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The Glass Buttes complex lies at the northern margin of the
Basin and Range province in central Oregon and is cut by the
northwest-trending Brothers fault zome. An older acrystalline
volcanic sequence of high-silica rhyolites (>75% SiUZ) forms a
broad platform composed of domes and flows with minor pyroclastic
deposits. The high-silica rhyolite sequence is divided on the

basis of texture into 1) zoned flows and domes, 2) obsidian flouws,

3) felsite flows, and 4) biotite-phyric flows and domes.



Stratigraphic relations indicate that high-silica rhyolite units
in the western part of the complex overlie those to the east.
K/Ar age determinations for the sequence range from 5.03 to 7.7
million years. Gecchemical trends within the sequence are
characteristic of highly evolved magmas. The majority of the
elements analyzed within the Glass Buttes high-silica rhyolite
sequence fall into two groups that display similar behavior: 1)
Sc, Rb, Cs, Sm, Tb, Yb, Lu, Ta, Th, U, and 2) Mg, Ca, Ti, Fe, Co,
Ba, La, Ce, Nd, Eu, and P. Elements within each group generally
show positive correlations with each other, but negative
correlations with elements of the other group. The variations
between the two groups reflects the chemical stratification
present within the high-silica rhyolite magma chamber prior to the
eruption of the sequence. The presence of biotite phenocrysts
within the sequence may indicate that the high-silica rhyolites
were erupted from a relatively shallow magma chamber.

The vent locations of a younger volcanic sequence of
rhyolites and rhyodacites are strongly controlled by structure.
Vents are aligned along the trend of the Brothers fault zone. The
petrology and geochemistry of the seguence indicate that it is not
genetically related to the high-silica rhyolite sequence of
volcanism. The rocks are phyric and contain various proportions
of plagioclase (andesine-labradorite), hornblende, gquartz,
biotite, and ortho- and clinopyroxene phenocrysts. Phenocrysts
range up to 40% of the rock volume. There are large variations in

the concentrations of fe, Mg, Ca, Ti, Sc, Co, Cr, and Eu among the



different rhyolite and rhyodacite flows, indicating that the
different flows represent distinct, but genetically related magma
batches.

Basaltic volcanism occurred thoughout the silicic eruptive
sequence. Several of the basalt flows erupted within the Glass
Buttes complex show petrographic and geochemical evidence of
contamination by rocks of the high-silica rhyolite seguence. The
intrusion of basaltic magma into the crust is believed to have
provided the heat source for the partial melting of crustal

materials, leading to the generation of the silicic magmas.
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CHAPTER I

INTRODUCTION

The various associations of rock types observed in volcanic
terranes often reflect regional tectonism (Atwater, 13970; Stewart
and others, 19753 Bacon, 1982, 1985, 1986). The bimodal basalt-
rhyclite association is indicative of an area which is
experiencing regional crustal extension. The rhyolitic magma is
generated by the partial melting of crustal material by basaltic
magmas which travel to the surface along regional structures
(Hildreth, 1981; Bacon and others, 1981; Barker, 1881; Hill and
Bailey, 1985).

The High Lava Plains physiographic province of central and
southeast Oregon exemplifies the bimodal basalt-rhyolite
association. Crustal extension, which dominates the Basin and
Range province to the south, is essentially terminated within the
High Lava Plains by the northuest-trending Brothers fault zone
(Lawrence, 19768). Basalt flows and associated vent depaosits
predominate, but rhyolitic domes and ash-flow tuffs are abundant
(MacLeod and others, 1976). The rhyolitic domes are aligned along
a west-northwest trend, subparallel to the Brothers fault zone.

Glass Buttes (Figure 1), a rhyolitic center astride the

Brothers fault zone, exhibits a variety of volcanic rock types.

The location of the complex at the northern margin of the Basin
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Figure 1. Location of the Glass Buttes complex (modified
from Baldwin, 1982).



and Range province provides an opportunity to examine volcanic
processes along this margin. This study will 1) characterize the
stratigraphy, geochemistry, and petrography of the complex,

2) interpret the evolution of the complex and the implications for
silicic volcanism in the High Lava Plains, and 3) examine the
implications of the petrography and geochemistry for tectonic

processes in this region.,
SCOPE AND METHODS

This study represents the fourth phase of an ongoing study
which was initiated in 1980 under the direction of Michael L.
Cummings, Portland State University. The scope of the thesis
and methods used include:

1) Geologic mapping of the Glass Butte 7 1/2 minute
guadrangle. This information was added to a previously existing
data base (Berri, 1982; Johnson, 1984a, 1984b; Cummings, 1984) in
order to compile a geologic map of the entire Glass Buttes complex
(Plate I). Mapping was conducted from August through September,
1985 by the author and M. L. Cummings.

2) Chemical and petrographic characterization of the various
stratigraphic units within the Glass Buttes complex. Most of the
samples were collected from the Glass Butte quadrangle, but
several were collected from the Potato Lake, Tired Horse Butte,
and Round Top Butte 7 1/2 minute quadrangles. Major element
geochemical analysis of twenty samples by x-ray fluorescence (XRF)

was performed under the direction of Or. Peter Hooper at



4
Washington State University. Trace and rare earth element (REE)
analysis of sixty-two samples by instrumental neutron activation
analysis (INAA), and the petrographic study of thin sections were
completed by the author at Portland State University. Oxygen
isotope analysis of eight rock samples using chlorine trifluoride
was completed at the U. S. Geological Survey isotope laboratory
under the direction of Dr. Ivan Barnes.

3) Integration of chemical and stratigraphic data collected
during this study with data previously reported by Berri (1982),
Johnson (1984a), and Cummings (1984). A petrogenetic model for
the Glass Buttes complex is based on the interpretation of this
data.

4) Interpretation of the tectonic implications of the
petrogenetic model with respect to the relationship between

regional structural patterns and bimodal volcanism,
GEOLOGIC SETTING

The High Lava Plains province of southeastern Oregon, as
defined by Dicken (1950), consists of a middle and upper Cenozoic
volcanic upland nearly 260 km long extending from the Harney Basin
on the east, westward to Newberry Volcano (see Figure 2). The
province 1is contiguous with and gradational into the Basin and
Range province to the south, and late Cenozoic volcanic rocks and
fault structures are common to both provinces. A comparatively
sharp boundary separates the High Lava Plains from the Blue

Mountains province to the north, where older Cenozoic and pre-



Cenozoic rocks have been brought to the surface in the Blue
Mountains-Ochoco Mountains uplift (Walker and Nolf, 1981).

Reconnaissance mapping of the High Lava Plains, completed by
Greene and others (1972), and Walker and others (1967), revealed
that the oldest rocks in the province consist of small
outcroppings of older Cenozolic volcanic and tuffaceous sedimentary
rocks representing parts of the Columbia River Basalt Group and
the John Day and Clarno Formations (Walker, 1974). Other than
these minor outcrops, the oldest rocks within the province are
aphyric and plagioclase phyric basalts and minor andesite flows of
middle Miocene age. These flows, referred to as Steens Basalt,
were erupted from dike swarms such as those present on the east
side of the Steens Mountains. Outcroppings of these flows are
exposed at the eastern end of the High Lava Plains province
(Walker and Nolf, 1981).

The silicic centers of southeast Oregon occur principally in
two broad belts that trend approximately N.75°-80°W. (MacLeod and
others, 1876). The northern belt, located in the High Lava Plains
and Owyhee Uplands provinces, consists of approximately 100
centers and extends from Newberry Volcano eastward to Duck Butte,
southeast of the Harnmey Basin. The southern belt lies in the
Basin and Range province, extending from Yamsey Mountain eastuward
to Beatys Butte (see Figure 2). UWalker (1974) presented 47
potassium-argon radiometric age determinmations for crystalline
phases from rhyolitic, rhyodacitic, and dacitic domes and

assaciated flows which were sampled during reconnaissance mapping.



The dates define a monotonic age progression along the silicic
belts from less than one million years in the west to about ten
million years in the east (Figure 2) (Walker, 19743 Macleod and
others, 1976; Macleod and Sammel, 1982).

Rhyolitic ash-flow tuffs partly cover the Steens Basalt and
silicic domes and flows in the eastern portion of the High Lava
Plains, There are three major ash-flow tuffs present, ranging in
age from approximately 9 to 6.4 million years old (Walker, 1974).
The ash-flow tuffs are interpreted to have originated from the Harney
Basin (Walker and Nolf, 1981). In the western part of the High
Lava Plains, plateau basalts of late Pliocene, Pleistocene, and
Holocene age cover most of the middle and upper Cenozoic basalt
flous, ash-flow tuffs, silicic domes and flows, and sedimentary
rocks.

The volcanic rocks of the High Lava Plains are displaced by
numerous en echelon high-angle normal faults of the Brothers fault
zone. This zone trends N.60°W. and extends from the Mount
Jefferson area southeastward where it is cut by the north-south-
trending fault which bounds the Steens and Pueblo Mountains block
on the east (Stewart and others, 1975). The Brothers fault zane
is interpreted to be the surface expression of a deep-seated
right-lateral strike-slip fault (Lawrence, 1976). The
distribution of silicic domes and flows in the High Lava Plains
province nearly parallels the Brothers fault zome. Lawrence
(1976) suggested that the Brothers fault zone and the subparallel

Eugene-Denio, Mt. McLoughlin, and Vale fault zones are surface
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expressions of the transition between the tectonic patterns of the
Basin and Range province to the south and the Blue Mountains
province to the north. Chaplet and others (1986/87) used MSS-
Landsat images and paleomagnetism data to model the structural
evolution of central and eastern Oregon. The model proposes that
a scissors mechanism induced by the subduction of the Farallon
plate caused the extension between the Cascade Range and the
Olympic-Wallowa lineament during the late ELocene through Recent
times. The pole of rotation for the scissors mechanism
progressively migrated northwestwards along the Olympic-Wallowa
lineament, a paleoplate boundary during pre-Eocere times. Right-
lateral strike-slip faults, initially trending east-west,
progressively turned N.W.-S.E. due to the basin opening. The
migration of the volcanism from east to west within the High Lava
Plains province and the clockwise rotation of the Coast Range-
Klamath Mountains-Cascade Range block are thought to be results of
the spreading basin. North-south-trending faults of the Basin and
Range province, an expression of east-west extension, are
interpreted by Chaplet and others (1886/87) as being younger than
the N.W.-S.E. trending faults.

The structure of the Glass Buttes complex was initially
interpreted by Waters (1827a, 1827b) as a faulted anticline. The
top of the anticlinal arch had been down-dropped to form a graben
that controls a longitudinal valley in the middle of the complex.
The rocks within the complex were thought to represent three

periods of volcanic activity. The oldest rocks are a series of



basalts consisting of ophitic and intergranular aggregates of
labradorite, augite, olivine, and magnetite., Stratigraphically
above the basalts is the Glass Buttes series (Waters, 1927a,
1927b), consisting of andesites, dacites, perlite, obsidian, and
vitrophyre. These rocks contain various proportions of augite,
hypersthene, quartz, and andesine phenocrysts. Waters suggested
that the older basalts and the Glass Buttes series correlated with
basaltic and acidic rocks exposed within the Steens Mountains to
the southeast. The youngest rocks in the complex are a series of
basalts erupted from cinder cones located on the surrounding
plateau.

Johnson and Ciancanelli (1981, 1983) identified a large
andesite flow located on the northwest flank of Glass Butte
(Figure 3). The andesite was thought to represent eruptions from
the waning stages of siliciec volcanism.

The volcanic stratigraphy of Little Glass Butte and eastern
Glass Buttes (see Figure 4) was mapped and described by Berri
(1982). Included in this study was an investigation of the
hydrothermal alteration and mercury mineralization associated with
northuest-trending faults. The stratigraphic units were defined
as endogengus and exogenous domes and flows of rhyolitic
composition overlain by fine-grained plateau basalts.
Interfingering obsidian flows (77-78% Si0 ) and sparsely-phyric
rhyolite (74-75% Si0 ) were reported. Anzobsidian flow dated by
Walker (1974) at 4.9219.3 million years was interpreted to

represent the youngest volcanic unit in the study area. This date
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Figure 3. Flows in the middle distance to the left of
the valley were classified as andesite by Johnson and
Ciancanelli (1983). Photograph looking due west from the
top of Glass Butte.

was later recalculated using a new decay constant to 5.03 +0.75
million years (Fieblekorn and others, 1982). A coarsely
feldspathic basalt, which was erupted from vents within the
complex, also interfingers with rhyolitic rocks, suggesting
bimodal volcanism (Berri, 1982).

The stratigraphy of Round Top Butte, located in the
southeast portion of the complex (Figure 4), was described by
Cummings (1984) as a series of exogenous rhyolitic domes and flows
consisting of rhyolitic glass exhibiting varying degrees of
vesiculation, and a lesser amount of basalt which was erupted from
isolated vents within the butte. Cummings divided the rhyolite

sequence into several stages based on observed erosional
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unconformities. The youngest rhyolite erupted contains sparse
phenocrysts of black biotite.

The chemical and mineralogical characteristics of surface
and subsurface hydrothermal alteration within the easternmost
portion of the complex were investigated by Johnson (1984a).
Silicification and mercury mineralization occur in rhyolitic glass

along northuest-trending faults (Berri and others, 13983).

Figure 4. View of the central and eastern portions of the
Glass Buttes complex. This photograph, taken from the top
of Glass Butte, is looking to the east. The large peak to
the right of center of the photograph is Little Glass Butte.
In the middle distance, and, to the left of Little Glass
Butte, the white areas are the exploration pits and mines
within the mercury mineralized area at the eastern end of
the complex. In the middle distance to the right of Little
Glass Butte is a low rounded butte called Round Top Butte.



CHAPTER II
STRATIGRAPHY

Four stratigraphic sequences are identified within the Glass
Buttes complex. These include 1) high-silica rhyolites,
2) rhyolites and rhyodacites, 3) internal basalts, and 4) plateau
basalts (Table I). Pyroclastic units are a minor constituent of
the high-silica rhyolite sequence and volcaniclastic sediments
crop out locally. The study of the Glass Butte stratigraphy was
focused on 1) locating vent areas and describing their eruptive
products, and 2) the interpretation of the eruptive history of the

complex.
HIGH-SILICA RHYOLITE SEQUENCE

The high-silica rhyolite sequence contains units that
exhibit an overall glassy appearance, variable degrees of
vesiculation, and up to four cooling zones. The rocks of this
sequence are dominantly aphyric and acrystalline, but a minor
percentage of phenocrysts including biotite, plagioclase, and
quartz is present in some units. The largest volume of rocks
within the Glass Buttes complex belong to the high-silica rhyclite
sequence, which has a minimum thickness of 600 meters (Johnson,
1984a). The distribution of vents for the high-silica rhyolite

sequence lacks discernible structural control. Vent areas are
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identified based on 1) the geometry of flows and domes, 2) areas
of strongly folded, steeply-dipping flow banding, and 3) resistant
outcrops of felsite. The high-silica rhyolite sequence is divided
into 1) zoned flows and domes, 2) obsidian flows, 3) felsite
flows, and 4) biotite-phyric flows and domes. The obsidian flous,
felsite flows, and the biotite-phyric flows and domes locally

overlie the zoned flows and domes (Roche and Cummings, 1987b).

Zoned Flows and Domes

Erosion exposes four textural zones within many of the flow
and dome units. Zones include felsite core, obsidian, pumice, and
carapace breccia (Roche and Cummings, 1986). Zoned flouws
predominate in the Glass Butte and Little Glass Butte areas, while
domes dominate on Round Top Butte and eastern Glass Buttes. The
domes are differentiated from the flows by their radial
distribution from a central source. Four K/Ar age determinations
for zoned flows and domes range from 5.5 + 0.3 to 7.7 + 0.4
million years (Johnson, 1984a)

1) Felsite Zone: The felsite zone is characterized by

devitrified gray glass which shows weak to moderate vesiculation.
The vesicles are aligned parallel to moderate to strongly
developed flow banding. This flow banding occurs on the
millimeter to centimeter scale, and may be strongly folded.
Lithophysae, spherulitic zones, and perlitic fracturing occur

locally.

2) Obsidian Zone: Black, red, brouwn, mahogany, and colorless
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obsidian occur in the obsidian zone (Figure 5). Textures are
nonvesicular, ranging from massive uniform to strongly flow
banded. Obsidian breccia clasts in an obsidian matrix occur
locally. The thickness of the zone is estimated at one meter and
the contact with the underlying felsite zone is presumed to be
sharp. The presence of the obsidian zone is recognized by patches
of obsidian float which have an average diameter of SO

centimeters. The lateral continuity of the obsidian zone has not

been defined.

Figure 5. Various obsidian colors and textures (from Berri,
1982).

3) Pumice Zone: Coarsely vesicular pumice, commonly

perlitically fractured, occurs stratigraphically above the
obsidian zone. Weathered surfaces are tan and fresh surfaces are

light to dark gray. Vesicles, which generally compose more than
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50% of the volume of this rock, are ovoid to highly elongate and
range from less than one millimeter to a few centimeters in
diameter. Black, subrounded marekanite nodules ("apache
teardrops") are often present near the contact between this zone
and the underlying obsidian zone. Interlayered pumice and
obsidian bands mark the contact between the two zones. The pumice
zone, believed to be continuous across flow and dome units, has a
max imum exposed thickness of 2 meters.

4) Carapace Breccia Zone: Brecciated pumice zones associated

with flows and domes are most often poorly sorted, black to gray
to brown pumice clasts within an unaltered pumice matrix of gray
to brown color. The clasts are angular, ranging from pebble to
boulder size. The clast size and amount of cementation decreases
outward, with the outer-most portion believed to be non-cemented
pumice clasts. The contact between this zome and the underlying
pumice zome is gradational. The best exposures of the carapace
breccia zome are located on Round Top Butte (see Plate I), where
clasts of stretched pumice up to 2.5 meters in diameter and 0.3
meters in thickness exist near the contact between the carapace
breccia zone and the pumice zome (M. Cummings, personal

communication, March, 1987).

Obsidian Flows

Obsidian flows are differentiated from the obsidian zone of
zoned flows and domes by the lack of related cooling zones. The
flows contain partings of gray to pink to brown pumice between

layers of black obsidian. A black obsidian flow near Musser Draw
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(see Plate I), located to the south of Glass Butte, has a length
of one kilometer and a maximium width of 0.25 kilometers. The
minimum thickness of the flow exposure is 15 meters. Two large
obsidian flows erupted from Little Glass Butte, each with exposure
areas of 5 to 8 square kilometers, represent the greatest volume
of obsidian within the complex (Berri, 1982). An age of 5.03

+ 0.75 million years was reported by Walker (1974) for the

obsidian flow on the north side of Little Glass Butte.

Felsite Flows

Cooling zones, as described in the zoned flows and domes
section, have not been found in association with felsite flows.
The felsite flows are devitrified, gray to light purple in color,
and tend to break parallel to flow banding. The flows break in a
plate-like manner, leading to the formation of scree slopes. The
flow banding, which is on the millimeter scale, is poorly
developed deeper in the flow unit. Vesicles, which compose less
than 5% of the rock by volume, tend to be elongated parallel to
flow banding. Felsite flows crop out on the south slope of Glass
Butte and on Round Top Butte (M. Cummings, personal communication,

March, 1987).

Biotite-Phyric Flows And Domes

Biotite-phyric flows and domes contain 1-2% biotite,
+ quartz, #+ plagioclase, and + sanidine phenocrysts. The
groundmass of the flows and domes is pumiceous, gray to brown in

color, and locally perlitically fractured. Vesicles are
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elongate, comprising 25-40% of the rock by volume. Spherulitic
zones and plagioclase microlites occur locally. The biotite
phenocrysts are less than two millimeters in diameter, black in
color, and aligned parallel to flow banding.

Outcrops of biotite-phyric flows and domes are found in the
southeast corner of the Glass Butte quadrangle and on the crest of
Round Top Butte. The former are part of a flow erupted from Little
Glass Butte, and the latter a dome erupted from Round Top Butte.
Biotite-phyric rocks also form a domal plug on the top of the
1,805 meter peak located in sections 23 and 26 of touwnship 23
south, range 22 east in the Glass Butte quadrangle (see Plate I).
In addition to biotite, these rocks contain guartz, plagioclase,
and sanidine phenocrysts ranging from 1 to 4 millimeters in size,
The modal percentage of phenocryst and groundmass constituents of

a sample from this domal plug are included in Table II.

TABLE II

MODAL ANALYSIS OF A BIOTITE-PHYRIC THIN SECTION

Sample #: GB-131 Volume %
Phenocrysts: Quartz 6.7%
Plagioclase 4.3%
Sanidine 1.7%
Biotite 1.0%
Groundmass: Glass 53.6%
Spherulites 26.4%

Plagioclase Microlites 6.3%
100.0%

(Based on a total of 1000 points counted.)
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RHYOLITE AND RHYODACITE SEQUENCE

The rhyolite and rhyodacite seguence stratigraphically
overlies the high-silica rhyolite sequence and is characterized by
rocks which contain 10-40% phenocrysts in a groundmass of glass
and plagioclase microlites. The phenocryst phases and percentages
for rhyolite and rhyodacite samples are given in Table III. The
rocks are black to gray in color and contain red oxidized zones.
Rhyolites and rhyodacites occur as low-volume flows, domes, and
spines. An intrusive rhyodacite crops out on the southern end of
Glass Butte (see Plate I). Rocks of this sequence exhibit
moderate to strong flow banding and may form north and northwest-
trending spines, parallel to faults.

Petrographically, rhyolites are distinguished fram
rhyodacites by a plagioclase content of less than 10% and a lack
of hornblende phenocrysts. Rhyolite flows crop out on the
northern slope of Glass Butte and the northern and western slopes
of Little Glass Butte. The flow on Glass Butte contains
approximately 8 percent plagioclase phenocrysts ranging in length
from 0.25 to 1 centimeters. The rhyolite flow on Little Glass
Butte contains 1 to 3 percent plagioclase phenocrysts with an
average length less than 3 millimeters.

Rhyodacite flows, domes, and spines occur exclusively on
Glass Butte with one exception, a rhyodacite intrusive plug which
crops out on the southeastern side of the 1,805 meter peak located

in the Glass Butte guadrangle.
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TABLE III

MODAL ANALYSES OF RHYOLITE AND RHYDODACITE THIN
SECTIONS BASED ON A TOTAL OF 1000
POINTS COUNTED ON EACH SECTION

Rocktype Rhyolite Rhyodacites Intrusion
Sample no. GB-16 GB-27 GB-28 (GB-35  GB-173
Phenocrysts
Plagioclase 7.5 9.7 20.0 26.5 23.7
Hormblende -—- 1.4 2.5 B.4 10.6
Pyroxene 1.8 -—- 0.4 --- 0.2
Quartz -—-- 0.6 0.3 -— 1.0
Opague 0.8 - -—- 0.4 0.9
Biotite -—- -—- -— -— 0.4
Groundmass
Plagioclase 33.4 35.6 32.4 22.7 17.6
Glass 56.5 51.7% 44,4 44.0 45.6

* part of the glass has been altered to a clay phase.

Plagioclase phenocrysts, which are the dominant phase, are
up to 1.5 centimeters long, euhedral, and may contain normal or
reverse compositional zonation. Phenocrysts commonly contain
inclusions of hornblende, biotite, apatite, and colorless glass
(Figure 6). Phenocryst compositions, as determined by Michel-
Levy's method (Jones and Bloss, 1980), lie between An  and An .
Plagioclase also occurs as the dominant microlite phaié, compozgng
up to 36% of the rock by volume. The plagioclase microlite
compositions range from An to An .

46 56
Euhedral, brown to green pleochroic hornblende phenocrysts

up to two centimeters long occur both as isolated phenocrysts and

intergrowths with plagioclase and iron oxide phenocrysts. The
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long axis of the isolated hornblende phenocrysts define a
lineation in most rocks. Pink to light green pleochroic augite
phenocrysts up to two millimeters in diameter compose less than 2%
of the rocks by volume. The augite may occur as growth rims on
hypersthene crystals. Phenocrysts of subhedral quartz, black
biotite, and an iron oxide phase compose less than 3% of the total

rock volume and are less than two millimeters in size. The

biotite flakes, where present, produce a weak foliation.

.

Figure 6. Compositionally zoned plagioclase phenocryst from
a rhyodacite flow. The plagioclase composition on the outer
rim of the phenocryst is An,,. Two hornblende inclusions
are found in the center of the plagioclase: The
photomicrograph is approximately two millimeters wide.

PYROCLASTIC UNIT

Well-indurated ash-flow tuff containing clasts of black
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obsidian, pumiceous glass, and flow-banded felsite crops out on
the south side of Glass Butte. Clasts compose up to 45% of the
rock by volume, are subangular to subrounded, poorly sorted, and
range in diameter from one millimeter to 0.6 meters. Clasts are
supported in a white to pink colored ash matrix and broad cross-
bedding of cobble-size clasts occurs locally. The pyroclastic
unit overlies a zoned high-silica rhyolite flow.

A bedded ash-flow tuff which crops out on the south side of
Cascade Ridge (see Plate I) contains angular clasts of felsite,
pumice, and black obsidian within a white, ashy, glass matrix.
Clasts are poorly sorted and range in diameter from less than one
millimeter up to 0.5 meters. Planar bedding varies from massive
to laminar and broad, sweeping festoon-type cross bedding occurs
locally. The tuff is overlain by a pumiceous breccia on the east,

and an obsidian flow on the west (Johnson, 1984a).
VOLCANICLASTIC SEDIMENT UNIT

Weakly to moderately consolidated volcaniclastic sediments,
exposed along the southeastern margin of the Glass Buttes
guadrangle (see Plate I), lie stratigraphically above a zoned
high-silica rhyolite flow and below an internal basalt flow.
Lithic clasts compose 50-75% of the rock by volume, are
subrounded, 1-3 ﬁillimeters in size, and occur in beds which range
in thickness from 1-10 millimeters. Obsidian, felsite, pumiceous
glass, and biotite-phyric pumiceous glass clasts are cemented by

silica. Many of the clasts are stained by iron oxide. The
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consolidated volcaniclastic sediments are differentiated from the
ash-flow tuff by the lack of an ash matrix in the former, and the
lack of silica cement and iron staining in the latter.

Volcaniclastic sediments up to three meters in thickness are
also exposed along a fault scarp located in the southeast corner
of the Potato Lake quadrangle (see Plate I). The sediments occur
stratigraphically between two plateau basalt flows. Lithic clasts
of the high-silica rhyolite seguence are subrounded, 0.5 to 3

millimeters in diameter, and occur in poorly-sorted beds.

INTERNAL BASALT SEQUENCE

Basalt flows that originate from vents located within the
silicic complex are herein referred to as "the internal basalt
sequence”. They are interpreted to be time eguivalent to flouws
erupted from vents on the surrounding plateau. Basalt flows are
phyric to microphyric, vary in degrees of vesiculation, and
average 3 to 5 meters in thickness. Flow tops are thin, indistinct,
and are locally marked by pahoehoe surfaces that may be overlain
by basaltic hyaloclastites. Nearly all of the basalt flows are
porphyritic, containing plagioclase phenocrysts which range in
length from 1 to 4 centimeters. The plagioclase is honey broun to
colorless and aligned parallel to the direction of flow banding. The
groundmass contains various proportions of plagioclase, augite,
opaques, olivime, and glass. Quartz crystals and silicic xenolith
intergrowths, evidence of contamination by silicic glass, occur

locally in the lowest basalt flows (Figure 7). Modal analyses of
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Figure 7. Symplectite intergrowth of gquartz and feldspar in

a contaminated basalt flow. Photomicrograph is

approximately two millimeters wide.
basalt flows and a hyaloclastite unit are given in Table IV.

The largest volume of internal basalt, erupted from the
southuwest side of Glass Butte, may contain from 30 to 40 flouws
with a combined exposed thickness of approximately 210 meters.
The internal basalts lie stratigraphically above the high-silica
rhyolite sequence. A volcaniclastic unit containing clasts of
high-silica rhyolite locally separates the two sequences. The
stratigraphic relationship between the internal basalt and the
rhyolite and rhyodacite sequence has not been defined due to the

lack of field contacts.
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TABLE IV

MODAL ANALYSES OF BASALT AND HYALOCLASTITE THIN
SECTIONS BASED ON A TOTAL OF 1000
POINTS COUNTED ON EACH SECTION

Rocktype Intermal Internal Plateau *Basaltic
Basalt Basalt Basalt Hyaloclastite

Sample no. GB-48B GB-4C Ll GB-5

Phenocrysts
Plagioclase 55.2 1.0 241 18.0
Augite 29.5 3.4 20.7 1.4
Olivire -———- -—-- 8.1 8.6

Groundmass

Plagioclase —— 3.4 17.4 ———
Augite ---- 10.4 4.9 _——
Iron Oxide 7.9 0.6 4.6 -————
Quartz -—-- 0.3 ———- -———
Hornblende -——— 0.1 _—— —_——
Xenoliths -——— 1.4 ———- ----
Glass 7.4 41.4 7.1 71 .6+
Vesicles ++ ++ 13.1 ++

* Based on 500 points counted.

#% Completed by Berri (1984): sample no. unknown,
+ 11.68% of the glass is altered to smectite clay.
++ Vesicles not counted.

PLATEAU BASALT SEQUENCE

Plateau basalt flows were erupted from vents located on the
surrounding plateau. Phyric flows containing plagioclase, augite,
opaque and olivine phenocrysts, within a groundmass of glass,
plagioclase, pyroxene, and olivine microlites dominate, but
aphyric flows also occur. A modal analysis for a plateau basalt
flow is given in Table IV.

The plateau basalts are best exposed along northuwest-
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trending fault scarps of the Brothers fault zone (Figure 8). The
stratigraphic sequence exposed along a fault scarp in section 30
of the Potato Lake guadrangle includes: 1) a plagioclase-phyric
basalt flow with a minimum thickness of nine meters, underlain by
2) volcaniclastic sediments up to six meters in thickness, and

3) five to six meters of aphyric olivine basalt.

Figure 8. Photograph taken from the top of Glass Butte
looking northwest. Spine in the foreground to the right of
center is a rhyodacite unit. Plateau basalts, in the middle
distance, are cut by northuwest-trending faults of the

Brothers fault zone. In the far distance lies the Hampton
Butte volcanic complex.

The internal basalts overlie the plateau basalts along the
northwest corner of the complex. Interlayered high-silica
rhyolite and plateau basalt flows have been reported within

Phillips stratigraphic hole 4 (see Plate I) (Johnson, 1984a).
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STRATIGRAPHIC SUMMARY

The stratigraphy of the Glass Buttes complex, summarized in
Table I, consists of high-silica rhyolite, rhyolite and
rhyodacite, and basalt sequences.

The high-silica rhyolite sequence represents the initial
phase of volcanic activity within the Class Buttes complex. Age
dates for the sequence range from 5.03 + 0.75 to 7.7 + 0.4 million
years., Zoned flows and domes, which were erupted from numerous
vent areas, represent the largest volume of high-silica rhyolite
volcanics (see Plate I). Zoned flows predominate in the Glass
Butte and Little Glass Butte areas, whereas small-vaolume domes
dominate on Round Top Butte and eastern Glass Buttes. The zoning
is largely the result of differential cooling that formed multiple
zones within an individual lava flow (Wilson and Emmons, 1985).
Pyroclastic deposits, containing high-silica rhyolite clasts, are
locally interfingered with zoned flows and domes. These
relationships indicate that the zoned flows and domes and
pyroclastic deposits belong to the same stage of volcanic
activity.

Obsidian flows, felsite flows, and biotite-phyric flows and
domes locally overlie the zoned flows and domes. These flous,
units of the high-silica rhyolite sequence, represent the late
stage high-silica rhyolite volcanism within the Glass Buttes
complex. Outcrops of these units are concentrated on the south

side of Glass Butte and in the Little Glass Butte and Round Top
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Butte areas (see Plate I).

Rhyolitic and rhyodacitic volcanism followed the high-silica
rhyolite activity. Vent locations for the rhyolite and rhyodacite
sequence are structurally controlled, exhibiting an alignment
along the trend of the Brothers fault zone. This sequence crops
out on Glass Butte and Little Glass Butte (see Plate I). A
rhyolite flow on Little Glass Butte was stratigraphically
positioned below an obsidian flow by Berri (1982). Reevaluation
of the field relationships on Little Glass Butte along with the
observed stratigraphy of the Glass Butte guadrangle has led to a
reinterpretation of this relationship; the rhyolite flow lies
stratigraphically above the aobsidian. The rhyodacitic intrusive,
which crops out at several locations within the Glass Butte
guadrangle, may represent one of the final pulses of rhyodacitic
volcanism.

Field relationships indicate that the internal basalt
sequence lies stratigraphically above the high-silica rhyolite
sequence. There are no contacts betuween the internal basalt
sequence and the rhyolite and rhyodacite sequence, but it is
believed that the intermal basalts are younger. The basalts uwere
erupted from numerous vents which generally lie on the perimeter
of the complex. The volume of the basaltic eruptions and the
number of flows from a vent area is highly variable.

The plateau basalt stratigraphy, which includes interlayers
of plagioclase-phyric basalt, aphyric olivire basalt, and

vaolcaniclastic sediments, is poorly understood. Johnson {198¢a)
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reported interlayered hydrothermally altered high-silica rhyolite
and plateau basalt flows within Phillips stratigraphic hole 4

(see Plate I). The internal basalt sequence may be time equivalent

to the late erupted plateau basalt flouws.



CHAPTER III
GEOCHEMISTRY

Geochemical data for high-silica rhyolite, rhyolite,
rhyodacite, and basalt samples are presented in the Appendix. 0On
the basis of Shand's classification (1951), all high-silica
rhyolite, rhyolite, and rhyodacite samples within the Glass Buttes
complex are classified as peraluminous.

The geochemical data were examined in relation to:

1) stratigraphy, and 2) the following geographic divisions of the
Glass Buttes complex: the Glass Butte quadrangle, Little Glass

Butte, eastern Glass Buttes, and Round Top Butte.
HIGH-SILICA RHYOLITE SEQUENCE

High-silica rhyolites, as used by Cameron and Cameran
(1986), contain more than 75% Si0 . Rocks of the high-silica
2

rhyolite seguence at Glass Buttes contain 77-78% Si0 , less than
2

0.13% Ti0O , 0.011-0.048% P 0 , less than 0.11% Mg0, 0.43-0.91%
2 25

Cal, 0.77-1.54 ppm Ta, 3.6-8.3 ppm Sc, and less than 0.7 ppm Co.

Geochemical data for selected elements of zoned flows and domes,

obsidian and felsite flows, and biotite phyric flows and domes are

presented in Table V.
Variations in the major and trace element geochemistry of

the high-silica rhyolite sequence were examined in relation to
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1) different high-silica rhyolite units within a geographic area,
and 2) high-silica rhyolite units from different geographic
locations within the complex.

The major and trace element concentrations of different
high-silica rhyolite units from a given geographic area are within
the analytical error of instrumental neutron activation analysis.
Thus, within a geographic area the different flow and dome units
are not distinguished on the basis of geochemistry (Table VI).

Variations of certain elements in samples from different
geographic areas have been identified (Figure 9). Iron, the only
major element that displays a limear variation, increases from
east to west across the complex. Samples of zoned flows and domes
collected from eastern Glass Buttes and Round Top Butte contain
0.72-0.85% Fe0, whereas samples fram the Glass Butte quadrangle
contain 0.87-1.03% FeO. Biotite-phyric flows and domes of Round
Top Butte, Little Glass Butte, and the Glass Butte gquadrangle
exhibit the same systematic variation, containing 0.65-0.74%,
0.83-0.84%, and 0.91% Fe0 respectively. Obsidian and felsite
flows from Little Glass Butte and the Glass Butte guadrangle
contain the highest Fe0 concentrations, varying from 0.84-1.04%
and 1.09-1.11% respectively.

The trace element geochemistry defimes variations in high-
silica rhyolite samples from different geographic areas within the
complex. Concentrations of Sc, Rb, Cs, Ta, Th, and U are higher
and those of Co and Ba lower in the high-silica rhyolite units of

Round Top Butte and eastern Glass Buttes relative to samples from
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Figure 3. Comparison of elemental concentrations for
eastern Glass Buttes and Glass Butte obsidian samples.
Enrichment factors are based on elemental concentrations for
eastern Glass Buttes (EGB-1) divided by concentrations for
Glass Butte (GB-152).
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the Glass Butte quadrangle. Trace element concentrations in high-
silica rhyolite units from Little Glass Butte are chemically
intermediate between the concentrations observed in samples from
eastern Glass Buttes and Round Top Butte, and those observed in
samples of the Glass Butte gquadrangle (Figures 10, 11). High-
silica rhyolite samples from Round Top Butte and eastern Glass
Buttes are also enriched in heavy rare earth elements (HREE),
depleted in light rare earth elements (LREE), and exhibit larger
negative Eu anomalies relative to the samples from the Glass Butte

quadrangle (Figure 12)(Roche and Cummings, 1987a).
RHYOLITE AND RHYODACITE SEQUENCE

Si0 content (anhydrous basis) is used to differentiate
2
the rhyolite and rhyodacite units: rhyolites contain 72-75%,

and rhyodacites 68-72% (Bacon, 1983). Rocks of the rhyolite and

2
0.11% P 0, 0.22-1.34% MgO, 1.37-3.4% Ca0, 0.34-0.76 ppm Ta, 5.5-
25
15.3 ppm Sc, and 1.9-10.7 ppm Co. Geochemical determinations for

rhyodacite sequence contain 70-76% Si0 , 0.18-0.38% Ti0 , 0.04-
2

selected elements of rhyolite and rhyodacite units are given in
Table VII,

Larger variations are observed in the major and trace
element concentrations of different rhyolite and rhyodacite units
relative to the high-silica rhyolite sequence. The geochemical
variations do not show a systematic relationship to variations in
phenocryst abundance or type.

The geochemistry of the rhyolite in the Glass Butte
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Figure 12. REE abundances for high-silica rhyolite samples
normalized to concentrations from Ekambaram and others
(1984). ARWY-2 is a representative sample from eastern Glass
Buttes, whereas GB-44A and GB-152 represent samples from the
Glass Butte quadrangle.
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quadrangle shows some distinct differences when compared to the
rhyolite at Little Glass Butte. These include: 1) higher
concentrations of Ti0 , Fel, and Sc, and 2) lower concentrations
of ALDO , K O, Rb, Thf and La,

23 2

Rhyodacite samples exhibit relatively large geochemical
variations between different units. Variations are most apparent
for Mg0 (0.6-1.34%), FeO (2.7-4.8%), Sc (7.2-15.3 ppm), Rb (41-87
ppm), and Eu (0.81-2.34 ppm). Relationships could not be
established between variations in elemental concentrations and
1) differences in the elevation of samples or, 2) the geographic
origin of samples. A relationship between a time sequence and
geochemical variances could not be established due to the lack of
contact exposures between the different rhyodacite units. The
only contact which has been identified between rhyodacite units
occurs between the intrusion and the unit it intrudes, both of
which contain similar elemental concentrations.

REE plots of rhyolite and rhyodacite units (Figure 13)

exhibit similar HREE depletions relative to the LREE. The
rhyolite at Glass Butte has a La/Yb ratio of 5.5, compared to

ratios of 8.2 and 7.2 for the rhyolite at Little Glass Butte.

Rhyodacite La/Yb ratios range from 4.0 to 8.7.
INTERNAL AND PLATEAU BASALT SEQUENCES

Major oxide data (Table VIII) indicate that the internal

and plateau basalts are classified as high-alumina and olivine

tholeiites (Irvine and Baragar, 1971). Geochemical relationships
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Figure 13. REE abundances for rhyolite and rhyodacite
samples normalized to concentrations from Ekambaram and
others (1984). GB-16 and RB-1 represent rhyolite samples,
whereas GB-208B, GB-26A, and GB-56B represent rhyaodacites.
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between internal, contaminated, and plateau basalt samples are
shown in Figures 14 and 15. The internal basalt flows are
geochemically characterized by rocks which contain 12.3-14.1% FeQ,
35-42 ppm Sc, 42-71 ppm Co, and 25-138 ppm Cr, FeO, Na G, Sc, Co,
Cr, and Th concentrations for different flows of the iniernal
basalt sequence exhibit similarities. However, the Cr and Co
concentrations of sample GB-1868, an aphyric basalt, are
distinctly enriched relative to the other basalt flow samples.

Chondrite-normalized REE patterns for the internal basalts
are relatively flat, but several of the samples exhibit negative
Yb anomalies (Figure 16). La/Yb ratios range from 2.6 to 5.9,
reflecting the variation in Yb concentrations.

The basalt samples contaminated by rhyolitic glass, also
presented in Table VIII, contain 6.5-7.8% FeO, 24-28 ppm Sc, 11-19
ppm Co, and 7-18 ppm Cr. OGB-172, a contaminated basalt, contains
67.4% Si0 and 5.0% KZD. These concentrations are approximately
25% greatzr than those observed in noncontaminated basalts.

GB-102A, a plateau basalt from the Potato Lake guadrangle,
contains 16.2% FeO, 41 ppm Sc, 54 ppm Co, and 17 ppm Cr. PB-1 and
PB-2, also plateau basalts, contain lower concentrations of S5i0O
and Na 0 and higher concentrations of Cal and Mg0 relative to tﬁe

2
internal basalts (see Table VIII).

ISOTOPE GEOCHEMISTRY

18
The results of eight(§ 0 isotopic determinations for high-

silica rhyolite, rhyolite, rhyodacite, and basalt samples are
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Figure 14. Scatter plot of Co and Cr concentrations for
internal, contaminated, and plateau basalt samples. Several
high-silica rhyolite samples are also given,
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high-silica rhyolite samples are also given.
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given in Table IX. Isotopic values for eastern Glass Buttes and
Round Top Butte, 5.6 + 0.1 per mil and 3.9 + 0.1 per mil

respectively, are anomalously low relative to the other samples.

TABLE IX

ISOTOPE GEOCHEMISTRY

18

Sample Unit Origin ES 0

EGB-1  Zoned Dome eastern Glass Buttes 5.6 + 0.1
RTB-19 Zoned Dome Round Top Butte 3.9 + 0.1
GB-44A  Zoned Flouw Glass Butte Quad. 7.1 + 0.1
GB-131 Biotite phyric Dome Glass Butte Quad. 7.7 + 0.7
RB-1 Rhyolite Little Glass Butte 6.8 + 0.1
GB-38  Intrusive Rhyodacite Glass Butte 7.0 + 0.1
GB-56B Rhyodacite Glass Butte 6.8 + 0.1
GB-106A Internal Basalt Glass Butte Quad. 7.1 + 0.1

GEOCHEMISTRY SUMMARY

Major and trace element variations within the high-silica
rhyolite sequence are related to the geographic distribution of
samples (see Table VI). FeO0, Cal, Mgd, TiO , Co, LREE, Eu, and Ba
concentrations increase, whereas Sc, Rb, Cs? Ta, HREE, U, and Th
concentrations decrease from east to west across the Glass Buttes
complex.

The geochemical data do not show evidence of consistant

variations among the different high-silica rhyolite units for a
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given geographic location, as indicated by the similarity among
late erupted zoned flows and domes (GB-152, GB-148, and GB-116)
and the felsite flows (GB-155 and GB-163) of the Glass Butte
quadrangle (see Table V).

Johnson (1984a) suggested that the stratigraphic units to
the west overlie the stratigraphic units to the east. This
suggests that the high-silica rhyolite volcanism was initiated in
the eastern Glass Buttes and Round Top Butte areas, later
migrating westward toward Little Glass Butte and Glass Butte. The
observed major and trace element variations within the high-silica
rhyolite sequence are consistant with this hypothesis,

The geochemical differences between high-silica rhyolite
samples from Round Top Butte and eastern Glass Buttes and those of
Little Glass Butte and the Glass Butte quadrangle were not
produced by the hydrothermal alteration systems which were active
in the eastern Glass Buttes area. The mercury mineralization
occurred in an oxidizing system (Johnson, 1984a). Under such
conditions, Na 0, K 0, Cs, Rb, and U are leached from rhyolitic
rocks (Zielinsii, 1381, 1982). The high-silica rhyolite samples
of Round Top Butte and eastern Glass Buttes do not show evidence
of Na 0 or K O leaching and the Cs, Rb, and U concentrations are
the highest 5ithin the complex, trends inconsistant with
alteration by oxidizing fluids. However, the low é§80 values for
eastern Glass Buttes and Round Top Butte, 5.6 + 0.1 per mil and

3.9 + 0.1 per mil respectively, are interpreted to be the result

of the interaction between meteoric water and the rock samples
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(Taylor, 1974; Lipman and Friedman, 1975; Faure, 1977; I. Barnes,
personal communication, April, 1987). If these values were
lowered during the hydrothermal alteration events it may suggest
that(3180 isotopic values are a more sensitive indicator of
hydrothermal alteration than are major and trace element maobility
(I. Barnes, personal communication, April, 1987). This may also
suggest that the hydrothermal alteration cell was much larger than
that defined by Johnson (1984a) on the basis of visible alteration
(see Plate I).

Barium concentrations of Glass Butte high-silica rhyolites
are two to three times the concentrations observed in samples from
eastern Glass Buttes and Round Top Butte. The large difference in
the barium concentrations from east to west is consistant with
variations observed in the eruptive sequences of other high-silica
rhyolite systems (Hildreth, 1981; Vogel and others, 1987).

The rhyolite and rhyodacite sequence exhibits relatively
large major and trace element variations. Geochemically, the
rhyolite of Little Glass Butte is a more differentiated rhyolite
than that exposed in the Glass Butte quadrangle. Systematic
variations in the geochemistry of rhyodacite units relative to
1) time of eruption, 2) the elevation of the sample, and 3) the
geographic origin of samples could not be established.

Geochemical comparisons of the high-silica rhyolite,
rhyolite and rhyodacite units indicate: 1) the major element
geochemistry exhibits linear trends beween the different units

but, 2) the trace element geochemistry often shows separate
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trends for the high-silica rhyolite sequence and the rhyolite and
rhyodacite sequence. Figure 17, a comparison of the
concentrations of Si0 and Cal, indicates a negative linear
relationship between iigh-silica rhyolite, rhyolite, and
rhyodacite units. There are gaps in the Ca0 concentrations,
suggesting that there may not be a continuous series between the
different rock units. A comparison of Rb and Sc concentrations
(Figure 18) shows two separate geochemical trends: 1) the Rb
concentrations of high-silica rhyclites decrease from east to west
across the complex while the Sc concentrations remain fairly
constant, and 2) the Sc concentrations of the rhyolite and
rhyodacite units increase with a corresponding decrease in Rb.

In order to quantify the geochemical grouping, major element
concentrations for high-silica rhyolite, rhyolite, and rhyodacite
samples were subjected to cluster analysis. Bacon and others
(1981) divided the cluster analysis process into the following
steps: 1) a similarity matrix is computed between samples and the
two samples with the highest similarity are combined into a pair
group, 2) the similarity matrix is then recomputed with the pair
treated as a single sample, and 3) pair and larger groups in
subsequent iterations are weighted according to the number of
original analyzed samples they contained. The degree of
similarity between samples is expressed as the distance function,
as shown in Figure 19. The high-silica rhyolite samples (Group
II) exhibit very strong similarities between samples, but do not

correlate well to the rhyodacite samples (Group I). Similarities
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between rhyodacite samples are not as strong as those observed for
the high-silica rhyolites, reflecting more distinct geochemical
variations in the former. GB-16, a rhyolite sample, lies between
the high-silica rhyolite and rhyodacite samples, as expected.
Thus, the the high-silica rhyolite sequence and rhyolite and
rhyodacite sequence may be separated on the basis of geochemistry.
The internal basalt geochemistry of eleven samples indicate
similarities in the Na O, FeO, Sc, and Th concentrations (see
Table VIII), DiFFerenies in the Co, Cr, and Yb concentrations for
different flows have been identified (see Figures 14, 15, and 16).
The geochemistry of contaminated basalt samples indicates that
there has been contamination by rocks of rhyolitic composition
(see Figures 14 and 15). Evidence which may indicate that the
basalts were contaminated by the high-silica rhyolite sequence
includes: 1) the lack of phenocrysts within the xenoliths observed
in the contaminated basalts, and 2) the basalts overlie the high-
silica rhyolite sequence in several locations, suggesting that the
basaltic magma had to travel through the high-silica rhyolite
sequence 1in order to reach the surface. The contaminated basalts
are enriched in Si0 and Na 0, while being depleted in A1 O ,
Tic , FeO, Ca0, Mgﬂf PO, éo, and Cr relative to uncontaiigated
intgrnal basalts (see %agle VIII). GB-172, a contaminated basalt,
is shown in Figure 18 to be more similar to rocks of silicic

composition than to a uncontaminated basalt sample (GB-106A).

Johnson and Ciancanelli (1983) reported the presence of a
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large andesite flow on the northwest flank of Glass Butte. It is
believed that their data may represent a contaminated basalt,
similar to GB-172.

Ma jor and trace element concentrations of plateau basalts
determined in this study and reported by Berri (1982) and Johnson
(1984a) indicate considerable differemces in the elemental
concentrations of different basalt flows. The small data set,
poor sample distribution, and poor understanding of the plateau
basalt stratigraphy do not allow one to make statistically valid

comparisons or conclusions about the plateau basalts.



CHAPTER IV
DISCUSSION

The stratigraphic and geochemical trends of the Glass Buttes
camplex are representative of the style of volcanism which occurs
in extensional tectonic settings. The 'bimodal' association of
high-silica rhyolite and tholeiitic or alkalic basalt also exists
at Little Glass Mountain, California (Fink, 1983), the Coso
Volcanic field, California (Bacon, i982; Bacon and others, 13981),
Long Valley Caldera, California (Hildreth, 1979, 1981; Michael,
1983), Twin Peaks, Utah (Crecraft and others, 1981), and La

Primavera, Mexico (Mahood, 1381).
STRATIGRAPHY

The stratigraphic and geochemical data indicate that the
high-silica rhyolite volcanism was initiated on Round Top Butte
and eastern Glass Buttes, later migrating westward toward the
Little Glass Butte and Glass Butte areas. High-silica rhyolites
were erupted mainly as low-volume flows and domes with minor
pyroclastic deposits; a situation that contrasts the voluminous
caldera forming eruptions, such as those which formed the Bishop
and Tala tuffs of Long Valley Caldera (Hildreth, 1979, 1981;
Hildreth and Mahood, 1986) and La Primavera (Mahood, 1981)

respectively. The high-silica rhyolite sequence contains 1) zoned
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flows and domes, 2) absidian flows, 3) felsite flows, and

4) biotite-phyric flows and domes. The textural differences
between the different units may reflect 1) the distribution of
volatiles in the magma and 2) variable degassing within the lava
flows at the surface (Fink, 1983; Wilson and Emmons, 1985). A
model for the emplacement and textural development of the Glass
Buttes high-silica rhyolite sequence, derived from a model
proposed by Fink (1983), includes:

1) As the magma body approaches the surface, the volatiles
exsolve and rise to the top. The lowering of the confining
pressure as the magma rises leads to frothing of the volatile-rich
carapace, The interaction with shallow grounduwater also
contributes to the formation of a gas-rich carapace. The
vesiculation may initiate the eruption of pyroclastic materials,
such as those exposed on the southern slope of Glass Butte and in
the eastern Glass Buttes area.

2) Once extruded, the flow will continmue to vesiculate until
the viscosity, which increases with decreasing temperature,
becomes too high to permit vesiculation. The lava flows due to
the relatively low viscosity of the glass septa between vesicules.
The vesicules become flattened and elongate during the flouw of the
lava. The obsidian and felsite layers, which have high
temperatures and low viscosities relative to the pumiceous layers
(Figure 20), behave as viscous fluids during the flow of the lava.
Strongly-folded flow banding in the obsidian and felsite layers

and the annealing of obsidian breccia clasts in an obsidian matrix
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within the obsidian layers are indicators of the deformation which
occurs during the lava flowage. The pumiceous layers have high
viscosities and low temperatures, resulting in brittle failure
during deformation. The formation of the carapace breccia in flow
units results from the movement of the lava, which causes the
upper surface to fracture into blocks and cascade off the flouw
front. In domal units, the carapace breccia forms as a result of
the expansion of the dome. The transition between the pumice
layers and the underlying obsidian occurs when the gas pressure in
the vesicles is no longer sufficient to overcome the tensile
strength of the magma. The felsite layers, representing the core
of most flows, may have cooled slowly enough so that a crystalline
texture started to develop.

3) The final magma in the conduits may have been biotite-
phyric, resulting in the eruption of the bictite-phyric flouws and
domes such as those aobserved on Round Top Butte, Little Glass
Butte, and the 1,805 meter peak in the Glass Butte guadrangle.

4) The perlitic fracturing observed within the pumiceous layers
formed during the secondary hydration of the glass by groundwater
(Zielinski, 1981; Fisher and Schmincke, 1384).

The rhyolite and rhyodacite sequence is texturally distinct
from the high-silica rhyolite sequence. Variations in the
phenocryst type and abundance and the relatively small volume
eruptions suggest that the different rhyolite and rhyodacite units
represent distinct magma batches.

Phyric and aphyric tholeiitic basalts of the plateau and
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internal basalt sequences were erupted from numerous vents located
mainly on the perimeter of the silicic complex. Several basalt
flows which were erupted from vents within the silicic complex
show petrographic and geochemical evidence of silicic
contamination. The stratigraphic and geochemical relationships
between different basalt flows, and the lateral continuity of
individual flows is poorly understood. The presence of
volcaniclastic beds between plateau basalt flows indicates that

the basalts were erupted in several stages.
GEOCHEMISTRY

The geochemical trends within the high-silica rhyolite
sequence are characteristic of highly evolved magmas, similar in
composition to the Caso Volcanic field (Bacon, 19823 Bacon and
others, 1981), the Bishop tuff (Hildreth, 1979, 1981), and the
Tala tuff (Mahood, 1981). The majority of the elements analyzed
within the Glass Buttes high-silica rhyolite seguence fall into
two groups that display similar behavior: 1) Sc, Rb, Cs, Sm, Tb,
Yb, Lu, Ta, Th, U, and 2) Mg, Ca, Ti, Fe, Co, Ba, La, Ce, Nd, Eu,
and P. Elements within each group generally show positive
correlations with each other, but negative correlations with
elements of the other group. The variations between the tuwo
groups is a reflection of the chemical stratification present
within the silicic magma chamber prior to the eruption of the
sequence (Hildreth, 1979, 1981; Bacon and Metz, 1984). Group 1

elements are interpreted to represent those elements concentrated
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towards the roof of the magma chamber, while group 2 represent
those concentrated at the deepest level tapped during the eruption
of the high-silica rhyolite sequence. Si, Al, Mn, Na, K, Cr, and
Hf remain constant throughout the eruptive sequence, indicating
that they were not zoned in the magma chamber. On the basis of
stratigraphy and geochemistry, the high-silica rhyolites of Round
Top Butte and eastern Glass Buttes are interpreted to represent
the magmas which were derived from the roof or upper portion of
the magma chamber. The high-silica rhyolites of Little Glass
Butte and the Glass Butte quadrangle are interpreted to represent
the deepest levels tapped during the eruption of the sequence.
The chemical zonmation within the high-silica rhyolite sequence of
Glass Buttes is similar to the zonation observed within the high-
silica rhyolites of the Coso Volcanic field and the Bishop tuff
(Figure 21). Elemental variations within the Bishop tuff are
generally greater than those observed within the Glass Buttes or
the Coso volcanic field volcanic sequences.

The differentiation processes that produced the major
element compositions and the enrichments and depletions in many
trace elements of the Glass Buttes high-silica rhyolite sequence
are evidently the same as those which brought about the vertical
compositional zonation in the magama chambers of the other high-
silica rhyolite systems previously mentioned. The compositional
zonation present within the Glass Buttes and Coso volcanic field
magma chambers persisted through several eruptive cycles, while

the zonation within the Bishop tuff represents a single eruptive
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episode. The compositional zonation observed in these systems has
not been explained by conventional models including:

1) Crystal Settling: most of the high-silica rhyolites of the

Glass Buttes complex are aphyric, thus if crystal settling
occurred within the magma chamber either all of the phenocrysts
settled out, or the magmas became superheated prior to eruption
and the phenocrysts were resorbed. Plagioclase and sanidine
phenocrysts within the biotite-phyric flows and domes are sub- to
euhedral, showing no evidence of resorbtion. The following
chemical and physical observatiaons also indicate that the chemical
zonation within the high-silica rhyolite sequence is not the
product of crystal settling: 1) Sc and HREE are enriched
roofward, while Fe and Mg are enriched downward, and Mn, Co and Cr
are unzoned. These trends are inconsistant with the removal of
dense early-formed zircon, apatite, and pyroxenes, which are
strongly enriched relative to glass in these elements (Arth, 138763
Clark, 1984), 2) to produce the observed 1.5 to 2 fold roofward
enrichment in elements such as Cs, Rb, U, Th, and Sc would require
the crystallization of unrealistic proportions of magma. Mahood
(1981) used crystal fractionation models to estimate that nearly
one-half of the magma would have to crystallize and settle out in
order to produce a two-fold roofward enrichment of elements such
as Ta, U, Rb, and Cs in the early-erupted portion of the Tala
tuff, and 3) the high viscosities within the Glass Buttes high-
silica rhyolite magmas, as estimated from Shaw (1972) and Blake

and Ivey (1986), would make crystal settling an unrealistic
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mechanism (I. Barnes, personal communication, April 1987).

2) Partial Melting: the observed compositional zonation within

the high-silica rhyolite seguence of Glass Buttes cannot be
explained by partial melting. Problems with the partial melting
model include: 1) the LREE and HREE antithetic enrichment trends
(see Figure 12) cannot be modeled by the partial melting of any
realistic source rocks, irrespective of how the roles of allanite,
sphene, apatite, zircon, and the major phases are varied during
melting (Hildreth, 1981), and 2) conflicting fractionation
patterns among elements of the first transition series; Sc is
enriched roofward, while Fe, Ti, and Co are enriched downward, and

Mn and Cr are unzoned,

3) Basalt-Rhyolite Mixing: The following observations appear

to rule out basalt-rhyolite mixing as the mechanism for the
formation'of the compositionmal zonmation: 1) Ba, LREE, and Sc
fractionation patterns within the high-silica rhyolites would be
opposite of those observed, 2) the Mn, Cr, Co, and Fe
concentrations would be greatly enriched in those samples thought
to represent magma from the deepest level tapped in the chamber,
and 3) the mixing of basaltic and rhyolitic magmas seems unlikely
because of the large differences in the melt viscosities and
densities (Shaw, 1972; Blake and Ivey, 1986).

In order to derive a valid model to explain the
compositional zonation within silicic chambers there needs to be
better understanding of 1) the behavior of halogens within the

magma chamber, 2) Soret diffusion, 3) the relative importance of
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thermal, gravitational, viscosity, and melt structural gradients
as mechanisms of transport (Blake and lvey, 1986), 4) uwhich
species diffuse as discrete ions and which as complex molecules,
and S5) the role (if any) of a free-vapor phase.

The rhyolite and rhyodacite sequence have steep,
fractionated REE patterns. Most of the geochemical
characteristics would appear to be explained by a model involving
crystal-liquid equilibria:

1) Crystal Setting: a liquid of the composition of RB-1 or

GB-16 (rhyolitic) could be derived from a liquid of the
composition of GB-83 or GB-208 (rhyodacitic) by the separation of
early formed plagioclase, hornblende, and pyroxene phenocrysts
found in the later, but the following inconsistancies argue
against separation of phenocrysts alone to produce the
frationation trends shown in Table X: 1) a comparison of GB-27 to
GB-173 reveals no noticeable change in the FeO, Mg0, or Sc
concentrations, but the percentage of mafic phenocrysts, which are
strongly enriched in these elements relative to coexisting glass
(Arth, 19763 Clark, 1984), rises sharply from 1.4% to 12.1%
respectively, and 2) GB-16 and GB-27 have approximately the same
total plagioclase content (phenocrysts plus groundmass), but the
Eu, which is strongly enriched in plagioclase relative to
coexisting glass (Arth, 19763 Clark, 1984), concentration in GB-16
is more than double that observed in GB-27.

2) Incremental Melting: most of the geochemical trends within

the rhyolite and rhyodacite sequence can be explained by the
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incremental melting of a source rock. The initial magmas
extracted from the zone of partial melting would be of rhyolitic
composition, representing the melting of quartz, potassium
feldspar, biotite, and possibly hornblende. The melting of guartz
would enrich the magma in Si0 , the potassium feldspar and biotite
would cause enrichments in Ba? K 0, and Eu, while the hornblende
would enrich the magma in the REE (Arth, 19763 Clark, 1984). The
progressive melting of the residue, including plagioclase,
pyroxene, and oxide phases to produce magmas of rhyodacitic
composition would cause enrichment trends in FeO, MgQ, CaQ, Sc,
and Eu (see Table X). A problem with the incremental melting
model is the large depletion of Eu between rocks of rhyolite
composition and the most highly-evolved rhyodacite samples (GB-27,
GB-173).

A representative model for the generation of the geochemical
trends within the rhyolite and rhyodacite sequence would contain a

combination of both crystal setting and incremental melting, with

the later being the dominant process.

MAGMA GENERATION

The 'bimodal' association of high-silica rhyolite and
tholeiitic or alkalic basalt is interpreted to be indicative of
extensional tectonic settings (Martin and Piwinskii, 1972
Hildreth, 1979, 1981; Barker, 19813 Bacon and others, 1984; Bacon,
1985). The generation of the Glass Buttes silicic magmas may

reflect the tectonic extension at the northern margin of the Basin
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and Range province. Models for the generation of rhyolitic magma
within extensional tectonic settings include 1) the partial
melting of older crustal rocks, and 2) closed-system crystal-
liquid fractionation, during which less siliceous minerals
crystallize and settle or float out of the magma and thereby cause
the remaining liquid to become more siliceous (Barker, 1981). The
partial melting model is preferred for the generation of the
magmas of Glass Buttes because of several prablems with the
crystal-liguid fractionation model, including 1) the relatively
small yield of rhyolite from a basaltic liquid during crystal-
ligquid fractionation; 100 parts basalt liquid yields 8-10 parts
rhyolite (Barker, 1981), 2) the aggregation of the small magma
batches formed during crystal-liquid fractionation into a single
magma body would be a problem, 3) the lack of intermediate-
composition rocks within the Glass Buttes complex, and 4) the lack
of basaltic xenoliths or olivime phenocrysts within the high-
silica rhyolite or rhyolite and rhyodacite units. The partial
melting of crustal rocks is brought about principally by the
intrusion of mafic magma from the mantle (Hildreth, 1873, 1981;
Ishihara, 1981).

18
Whole rock(S 0 values give an indication of the source rock
compasition for magmas derived by partial melting (Bacon, 1881b;
I. Barnes, personal communication, April 1987). The(§180 values
from analyses completed on high-silica rhyolite, rhyolite, and
rhyodacite samples from the Glass Buttes complex (6.8-7.7 per mil)

are consistant with the melting of ignecus source rocks of
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granitic to basaltic composition (Bacon and Duffield, 19815 I.
Barnes, personal communication, April, 1987). Metamorphic and
sedimentary rocks haue(§180 values which range from 7 per mil to
36 per mil, too high to be the source rock for the Glass Buttes
magmas (Brownlow, 1979).

Magmas of the high-silica rhyolite sequence probably
originated from a relatively shallow magma chamber (Figure 22).
With the following set of assumptions, a rough estimate for the
depth of the high-silica rhyolite magma chamber can be derived
based on the presence of biotite phenocrysts in the biotite-phyric
flows and domes: 1) the biotite crystallized at temperatures of
700-800°C (Speer, 1982), 2) the pressure during biotite
crystallization was 5-6 kilobars (Speer, 1982), and 3) the
pressure within the crust increases at a rate of 1/3
kilobar/kilometer. Using these assumptions, a depth of 15-18
kilometers is calculated for the depth of the magma chamber. This
depth, coupled with the relatively low-volume eruptions may
explain why there was not a caldera-forming eruption within the
Glass Buttes complex. The emplacement of silicic magma chambers
at crustal depths less than 10 kilometers coupled with the rapid
rise of magma to the surface, resulting in the expansion of
volatiles, are thought to be the conditions which result in
caldera~forming eruptions and the formation of large volume
pyroclastic deposits, such as the Bishop tuff (Hildreth, 1979,

1981) and the Tala tuff (Mahood, 1981).

The stratigraphic and geochemical data suggest that the
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rhyolite and rhyodacite sequence represent distinct, but
geretically related magma batches (see Figure 22). The presence
of hornblende, ortho- and clinopyroxene, and magnetite along with
the higher concentrations of MgO, FeO0, CaO, Co, Cr, Eu, Sc, and
lower concentrations of Si0 , Rb, Ta, U, and Th may indicate that
the magma for the rhyolite gnd rhyodacite seguence was generated
under higher temperatures, relative to the high-silica rhyolite
sequence. Attempts to use hornblende to estimate the depth of
crystallization were unsuccessful because the stability field for
hornblende in rhyolitic rocks is virtually undefined (Helz, 1982).

The northuwest-trending rhyodacite spines, sympathetic to the
trend of the Brothers fault zone, indicate that vent locations
were structurally controlled. The spines may define the
orientation of the maximum horizontal compressive stress during
emplacement (Bacon, 1985).

Basaltic volcanism is thought to have occurred during the
entire silicic eruptive sequence. The basaltic magma was
apparently unable to reach the surface in the Glass Buttes complex
during the eruption of the high-silica rhyolite sequence due to
the presence of relatively low density, high viscosity silicic
magma within the crust (Hildreth, 1979, 1981). The basaltic vents
which occur within the complex may have formed after the high-

silica rhyolite chamber had crystallized.



CHAPTER V
CONCLUSIONS

The high-silica rhyolite sequence represents the initial
phase of silicic volcanism within the Glass Buttes complex.
Volcanism was initiated in the eastern Glass Buttes and Round Top
Butte areas, later migrating westward toward Little Glass Butte
and the Glass Butte guadrangle. The seguence is divided on the
basis of texture into 1) zored flows and domes, 2) obsidian flous,
3) felsite flows, and 4) biotite-phyric flows and domes. The
different textures observed within the sequence are the result of
the distribution of volatiles in the magma and the variable
degassing within the lava flows at the surface. The geochemical
trends observed within the sequence are recognized to be a
reflection of the compositional zonation within the magma chamber
prior to eruption. The high-silica rhyolites of eastern Glass
Buttes and Round Top Butte are thought to represent the roof or
upper portion of the magma chamber, while those of Little Glass
Butte and the Glass Butte guadrangle represent the magmas from the
deepest level tapped during the eruption of the sequence. The
magma chamber is thought to have been emplaced at relatively
shallow crustal levels., The lack of a caldera-forming eruption
may indicate that the chamber remained fairly deep, and that the

magma ascended to the surface at a slow rate.
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The rhyolite and rhyodacite sequence represents the most
recent silicic volcanism within the Glass Buttes complex,
Petrographic and geochemical data indicate that this seguence is
unrelated to the high-silica rhyolite episode of volcanism. The
presence of plagioclase, hornblende, gquartz, biotite, and ortho-
and clinopyroxene, along with the higher concentrations of Fe, Mg,
Ca, Ti, Sc, Co, Cr, and Eu may indicate that the rhyolite and
rhyodacite magmas were generated under higher temperature melting
conditions than the magma for the high-silica rhyolite sequence.

Episodes of basaltic volcanism occurred during the eruption
of the high~silica rhyolite and rhyolite and rhyodacite sequences.
The intrusion of basaltic magma into the crust provided the heat
source responsible for generating the silicic magmas. The high
viscosity and low density of the high-silica rhyolite magma
chamber apparently prevented basalts from reaching the surface
within the complex during the high-silica rhyolite episode of
volcanism. Basalts which were erupted from vents located within
the complex show petrographic and geochemical evidence of silicic

contamination.
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