeological community (Friedman and Smith, 1958; Friedman and Smith, 1960). When obsidian characterization and obsidian hydration techniques were combined, it became possible, at least in theory, to track the use of obsidian through time as well as space. The modern era of obsidian studies with all its attendant promises, pitfalls, and problems had begun.

Obsidian hydration dating, although presenting more methodological hazards than was initially anticipated, still holds considerable promise in the direct dating of archaeological and geological materials. Obsidian characterization (sourcing) research, just now moving out of its adolescence, shows great potential in the identification of prehistoric direct and indirect (exchange) procurement systems and procurement behavior. Additionally, the increasingly accessible trace element characterization studies have begun to be used to investigate other sociocultural factors such as ethnic boundaries, social stratification, and the existence of intergroup alliances. In thirty years, obsidian characterization and hydration studies in archaeological research have gone from the exotic to the commonplace. In many places, obsidian studies are now considered a routine and essential component of any well-developed archaeological research design.

Despite the promising beginnings of the 1960's through the 1990's, a great deal of geological and archaeological research remains to be done. Geologic sources of natural glasses, now known to be more widespread than was initially supposed, are still only very incompletely investigated. Archaeologists, lacking geologic training and being anxious to extract archaeological information from the obsidian data, have paid only spotty attention to the critical topics of obsidian source descriptions and processes responsible for the secondary areal distribution of the glass. Geologists, on the other hand, have focused on obsidian for its petrologic value and have rarely been interested in data which would be of specific interest to archaeological researchers.

Although interest in obsidian studies has rapidly grown, access to the widely-scattered literature has remained problematic. The literature related to obsidian research, particularly that related to contract archaeological research, is widely scattered and often buried deep in the gray zone of unpublished and limited-circulation reports. Under the auspices of the
International Association for Obsidian Studies, this bibliography was compiled to help address these problems of limited and difficult access to the literature.

Scope of the Bibliography

This obsidian bibliography is meant to be relatively comprehensive and represents an extensive sampling of the available literature. We have primarily limited our search to published materials, a liberal sampling of government agency and contract reports, Master's theses, and Ph.D. dissertations. These references were concerned with:

1. Obsidian hydration dating
2. Obsidian characterization ("sourcing") research
3. Lithic technology and obsidian
4. Ethnographic data concerning the procurement and utilization of obsidian
5. Geological, petrographic, or petrological studies involving obsidian
6. Physical chemistry of glass reactions
7. Geologic descriptions (however brief) of obsidian sources

To a much lesser degree, references were also included for some of the non-obsidian natural glasses (pitchstone, tektites, Libyan Desert Glass, and combustion or contact metamorphism glasses). The overall literature coverage is admittedly biased towards the Far Western United States, particularly when it comes to the "gray" literature that is endemic in archaeology.

Although most of the literature that we examined was in English, we have included numerous non-English references (with translated titles whenever possible). Our apologies in advance for misspellings and fractured grammar in the latter references. A small percentage of the references were also included in the bibliography without review because of their apparent relationship to obsidian. We hope to eventually review most of these for further versions of the bibliography.

Development of the Current Bibliography and On-Disk IBM PC Bibliography

The references compiled in this bibliography have been collected over the last thirteen years from a wide variety of sources.

The core of the bibliography was initially compiled primarily from conventional sources (Anthropological Abstracts, Dissertation Abstracts, Chemical Abstracts, and the Bibliography and Index of Geology) as part of the authors' graduate research (Skinner, 1983; Tremaine, 1989). In 1990, we merged these two bibliographies with those of Janet Scalise (Meighan and Scalise, 1989) and released the result as a searchable on-disk bibliography for the IBM PC. Since then, the bibliography has gone through several revisions, growing in size from about 1,500 citations to over 3,000 in the current version. The most current version of the on-disk bibliography is available through the International Association for Association Studies and is included at no charge to purchasers of the paper
bibliography see the insert following the reference list). Version 1.55 of the on-disk bibliography is identical to the printed version compiled here.

Thanks to now widely-available CD-ROM databases, we've been able to recently locate many new obsidian-related citations. The GeoRef and Dissertation Abstracts databases proved particularly useful. References located only on the GeoRef and National Technical Information Services databases are designated in the bibliography, respectively, by [GEOREF] and [NTIS]. Papers listed in the NTIS database may be ordered from the National Technical Information Service. Many of the items cited in the Dissertation Abstract, NTIS, and GEOREF databases also include geographic keywords and abstracts. Consult the database of your choice for more information.

Several online library catalog systems, most of them in the U.S., were also searched remotely via the Internet system. The most productive of these computerized catalog searches was the University of California MELVYL system. References located only on MELVYL are followed with [MELVYL]. The University of Bradford, England [Bradford], was also an important source of European graduate theses and dissertations.

Internet Availability of the On-Disk Obsidian Bibliography

The on-disk version of the obsidian bibliography has been posted in a number of Internet-accessible locations. If you have access to the Internet system and are located at a site with FTP (file transfer protocol) capabilities, you can download a copy of the latest bibliography from several Internet Anonymous FTP sites. These sites include:

- oak.oakland.edu SimTel Software Repository primary mirror site
 (/pub/msdos/hypertext)
- grv.dsir.govt.nz Society for Archaeological Sciences File Depot (/SAS)

The bibliography is also available at SimTel secondary mirror sites wuarchive.wustl.edu, archive.orst.edu, ftp.uu.net, ftp.funet.fi, src.doc.ic.ac.uk, ftp.switch.ch, archie.au, NCTUCCCA.edu.tw, ftp.technion.ac.il, by Gopher from Gopher.Oakland.Edu, or by e-mail through the BITNET/EARN file servers. Other Anonymous FTP sites holding the bibliography can be located using the Archie database of Anonymous FTP files developed at McGill University. To interactively access Archie, telnet to an Archie server and enter Archie at the login prompt to log on to the system. Type help for additional and quit to leave. Archie servers include: archie.ans.net, achie.rutgers.edu, archie.sura.net, archie.uni.edu, archie.mcgill.ca, archie.funet.fi, archie.au, and archie.doc.ic.ac.uk.

Craig E. Skinner
Kim J. Tremaine
November, 1993
Obsidian:
An Interdisciplinary Bibliography
Obsidian: An Interdisciplinary Bibliography

Bracketed comments [] following some entries contain additional information concerning the reference:

[Language] Language of article if not English (if known)
[BRADFORD] Found in the University of Bradford, England, online database
[GEOREF] Found in GeoRef database
[MELVYL] Found in University of California MELVYL online database
[NTIS] Found in National Technical Information Service database

A

International Association for Obsidian Studies

Avila-Salinas, Waldo. 1975. Elementos Trazzas de Algunas Obsidianas, Bolivianas. Centro de Investigaciones Arqueologicas, Publicacion No. 4: La Paz, Bolivia, 16 pp. [MELVYL]

International Association for Obsidian Studies

International Association for Obsidian Studies

Barsanov, G.P., M.Y. Yakovleva, and L.I. Potapova. 1980. 0 pestrom obsidiane Dzhraber-Fontanskogo mestorozheniya (Armyanskaya SSR) [Variegated obsidian from the Dzhraber-Fontanska Deposit: Armenian SSR], in Dragotsennyye i tsvetnyye kamni [Gems and precious stones], edited by V.P. Petrov. Izd. Nauka: Moscow, Russia, pp. 60-75. [GEOREF]

Basgall, Mark E. 1993. Chronological Sequences in the Southern California Coast Ranges, California, in There Grows a Green Tree, edited by Greg White, Pat Mikkelsen, William R. Hildebrandt, and Mark E. Basgall. University of California, Department of Anthropology, Center for Archaeological Research at Davis Publication No. 11: Davis, California, pp. 167-195

International Association for Obsidian Studies

International Association for Obsidian Studies

Bonifaz, Emilio. Unknown Date. Datacion por hidratacion de la obsidiana [Geochronology from obsidian hydration]. *Revista Geografica,* 25:131-141. [Spanish] [GEOREF]

Bouscaren, S., M.C. Hall, and J.D. Swenson. 1982. Archaeological Test Excavations at Four Sites (CA-Mno-11, Mno-823, Mno-1644, Mno 1645) Near Mammoth Creek, Mono County, California. Report prepared for the Inyo National Forest, Bishop, California, by the Archaeological Research Unit, University of California, Riverside, California. [Summary appears in Nilsson and Finney, 1982:24-25]

21

22

Chace, Paul G. 1967. First Obsidian Hydration Dates for Orange County, California. Smoke Signals, 6(9):5.

Cocchi, Genick D. and F. SaiD.IDartino. 1983. L'ossidiana utilizzata nelle industrie preistoriche del livornese [Obsidian utilized in Livorno prehistoric industry, Tuscany, Italy]. *Quaderni del Museo di Storia Naturale di Livorno*, 4:151-161. [Italian] [GEOREF]

Doe, Bruce R., Donald E. White, and Carl E. Hedge. 1963. Preliminary Isotopic Data for Brine and Obsidian Near Niland, California. Mining Engineering, 11:60. [GEOREF]

International Association for Obsidian Studies

Dougherty, John W. 1991. Obsidian Consumption and Obsidian Hydration at the King-Brown Site, CA-SAC-29. *International Association for Obsidian Studies Newsletter*, 4:4-5.

Dreiss, Meredith L. 1988. Obsidian at Colha, Belize: A Technological Analysis and Distributional Study Based on Trace Element Analysis, in *Papers of the Colha Project, Volume 4*. Texas Archaeological Research Laboratory and Center for Archaeological Research, University of Texas: Austin and San Antonio, Texas.

38

Ercan, Tuncay, Talat Yildirim, and Adem Akbasli. 1987. Gelveri (Nigde) - Kizilcin (Nevsehir) arasindaki volcanizmanin ozellikleri [Characteristic features of the volcanism between Gelveri (Nigde) and Kizilcin (Nevsehir)]. *Geomorphology Bulletin*, 15:27-36. [Turkish] [GEOREF]

International Association for Obsidian Studies

43

49

Friedman M., J. Handin, N.G. Higgs, and J.R. Lantz. 1979. **Strength and Ductility of Four Dry Igneous Rocks at Low Pressures and Temperatures to Partial Melting.** Report prepared for the U. S. Department of Energy, Washington, D.C., by Texas A and M University, College Station, Texas, 16 pp. [NTIS]

Gaxiola, Margarita and John E. Clark, editors. 1981. *La Obsidiana en Mesoamerica*. Instituto Nacional de Antropologia e Historia, Mexico. [MELVYL] [See Clark et al., 1981 for abstracts]

Glasscock, Michael. 1991. The Obsidian Databank at MURR. International Association for Obsidian Studies Newsletter, 4:3.

Golubkov, V.V., I.M. Marsiy, V.V. Nasedkin, and N.I. Organova. 1981. Malouglovoye rasseyaniye rentgenovskikh luchey na obsidianakh [Low-angle x-ray scattering on obsidians], in Perlity [Perlite], edited by V.V. Nasedkin and V.P. Petrov. Izd. Nauka: Moscow, Russia, pp. 201-207. [Russian; English abstract in Chemical Abstracts, 95:136097f] [GEOREF]

International Association for Obsidian Studies

H

International Association for Obsidian Studies

International Association for Obsidian Studies

Hjelmqvist, Sven. 1951. *Resa till Lipariska oearna.* *Geol. Foeren. Stockholm, Foerh. bd. 73, h. 3,* 466:473-491. [English summary] [GEOREF].

Karapetyan, S.G. 1967. Unikal'nyye raznovidnosti obsidiana [Unique varieties of obsidian]. Priroda, 6:111. [Russian] [GEOREF]

Karapetyan, S.G. 1975. Usloviya obrazovaniya hitoidnykh pemz na mestorozhdeniyakh kislykh vulkanicheskikh stekol Armyanskoj SSR [Conditions for the formation of lithoidal pumice in acidic volcanic glass deposits of Armenia], in Produkty vulkanizma kak poleznye iskopayemye, edited by V.P. Petrov and V.V. Nasedkin. Izd. Nauka: Moscow, Russia, pp. 38-54. [Russian] [GEOREF]

International Association for Obsidian Studies

Kashkay, M.A. and A.I. Mamedov. 1969. *Issledovaniye letuchey fazy v vulkanicheskikh steklakh* [Investigation of volatile phase of volcanic glasses], in *Zakonomernosti formirovaniya i razmeshcheniya mestorozhdeniy vulkanicheskogo stekla: yego svoystva i primeneniye*. Izd. Nauka: Moscow, Russia, pp. 119-122. [Russian] [GEOREF]

Keintzel, E. 1983. Aus dem Steinreich der Pharaonen [The domain of the stones of Pharaohs]. *Der Aufschluss*, 34(3):139-144. [German] [GEOREF]

International Association for Obsidian Studies

Labedeva, L.I. 1977. On High Concentration of Rare Alkali Metals in Perlites of the Nachikinsk Deposit (Kamchatka). Geochemistry International, 13(6):82-84. [GEOREF]

International Association for Obsidian Studies

Lanford, W.A. 1978.
15N Hydrogen Profiling: Scientific Applications.

International Association for Obsidian Studies

92

International Association for Obsidian Studies

Machida, Hiroshi, Masao Suzuki, and Akiko Miyazaki. 1971. Chronology of the Prehistoric Age in South Kwanto; With Special Reference to Tephrochronology, Radiocarbon Dating and Obsidian Dating. *Quaternary Research (Japanese Association for Quaternary Research)*, 10(4):290-316. [Japanese with English summary] [GEOREF]

Maleyev, Y.F., B.A. Eiman, and A.V. Kurkin. 1969. *Kratkaya geologicheskaya i tekhnologicheskaya kharakteristika Nachikinskogo mestorozhdeniya perlita* [A brief geological and technological description of the Nachika perlite deposit], in *Zabonomernosti formirovaniya i razmeshcheniya mestorozhdeniya vulkanicheskogo stekla; yego svoystva i primenenie*. Izd. Nauka: Moscow, Russia, pp. 106-109. [Russian] [GEOREF]

International Association for Obsidian Studies

Matias, V.V., V.V. Nasedkin, N.V. Petrova, N.J. Borisova, and N.S. Mikhailylova. 1975. O kharaktere vody i gidroksila v kislykh vodosoderzhashchikh steklakh Vostochnoy Sibiri [Water properties and hydroxyls in acidic water-containing glasses of eastern Siberia], in Produkty vulkanizma kak poleznyye iskopayemyye, edited by V.P. Petrov and V.V. Nasedkin. Izd. Nauka: Moscow, Russia, pp. 96-104. [Russian] [GEOREF]

103

Mena, Ramon. 1912. *El Trabajo de la Obsidiana en Mexico*. Ejemplares de la Coleccion Arqueologica de la Sociedad de Geografia y Estadistica. [MELVYL]

Michel, Robert. 1952. Sur la genese des peperites de Limagne. *Soc. Geol. France*, C. Rno. 5-6, pp. 82-84. [GEOREF]

Mikayelyan, A.T. 1975. Kharacteristikia obsidianov i perlitov nekotorykh mestorozhdeniy Armanyanskoy SSR, ispol'zuyemykh v kasheste syr'ya dlya keramichesxy promyshlennosti [The characteristics of obsidian and perlite in deposits of Armenia, their utilization as raw materials in the ceramic industry], in *Produkty vulkanizma kak poleznyye iskopayemyye,* edited by V.P. Petro and V.V. Izd Nauka: Moscow, Russia, pp. 86-95. [Russian] [GEOREF]

International Association for Obsidian Studies

Mohlova, N.I. 1969.особенности технологии вспучивания вулканических пород месторождений Ташкесен и Кок-Теп в Средней Азии [Technology of expansion of volcanic rocks from the Tashkesen and Kok-Tep deposits, Central Asia], in *Zakonomennosti formirovaniya i razmeshcheniya mestorozhdeniya vulkanicheskogo stekla: yego svoystva i primeneniiye*. Izd. Nauka: Moscow, Russia, pp. 199-203. [Russian] [GEOREF]

Moratto, Michael J. 1973. Sam Alley: Excavations at 4-Lak-305 Near Upper Lake California. San Francisco Treganza Anthropology Museum Papers No. 11, California State University: San Francisco, California. [See Jackson, 1973]

Mosheim, E. and E. Althaus. 1986. Zur Herkunftsbestimmung archaeologischer Obsidianproben aus Mexico mit Hilfe chemischer und physikalischer Methoden [The obsidian provenance analysis in archaeological studies from Mexico using chemical and physical methods]. *Berliner Geowissenschaftliche Abhandlungen, Reihe A: Geologie und Palaeontologie, Sonderband*, p. 67. [German] [GEOREF]

Mosheim, E. and E. Althaus. 1988. Investigaciones quimicas y opticas de obsidianas geologicas y arqueologicas de Mexico [Chemical and optical studies of geologic and archaeological obsidian samples of Mexico]. *Geofisica Internacional*, 27(4):605-640. [Spanish with English abstract] [GEOREF]

N

Nasedkin, V.V. 1969. Usloviya obrazovaniya i priroda promyshlennykh svoystv vulkanicheskikh stekel [Conditions of formation and commercially significant characteristics of volcanic glass], in *Problemy geologii mineral'nykh mestorozhdeni, petrologii i mineralogii: tom I, Problemy genezisa i lokalizatsii mineral'nykh mestorozhdeni*. Izd. Nauka: Moscow, Russia, pp. 247-256. [Russian] [GEOREF]

Nasedkin, V.V. 1975. Vodosoderzhashchiye vulkanicheskixe stekla [Hydrated volcanic glass], in *Novyye vidy nemetallicheskih poleznynkh*, edited by V.P. Petrov, S.S. Checkin, and A.I. Krinari. Izd. Nauka: Moscow, Russia, pp. 183-204. [Russian] [GEOREF]

Nasedkin, V.V. 1980. Proyavleniya agata i podelochnogo obsidiana Magadanskoj oblasti [The development of agate and ornamental obsidian in Magadan Oblast], in *Dрагоценные и цветные камни [Gems and precious stones]*, edited by V.P. Petrov. Izd. Nauka: Moscow, Russia, pp. 240-247. [Russian] [GEOREF]
Nasedkin, V.V. 1983. Acidic volcanism and hydrated glasses of the Northeastern USSR. Izd. Nauka: Moscow, Russia, 104 pp. [Russian] [MELVYL] [GEOREF]

Nasedkin, V.V., T.A. Ziborova, O.N. Korotkova, Y.A. Sanina, and Y.S. Genshaft. 1969. Issledovaniye stroyeniya i fizicheskikh svoystv stekloobraznykh porod [Investigation of the structure and physical properties of glassy rocks], in Zakonomernosti formirovaniya i razmeshcheniya mestorozhdeniy vulkanicheskogo stekla; yego svoystva i primeneniye. Izd. Nauka: Moscow, Russia, pp. 122-133. [Russian] [GEOREF]

International Association for Obsidian Studies

Onken, Jill. 1992. The Effect of Microenvironmental Temperature Variation on the Hydration of Late Holocene Mono Craters Volcanic Ashes from East-Central California (Abstract). International Association for Obsidian Studies Newsletter, 6:1. [Abstract from an unpublished Master’s pre-publication manuscript, Department of Geosciences, University of Arizona]

PQ

Rath, Gerhard von. 1875. Beitraege zur Petrographie; Der Andesit von Toluca in Mexico; Der Obsidian-aehnliche Andesit von Conejos am Rio Grande del Norte, Colorado [Notes on petrography; the andesite from Toluca, Mexico; the obsidian-like andesite from Conejos on the northern Rio Grande, Colorado]. *Dtsch. Geol. Ges.*, Z., 27:325-328. [German] [GEOREF]

Rozenkrants, A.A. 1981. Kharakteristika Alneyskogo mestorozhdeniya perlitov i obsidianov na Kamchatke [Characteristics of the Alneysk deposits of perlite and obsidian on Kamchatka], in Perlity [Perlites], edited by V.V. Nasedkin and V.P. Petrov. Izd. Nauka: Moscow, Russia, pp. 123-127. [Russian] [GEOREF]

International Association for Obsidian Studies

Sagatelyan, K.M. 1969. Geologo-petrograficheskiye i promyshlennyye osobennosti perlitov, obsidianov i liparitov Aragatsskogo mestorozhdenyi [Geological petrographic and industrial characteristics of obsidians and liparites from the Aragats deposit], in Zakonomernosti formirovaniya i razmeshcheniya mestorozhdeniy vulkanicheskogo stekla; yego svoystva i primeneniye. Izd. Nauka: Moscow, Russia, pp. 73-80. [Russian] [GEOREF]

International Association for Obsidian Studies

Shevkhuik, V.D. 1981. Geneticheskiye tipy mestorozdeniy kislykh vulkanicheskikh stekol na Kamchatke [Genetic types of deposits of acid volcanic glass in Kamchatka], in Perlity [Perlites], edited by V.V. Nasedkin and V.P. Petrov. Izd. Nauk: Moscow, Russia, pp. 43-51. [Russian] [GEOREF]

Shima, Makota. 1967. Fission Track and Alpha-Particle Recoil Track Dating. *Quaternary Research (Japanese Association for Quaternary Research)*, 6(4):134-140. [Japanese with English Summary] [GEOREF]

International Association for Obsidian Studies

Tanzer, M.O. and J.D. MacDougall. 1984. 209Th-208U Disequilibrium Systematics from Long Valley and Mono Domes, California: Evidence for Magma Replenishment Since 0.1 m.y. Ago (Abstract). *EOS*, 65(45):1128.

Thomassin, J.H. and J.T. Iiyama. 1988. Etude experimentale des stades precoces de l'alteration hydrothermale de materiaux vitreux; cas d'une obsidienne (300 degrees C-100 MPa) [Experimental study of early stages of hydrothermal alteration of vitreous material; case of an obsidian, 300 degrees C-100 MPa]. *Bulletin de Mineralogie*, 111(6):633-647. [French] [GEOREF]

Tonkova, E.A., V.V. Nasedkin, B.P. Belikov, and V.A. Buzdin. 1975. Izmeneniye skorostey rasprostraneniya uprugikh voln v kislykh prirodnikh steklakh pod vliyaniem gidrostaticheskogo davleniya do 10 kbar [The change in velocity of elastic waves in acidic natural glasses by the effects of hydrostatic pressures up to 10 kb], in Produkty vulkanizma kak poleznye iskopayemyye, edited by V.P. Petrov and V.V. Nasedkin. Izd. Nauka: Moscow, Russia, pp. 105-114. [Russian] [GEOREF]

International Association for Obsidian Studies

Tremaine, Kim, Thomas Origer, and David A. Fredrickson. 1988. CA-YOL-139: An Archaeological Site on Davis Creek, Near Knoxville, Yolo County, California. Report prepared for Homestake Mining Co. by Cultural Resources Facility, Anthropological Studies Center, Sonoma State University: Rohnert Park, California.

International Association for Obsidian Studies

V

Varuzhanyam, A.A. 1969. Issledovaniye vyazkosti kislykh vulkanicheskikh vodosoderzhashchikh stekol v intervale temperatur razmyagcheniya pod davleniyem vodyannykh parov [Investigation of viscosity of acidic volcanic water-bearing glasses in the softening temperature interval and under the pressure of water steam], in *Zakonomernosti formirovaniya i razmeshcheniya mestorozhdeniy vulkanicheskogo stekla; yego svoystva i primeneniy*, Izd. Nauka: Moscow, Russia, pp. 160-169. [Russian] [GEOREF]

Voliianiuk, Nikolai IAkovlevich. 1972. Vulkanicheskie stekla mukhor-raly i sviazannye s nimi sharovye obrazovaniia (K voprosy likvatsii v kislykh lavakh). Moskva, Nauka. [MELVYL]

W

International Association for Obsidian Studies

169

International Association for Obsidian Studies

Yavits, I.N. 1969. O nekotorykh issledovaniyakh v oblasti fiziko-khimii vulkanicheskikh vodosoderzhashchikh stekol [Some physicochemical investigations of volcanic water-bearing glasses], in Zakonomernosti formirovaniya i razmeshcheniya mestorozhdeniy vulkanicheskogo stekla: yego svoystva i primeneniye. Izd. Nauka: Moscow, Russia, pp. 176-177. [Russian] [GEOREF]

172

Ziborova, T.A. 1981. Sostoyaniye vody i gidroksila v prirodnykh steklakh po dannym IKh-spektroskopii [The state of water and hydroxyls in natural glasses according to infrared spectroscopy data], in *Perlity [Perlites]*, edited by V.V. Nasedkin and V.P. Petrov. Izd. Nauka: Moscow, Russia, pp. 177-187. [Russian] [GEOREF]

