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Abstract 

 The purpose of this study is to understand chipped stone technological behaviors at the 

Mead Site located in central Alaska.  Lithics from each cultural occupation ranging in age from 

11,460BP to 1420BP were analyzed and compared.  Specific objectives include (1) 

characterization of variability in raw material and use for each cultural component, (2) description 

of lithic stages of reduction represented in each component, (3) description of the basic lithic 

industries represented, and (4) the identification and characterization of spatial organization and 

lithic behaviors.  Results indicate (1) the tools and debris from Cultural Zone (CZ) 1b and CZ2 

show preferential use of local materials, while the tools from CZ3b and CZ4 are largely 

manufactured using nonlocal materials, and the debitage assemblage is dominated by locally 

available material, (2) CZ1b was a long term occupation, while CZ2, CZ3b, and CZ4 were short 

term camps, and (3) CZ4 is characterized by intensive primary reduction of a local quartz, while 

CZ2 is characterized by biface production.  These patterns suggest similar technological 

strategies were employed at Mead in the Late Pleistocene and Early Holocene with an increase in 

tool form diversity and greater reliance on higher quality locally available materials during the 

Mid Holocene.  
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Chapter 1 Introduction  

In order to contribute to the growing knowledge about Late Pleistocene/Early Holocene 

archaeological sites in Alaska, this thesis provides an analysis of lithic technological behavior  

and spatial patterning  at the Mead site using debitage collected from recent excavations.  The 

Mead site is a deeply buried, multi-component site with good stratigraphic control.   Two other 

sites located in close proximity are also known to have deep cultural contexts: Swan Point and 

Broken Mammoth (Figure 1.1).  Both sites have yielded significant information about late 

Pleistocene/Early Holocene peoples (Hamilton and Goebel 1999; Holmes 2011; Yesner 2001; 

Yesner and Pearson 2002).  However, debitage analysis was not conducted at Swan Point and 

Broken Mammoth, so we therefore lack an understanding of basic lithic behaviors for these early 

periods.  Together with the Mead site these site comprise the earliest accepted dates for cultural 

occupations in Eastern Beringia (Holmes 2001).  Although its significance has long been 

recognized, limited work has been done at the Mead site up until 2009.  This thesis will provide a 

substantive analysis of the lithics at the Mead site focusing on understanding behavior through the 

debitage assemblage. 

Alaskan archaeology has historically focused on placing sites and occupations within 

cultural categories (e.g. Denali or Nenana) based on presence or absence and style of different 

tool forms (Ackerman 2004; Cook 1968, 1969, 1975; Dixon 1985; Dumond 1969; Goebel and 

Bigelow 1992; Holmes 1998; Morlan 1997; Pearson and Powers 1999; Powers 1983; Powers et 

al. 1990; Powers and Hoffecker 1989; West 1967, 1975).  Because of this, a skewed focus 

towards the tool forms found in a lithic assemblage has persisted.  It has been demonstrated that 

debitage assemblages provide more insights into lithic behaviors (Ahler 1989; Andrefsky 2001, 

2005, 2009; Beck 2008; Bradbury et al. 2008; Carr 1999; Carr and Bradbury 2001; Goodale et al. 

2008; Milne 2009; Pecora 2001; Prentiss 1998, 2001; Shott 1994; Sullivan and Rozen 1985).  

This thesis aims to utilize new approaches in debitage analysis in order to better understand 

behavioral patterns at the Mead site. 
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Figure 1.1 Location of the Mead site 

 

Research involving lithic analysis at comparable sites, such as Swan Point and Broken 

Mammoth, have tended to focus on tool forms as a way of cultural designation, or subjective 

descriptions of debris flake types as a method of understanding technological behavior (Holmes 

1996, 2011; Holmes et al. 1996; Yesner et al. 1992). This thesis is geared to understand the 

debitage assemblage and the technological organization of each cultural component using more 

objective methods of analysis.  Individual flake analysis (IFA) provides descriptions and 

measurements of flake variables demonstrated to correlate to different reduction strategies.  The 

Modified Sullivan and Rozen Typology (MSRT) is used to characterize lithic reduction at Mead 

using objective classifications based on the completeness of a flake that also correlate to 

reduction strategies.  Using MSRT and IFA in combination, behavioral information such as raw 

material procurement strategies, curation and toolstone conservation, as well as stages and types 

of reduction are inferred. 

Spatial organization of the site allows components to also be evaluated.  Spatial patterns 

among lithic artifacts can help infer activity areas and behavior at a site (Binford 1983).  
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Prehistoric archaeological sites are comprised almost entirely of debitage and, taphonomic factors 

aside, debitage flakes tend to remain in their original depositional context (Odell 2003:120).  The 

secure spatial context of the cultural components at Mead, particularly in the lower occupations, 

and abundance of debitage allows for more in-depth insight into activities and technological 

organization of the site.  Because the sample size is large, about 7,394 chipped stone artifacts, I 

can evaluate variability within and among components. 

1.1 Research Objectives 

The overall goal of this thesis is to provide an understanding of the lithic assemblage and 

lithic behaviors at Mead.  This includes general description of the lithic industries represented, 

characterization of raw material variability and use for each occupation, as well as understanding 

broader behavioral inferences concerning technological organization and spatial patterning of the 

lithics at Mead.  This research highlights the need for more debitage studies that are directly 

linked with experiments to produce rigorous inferences about the behaviors and activities of past 

peoples through chipped stone technology. 

1.2 Research Questions 

Lithic analyses have been directed towards various ends, including techno-typological 

approaches geared to assigning cultural affiliation (Cook 1996; Holmes 2001; Powers et al. 1990; 

West 1975), geochemical sourcing studies aimed at evaluating exchange and mobility (Cook 

1995; Reuther et al. 2011), and technological organization studies designed to evaluate 

organizational properties of hunter-gatherers (Bamforth 1986; Binford 1979; Bousman 1993; 

Flenniken and Raymond 1986; Larson 1990; Potter 2005, 2008a; Shott 1986). Some of these 

approaches use experimental support to aid in developing robust inferences (Amick et al. 1988; 

Dibble and Whittaker 1981; Keeley and Newcomer 1977; Odell 1989; Schiffer and Skibo 1987; 

Shott 2013).  The approach taken here is fundamentally concerned with building strong 

inferential arguments about lithic behaviors that can be directly compared with an extensive 

experimental literature, independent of the archaeological record. Specific research questions 

addressed in this thesis include assemblage demarcation (question 1), intra-component variability 

(questions 2-4), and inter-component variability (questions 2-6).  

1) Do components represent palimpsests or individual occupation events?  A single cultural 

component at Mead defined by stratigraphic separation could represent a palimpsest of 

cultural material from many occupations rather than one occupation.  Such palimpsests could 
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mask variability in an assemblage and should be identified before proceeding with lithic 

analysis.  In order to determine this, spatial delineation of each component along with 

radiocarbon dating of features found in each cultural zone is evaluated. 

2) How is lithic technology organized at Mead?  The organization of lithic technology, 

including raw material procurement, manufacture, use, maintenance, and discard can inform 

on behavioral patterns and decision-making processes associated with tool use-life (Kelly 

1988; Koldehoff 1987).  Further questions aimed at understand technological organization 

include: Can procurement patterns of toolstone be identified?  Which lithic reduction stages 

can be recognized in each cultural component?  Do multiple reduction strategies occur within 

single components?  Are raw materials being utilized differently between each component? 

3) Is there variation among depositional sets that reflect lithic-related activity areas?  At Mead, 

spatially patterned archaeological remains are patterned due to human behavior rather than 

taphonomic processes, especially in CZ3b and CZ4.  This distribution of lithics in an 

occupation should reflect underlying behaviors, including social organization, occupation 

length, and occupation type (Clarke 1977; Schiffer 1972).  For example, highly variable lithic 

clusters and discrete activity areas can be indicative of extended occupation while redundant 

clusters represent short term occupations.  Additionally, types of activities identified through 

lithic analysis by specific cluster can provide insight into the function of the site and the 

mobile strategy of the occupants. 

4) What conclusions can be drawn about site function and forager adaptive strategies from the 

lithic patterning?  Lithics can inform on broader behavioral patterns such as mobility within a 

region, the function of the site, and occupation span.  Patterns that inform on raw material 

procurement methods as well as curation of toolstone and variability within spatial clusters 

can illuminate different mobility strategies.  Within a specified mobility strategy, site types, 

such as residential base or extractive locations have expected patterns.  Occupation span of a 

cultural component can also be estimated through the lithics in formal tool type frequencies 

and ratios of use of local and nonlocal material.  Each behavioral pattern implicates a broader 

behavioral strategy being used at the site, and changes through time (see question 5). 

5) Are there identifiable differences in technological and spatial organization between each 

cultural component represented at Mead?  The five cultural components at the site span a 

broad range of time and changes in technological and spatial organization seen at Mead may 

inform on changes in broader behavioral patterns in central Alaska.   



5 
 

 

 

6) How does the assemblage and behavioral inferences at the site compare to existing 

interpretations of technological variability in central Alaska?  In order to place the Mead site 

in context with central Alaskan archaeology, the findings presented in this thesis will be 

compared to other research in the region.  Comparable lithic analyses include the work done 

on the Gerstle River, and Dry Creek sites.  General comparisons can be made with 

neighboring sites Swan Point and Broken Mammoth.  Additionally, broader behavioral 

patterns are compared using expected patterns from the Paleoindian and Northern Archaic 

traditions. 
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Chapter 2 Methods and Procedures 

2.1 Research Design 

As early as 1972, Crabtree proposed the study of lithic waste flakes as a way to determine 

stone tool production activities at a site.  Archaeologists began exploring methods and 

implications for debitage analysis (Amick and Mauldin 1989; Amick et al. 1988; Ammerman and 

Andrefsky 1982; Andrefsky 1986; Ingbar et al. 1989; Sullivan and Rozen 1985).  Since then, 

lithic debitage analysis has been commonly used and is becoming increasingly more valuable in 

archaeological research.   Many archaeologists have experimented with debitage analysis and 

tried to define what variables should be included in a study (Amick and Mauldin 1989; Andrefsky 

2005; Bradbury and Carr 2009; Carr 1999; Carr and Bradbury 2001; Odell 2003; Prentiss 1998, 

2001; Shott 1994; Sullivan and Rozen 1985; Tomka 2001), but methods remain varied and 

heavily debated, resulting in the absence of a standard approach towards debitage analysis.  This 

is both a hindrance and an opportunity.  Different lithic systems have different constraints, and 

the lack of a standardized approach towards debitage analysis allows a researcher to tailor their 

variables to the limitations of their project and their specific research questions. 

For this thesis, individual flake analysis (IFA) is one primary methods used to record the 

characteristics of the debitage assemblage.  IFA is in contrast with Mass Analysis as the two 

primary methods of debitage analysis in archaeology.  While Mass Analysis derives its inferences 

from flake size and weight, IFA involves the recording of several attributes for each flake in an 

assemblage.  Because of the size of the assemblage at Mead and the specific goals of analysis, 

IFA was chosen over Mass analysis.  Attributes were chosen based on their reliability to yield 

relevant information, comparability with other research, and efficiency in terms of time taken to 

measure and information gained.  A comprehensive list and description of flake attributes are 

provided in Appendix B.  Once attributes were measured and recorded, the Modified Sullivan and 

Rozen Typology as well as Attribute Analysis were employed to understand the technological 

organization strategies of the past population represented at Mead.   

2.1.1 Technological Organization 

This thesis uses technological organization as the theoretical framework to evaluate lithic 

behaviors.  The study of technological organization focuses on specific adaptive strategies 

employed in the past that are reflections of decisions regarding tool use-life, i.e. procurement, 
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manufacture, use, maintenance, and discard (Kelly 1988:217; Koldehoff 1987:717).  

Technological organization was originally seen as a way to understand variation in lithic 

assemblages (Binford 1973, 1977a) and the relationship between technological strategies and 

economic and social influences of a group (Andrefsky 1994; Bamforth 1991; Bleed 1986; 

Johnson and Morrow 1987; Kelly 1988; Parry and Kelly 1987; Shott 1986; Torrence 1983).  

Technological organization involves many domains of inquiry such as raw material availability 

and quality, procurement strategies, mobility, and tool efficiency, reliability, maintainability, and 

effectiveness.   These areas of technological organization have been widely used by 

archaeologists as a way to interpret lithic assemblages (Andrefsky 1994; Bamforth 1986, 1991; 

Bamforth and Bleed 1997; Beck 2008; Binford 1973, 1977a, 1979, 1980, 1982; Bousman 1993, 

2005; Bradbury et al. 2008; Carr and Bradbury 2001; Kelly 1983; Kuhn 1990, 1992, 1994; Nash 

1996; Nelson 1991; Odell 1988, 1996; Parry and Kelly 1987; Shott 1986, 1996; Shott et al. 1989; 

Torrence 1983).  The decision to employ a specific strategy in any of these areas is influenced by 

variables such as mobility patterns, resource distribution, and associated risk and costs.  Variables 

that can help evaluate these behaviors include: degree of maintenance and recycling, 

conservation, curation, assemblage composition, and reduction stages present. 

The study of technological organizational strategies are used to better understand the 

relationship between the availability of tool stone, where tool activities take place, raw material 

use, and other processes (Bamforth 1986; Binford 1979; Keeley 1982; Parry and Kelly 1987).  In 

order to do this, observations must be made through controlled studies in ethnography and 

ethnoarchaeology about the nature of the relationship between material patterns and behavioral 

patterns.  Although the use of ethnographic analogy in archaeology is heavily debated (Binford 

1967, 1985, 2001; Gould 1980, 1985; Gould and Watson 1982; Wylie 1982, 2002), it remains an 

important approach towards understanding behavior from archaeological remains.   

In tool production, several factors may influence the creator’s design.  These factors are 

influence by the needs of the creator which vary depending on the behavioral patterns of the 

designer.  Curated tools, tools that are maintained and transported multiple times, can focus on 

reliability, maintainability, or efficiency.  A maintainable tool can be used for more than one task 

and are designed to be usable even after broken, either for their original intended use or recycled 

for a another use.  They are often light and portable as a result of their longer use-life and the 

need to transport the tool.   Because maintainable designs allow for flexible use of a tool, these 

tools are primarily used to cope with unpredictable and diverse resources (Bousman 1993:70).  
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Reliable weapons are specialized and sturdy (Bleed 1986) and are often used when the 

consequences of not obtaining a resource could be severe.  These types of tools require a 

considerable amount of planning and forethought.  Efficient tools are made to increase the 

number of usable tools from a single raw material unit.  By employing this strategy, the cost of 

obtaining raw materials is reduced (Bousman 1993:71).  By measuring the reliability, 

maintainability, etc. of a tool, implications about the subsistence and mobility strategies can be 

made.   

A separate category of tool exists without the influencing factors of reliability, 

maintainability, and efficiency.  Expedient tools can either be created as part of a planned toolkit, 

where raw materials are accessible and minimal tool use will be required for a short period of 

time, or as on opportunistic result.  The difference is that opportunistic expedient tools are created 

due to an unanticipated needed and true expedient tools are made as part of a strategy and 

planned for (Bousman 1993; Nelson 1991).  Bousman (1993) summarizes the technological needs 

of foragers and collectors following Binford’s (1980) original designations.  In general, foragers 

will have broad, generalized tools and weapons that focus on maintainability.  Tools will tend to 

have longer use-lives and therefore will be subject to more maintenance and repairs.  Collectors 

on the other hand, will have a more specialized toolkit with a focus on reliable tools.  These tools 

usually have shorter use-lives with more production and replacement occurring rather than 

recycling. (Bousman 1993:78).  By measuring tool attributes related to use-life, maintainability, 

expediency, etc., as well as observing overall flake distribution patterns within a site, inferences 

can be made about the needs and behaviors of the users. 

For example, an expedient technological strategy is expected to take place when raw 

material availability is predictable and easily accessible (Bleed 1986; Parry and Kelly 1987).  

Likewise a patterns exhibiting curation and conservation of raw materials is expected when raw 

material resources are limited (Bamforth 1986; Brantingham 2003).  Parry and Kelly (1987) 

argue that the planned stockpiling of material or anticipation of raw material in revisited sites is 

means enough for expedient technology.  Parry and Kelly (1987) stress that a place needs have 

been regularly or repeatedly occupied to allow for the stockpiling of raw material.   Torrence 

(1983) adds that there needs to be no time stress for expedient technology to be chosen i.e. there 

are materials available when needed.  Cobb and Webb (1994) demonstrate that tools are less 

likely to be maintained the closer an individual or group is to a source of quality raw material.  

Nevertheless, the availability of raw material is an insufficient factor for selecting for an 
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expedient strategy.  Some archaeologists argue that residences occupied during low productivity 

seasons have more downtime and therefore should have more evidence of repairing and 

maintenance i.e. curation (Binford 1979; Gamble 1986; Keeley 1982; Torrence 1983) but only at 

residences where raw material is available (Binford 1979; Morrow 1987; Parry and Kelly 1987).  

However available raw material makes it possible for expedient strategies, further complicating 

the parameters for selection of one strategy over the other (Gallagher 1977; Johnson 1987; Keeley 

1982; Kelly 1988; Parry and Kelly 1987).   

These relationships concerning raw material and tool production and maintenance 

strategies also inform on mobility as seen through the works of  Binford and O’Connell (1984), 

Kelly (1988), Kuhn (1994), Bamforth (1986) and Brantingham (2003).  Kelly (1988) shows that a 

shift in the use of bifaces as cores to an infrequent use of bifaces as tools relates to a shift to 

logistical mobility and short-term use of sites.  Kuhn (1994) argues that transport costs (e.g. 

weight) supersede the variables of durability and versatility of a tool.  If this is true then an 

archaeologist should expect to see smaller, more curated tools in more highly mobile groups. 

Braun (2005) and Brantinghamn and Kuhn (2001) both demonstrate that toolmakers conserve 

materials when raw material resources are limited, and Andrefsky (2008b) and Kuhn (1991) 

demonstrate that raw material proximity does in fact influence degree of retouch. The 

interconnectivity between raw material resource distribution and mobility patterns throughout the 

landscape expressed in these examples, generate expected outcomes that can be applied to lithic 

assemblage such as the collection from Mead in order to make inferences about mobility patterns 

based on the presence, absence, or degree of variables associated with forager/collector strategies. 

One of the important concepts surrounding raw material and technological organization is 

the strategy of procurement of raw material.  The procurement strategy of material is also linked 

to mobility patterns and provides another avenue to explore how groups move across the 

landscape.  Archaeologists generally divide procurement strategies between embedded 

procurement i.e. the acquiring of raw materials as part of larger subsistence and mobility patterns, 

or direct procurement i.e. organized trips specifically designed for the task of acquiring raw 

material. This is most heavily debated by Binford and Gould (Binford 1973, 1985; Binford and 

Stone 1985; Gould 1985; Gould and Saggers 1985).  Ethnographic examples of direct and 

embedded procurement are very few but there are some excellent examples (Binford and 

O'Connell 1984; Gallagher 1977; Gould and Saggers 1985).  While ethnographic examples do 

exist it is even more difficult to find an application of inferences made by ethnoarchaeology to an 
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actual archaeological dataset. However Bamforth (1991) successfully applies findings concerning 

technological organization from ethnographic examples to an archaeological dataset.  Seeman 

(1994) adds to the debate surrounding embedded or direct procurement strategies by stressing that 

raw material procurement is one of many aspects of technological organization and is influenced 

by the system it is contained within. He demonstrated that multiple strategies could have been 

employed during one occupation, and that past strategies of toolstone procurement could have 

been radically different than previously thought. 

Another way technological organization is understood at a site is through the reduction 

stages represented in each occupation.   Reduction stages link an assemblage with primary 

reduction, seen most frequently at quarry sites, secondary reduction, the formation and reduction 

of blanks or prepared cores, and tertiary reduction, the maintenance of formed tools.  Variables 

such as dorsal scar count, cortex, platform type, and flake size are accepted as informing on 

reduction stage.  The assumption is that as a core or flake is reduced and worked, the amount of 

cortex and size of the flake will decrease, the number of dorsal scar counts will increase, and 

platforms will become more complex.  By measuring these variables, a general idea of what 

stages of reduction are present can be formed and then linked with larger patterns such as 

mobility or raw material maximization.  Maximization and conservation of raw materials can be 

seen through high frequencies of platform preparation, low percentages of cortex coverage, and a 

preference for nonlocal materials for formal tools.  

Binford (1980) separates mobile strategies into two categories each with their own site 

types an expected outcomes.  A foraging system is characterized by residential mobility.  In other 

words, residential bases are frequently moved from place to place throughout the year in order to 

better position people across the landscape for the acquisition of resources.  Typically resources 

are gathered on encounter basis with a lesser dependence on storage. Two site types found in 

foraging societies include residential bases and extractive locations.  Residential bases have 

variable assemblage sizes and an abundance of toolstone types.  Shott (1986) also argues that 

people who are highly mobile will produce fewer types of tools than people who remain 

sedentary for longer amounts of time.  This then implies that the residential bases are occupied 

for longer periods of time.  Extractive locations generally have a small assemblage size with low 

variability of raw materials and tool forms. A high degree of redundancy, seen through fewer 

specialized activity areas within the site, may reflect higher degrees of mobility.  Contrasted with 

foraging societies are collectors who are logistically mobile.  Resource procurement is logistically 
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organized following direct procurement strategies.  In relation to this, food storage becomes very 

important in logistically mobile populations (Binford 1980:344). Collectors also have residential 

bases with high tool diversity and extractive locations with low tool variability, but with the 

addition of field camps (medium tool diversity), stations (low tool variability), and caches in the 

list of site types.  A lower degree of redundancy , that is specialized activity areas within a site, 

may reflect a higher mobility in collectors. 

For site occupation length Kuhn (1994) created a model based on the ratio of local and 

nonlocal lithic raw materials in an assemblage. Assumptions include that the discard of artifacts 

with long use-lives should be low for short term occupations.  As occupation span increases, the 

discard rate of tools should increase.  This is supported by Schiffer and Skibo (1987:55) and 

Surovell (2003) and others (Rolland and Dibble 1990).  Discarded tools at short-term residential 

sites should also be dominated by nonlocal materials and indicative of raw material conservation 

(Surovell 2009:77).  Intensive reduction and raw material conservation can be measured by 

platform preparation, greater percentage of smaller flakes, and a lack of cortex.   

 

While technological organization represents a key framework to evaluate lithic 

variability, issues still remain.  There is still no standardized method to guide researchers in their 

study of lithic and behavioral patterns (Andrefsky 2009).  Underlying concerns with the use of 

analogy permeate the literature and could weaken the assumptions and conclusions drawn (Wylie 

1985:139; 1988).  Unclear definitions of terms as well have led to near chaos concerning the use 

and implications of terms like curation (Nash 1996; Nelson 1991).  Other issues include the 

recognition and definition of variables.  What should be measured and how do we measure it?  

Also, as with any study in archaeology, there are issues with the nature of the archaeological 

record.  The record of the past is always coarse-grained, and measurements of parameters 

including risk, resource location and economy are difficult to clearly obtain.  For example, 

proximity to raw material is a key variable in separating between expedient and curated 

technologies however proximity may not be able to be identified.  Similarly, the study of 

technological organization seems to be dependent on the clear cut boundaries between two 

technological strategies or reduction stages, but if multiple technological strategies and reductions 

stages were present, the record would not yield data consistent with one strategy and complicate 

any following inferences.  This is a relevant problem at the Mead site where evidence of 

continuous reduction from core to tool is present.  In order to counter these biases, I have 
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combined the use of standard variables that have been shown in the literature to provide robust 

relationships, with well-tested approaches to debitage analysis. 

In order to understand the technological organization patterns exhibited at Mead, methods 

of analysis, specifically the Modified Sullivan and Rozen Typology as well as Attribute Analysis, 

were employed in order to draw inferences from the raw data about past behaviors. 

2.1.2 Problems and Hypotheses 

1) Can components be clearly defined stratigraphically? Does each component at Mead 

represent an individual occupation or a palimpsest?  In order to determine if lithic variation 

between occupations is the result of behavioral decision-making, components must first be 

clearly defined.  The delineation of components and testing of their separation is achieved by 

the use of visual separation according to clear breaks in stratigraphic profiles, as well as 

radiocarbon dating.  If multiple features in one component return two different dates the 

component could potentially be a palimpsest, however if dates overlap, than the component 

likely represents an individual occupation. 

2) How is lithic technology organized?  This research question is subdivided using the concept 

of tool use-lives; from procurement through manufacture, use, re-use, and discard (Andrefsky 

2008a; Kelly 1988; Nelson 1991; Schiffer 1992). Lithic procurement has generally been 

classified as embedded or direct, with implications for overall mobility in foraging societies 

(Andrefsky 2009; Bamforth 1990; Brantingham 2003; Gould and Saggers 1985; Odell 2000; 

Seeman 1994).  Patterns consistent with embedded procurement include a shift in reliance to 

local materials as well as caching behavior. This will be tested through ratios of local to 

nonlocal materials in both debitage and tools.  Patterns consistent with direct procurement 

include emphasis on nonlocal materials and conservation of tools made from them.  This will 

be tested through ratios of local to nonlocal materials in tools as well as edge angle, and 

percent utilized for quantification of conservation on a tool form.   Manufacture of tools and 

flakes has generally been dived into three reduction stages: primary, secondary, and tertiary.  

The presence or absence of reduction stages can inform on locality of a specific raw material 

but also on types of reduction occurring at the site which can then imply site use (Andrefsky 

2005; Crabtree 1972; Dibble and Whittaker 1981; White 1963).  Patterns consistent with 

primary reduction include high percentage of cortex, large flakes sizes, simple or cortical 

platforms, and low dorsal scar counts.   These will be tested through cortical coverage and 

maximum flake dimensions, dorsal scar count and platform type.  Patterns consistent with 
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late stage reduction include very low percentage of cortex, small flake sizes, high counts of 

dorsal scars, and complex platforms.  Lithic analysis often includes a characterization of 

types of lithics strategies employed for the production of tools.  Generally this is divided into 

expedient or formal technologies (Andrefsky 1994; Bamforth 1986; Cobb and Webb 1994; 

Torrence 1989).  Patterns consistent with expedient technological strategy include high 

percentage of local materials for tools, and relatively little maximization of raw material and 

very little curation evident.  This will be tested through local and nonlocal ratios of tools, 

quantity of formal tool types, measuring of percent utilization of each tool, as well as edge 

angle of each tool.  Patterns consistent with formal tool strategies, such as microblade and 

bifacial startegies, include emphasis on nonlocal materials, heavy curation of tools and 

maximization of raw materials.   These will be tested through quantity of formal tools types 

as well tools made on nonlocal materials, and the measuring of percent utilization of each 

tool, as well as edge angle of each tool.   

3) Are lithics spatially organized in specific patterns at Mead? Is there variation among 

depositional sets that reflect different lithic activities? The degree of redundancy in activity 

areas has been shown to be associated with mobility patterns (Binford 1978).  A high degree 

of redundancy may reflect higher degrees of residential mobility.  However a lower degree of 

redundancy may reflect higher logistic mobility of collector societies (Kelly and Todd 1988) .  

Expected patterns consistent with redundant clusters include fewer specialized activity areas.  

Expected patterns consistent with low redundancy include many discernible areas with 

specialized activities.  This will be tested by evaluating individual lithic activities in defined 

clusters by means of reduction stage, production type, material types, variability, and hearth 

association.   

4) Are there technological differences through time at the site? Is there a shift in technological 

strategies between the different cultural components?  In order for components to be 

compared, a characterization of technological organization and spatial patterning is first 

necessary.  Once these aspects of each component are understood, general comparisons can 

be made concerning behavioral activities.  Differences between components will be explored 

by comparing procurement patterns, differing use of local or nonlocal material, activity types 

occurring, hearth association, and reduction strategies.  

5) What are the broader behavioral strategies represented?  How did the site function within 

the framework of larger mobility patterns? Mobility patterns have generally been divided into 
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residential mobility (foragers) and logistic mobility (collectors) (Binford 1973, 1977a, 1979, 

1980).  Patterns expected for residentially mobile groups include encounter basis resource 

gathering, and a lesser dependence on storage.  For residential base site types pattern include 

a variable assemblage size and abundance of toolstone types.  For location or extractive 

location site types, patterns include a small assemblage size with low variability of tools and 

toolstone.  Patterns expected for logistically organized groups include logistically procured 

resources, with a greater emphasis on food storage (Binford 1980:344).  For logistically 

organized residential base site types patterns expected include high diversity of tool forms.  

For logistically organized extractive locations a low variability of tool form is expected.  For 

field camps medium tool diversity is expected and for stations low tool variability is 

expected.  To test for these mobility patterns and site type a general characterization of 

procurement patterns will be undertaken, as well as quantification of formalized tool forms, 

assemblage size and variability of raw materials. 

6) Does the technological organization at Mead correspond with previous central Alaskan 

research?  Is technology organized at Mead consistent with other analyzed assemblages in 

central Alaska?  Comparable research in central Alaska includes some form of lithic analysis 

and characterization of behavioral patterns of a site.  Due to a historic focus on typological 

analysis and cultural designations (Cook 1996; Goebel and Bigelow 1996; Goebel et al. 1996; 

Hoffecker and Powers 1996; Hoffecker et al. 1996; Holmes 1996; Holmes et al. 1996), this 

type of analysis is not widely available, but is present for the Dry Creek and Gerstle River 

sites.  Comparisons among behavioral patterns such as procurement strategies, mobility, 

occupation span, site function, and artifact density can be made.  Additionally general 

patterns of lithic behaviors at Mead can be compared to patterns proposed for cultural 

traditions such as Palearctic and Northern Archaic traditions. 

To address these questions, I used a combination of MSRT and Attribute Anlysis.  These 

methods and statistical tests are described below. 

2.1.3 Modified Sullivan and Rozen Typology 

The Modified Sullivan and Rozen Typology (MSRT) is a method of debitage analysis 

that uses flake completeness as a variable influenced by type of reduction strategy.  In this 

approach, lithic debitage are defined as flakes, flake fragments or broken flakes, and shatter.  

Debitage does not include products of specialized strategies such as microblades and burin spalls.  

Initially the Sullivan and Rozen Typology (SRT) was proposed as a way to analyze debitage 
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without the use of subjective characterizations of flakes (Sullivan and Rozen 1985).  The main 

problem they reduce is subjective and often misclassified typologies.  To counter this, they focus 

on easily operationalized flake typologies of completeness.  Two case studies, the TEP St. Johns 

project and the Pitiful Flats study, show the effectiveness of their method.  After criticism of the 

implementation of this technique (Amick and Mauldin 1989; Ensor and Roemer 1989), Prentiss 

(2001) wrote a critical review on the limitations of SRT, namely that other variables may  affect 

the frequency of broken flakes, flake fragments, complete flakes and shatter.  He then presents the 

MSRT as a solution to this problem. MSRT includes the characteristic of size classes (very small, 

small, medium, large, and very large) into the original typology, making the original five debitage 

classes into 20.  Inferences that can be drawn from this model have been linked with experiments.  

Core reduction and flake production should result in higher frequencies of complete flakes, split 

flakes and shatter.  Tool production should result in higher broken flake percentages.  However, 

broken flakes can also indicate taphonomic disturbance like trampling damage.  Production of 

medium to small bifaces produces size classes of small, medium, and large flakes with a high 

number of flake fragments, reduced number of broken flakes, and very low frequencies of 

complete and split flakes in the small categories.  High frequencies of complete flakes are also 

expected when platform preparation is being employed.  A large amount of complete flakes and 

shatter is interpreted to be indicative of core reduction. Expectations for core reduction can be 

further divided by core size.  Reduction of large flake cores is expected to produce large complete 

flakes as well as medium shatter and split flakes.  Medium flake core reduction should produce 

high numbers of medium sized flakes and small frags and shatter.  Expected outcomes for 

pressure flaking are limited to high frequencies of small split and broken flakes.  Reduction with 

a soft hammer produces an exceptionally high amount of small flake fragments either in biface 

production or core reduction.  These inferences made from Prentiss’ experiments, in conjunction 

with other lines of evidence (see below), can be applied to the Mead assemblage and used to 

understand reduction strategies at the site. 

2.1.4 Attribute Analysis 

In this project Attribute Analysis, as opposed to aggregate or typological analysis, is one 

of the methods of flake analysis employed.  Using Andrefsky (2005) as a guideline for applicable 

attributes and their definitions, specific variables were chosen to be measured based on three 

criteria: comparability, usefulness, and efficiency .  Comparability means that each variable was 

evaluated for use in other research in order to make this flake analysis relevant to other site 



17 
 

 

 

analysis.  Usefulness means that every variable was evaluated for what it could potentially 

contribute to the understanding of the assemblage and its proven effectiveness in making 

inferences about lithic technology.  Efficiency means that variables were only chosen if they did 

not require extraordinary amounts of time in relation the type of information they yield.  If two 

variables can be measured that both inform on the same aspect of lithic reduction and one is very 

easy to measure and one takes much longer, the quicker of the two to measure would be chosen 

over the latter. 

Attribute analysis was chosen over aggregate and typological analysis for a number of 

reasons.  Aggregate analysis is typically employed when assemblages are very large and there is a 

finite amount of time for exploration and interpretation (Ahler 1989; Ammerman and Andrefsky 

1982).  While it is useful in determining reduction stages (Ahler 1989), aggregate analysis falters 

when trying to understand the type of tool produced or type of core reduced (Andrefsky 2001:12).  

Typological analysis was avoided due to a concern for objective descriptions of flakes that do not 

infer behavior (see Andrefsky 2005).  Typological categories such as bifacial thinning flake, 

notching flake, and channel flake immediately convey some behavior behind their production.  

Unfortunately such classifications are complicated by ambiguous and varied definitions.  Sullivan 

and Rozen (1985) and Redman (1998) have also pointed out the lack of replicable definitions in 

typological analysis.  They also call into question the lack of clear definitions of typologies and 

characteristic used to define them. 

Because Attribute Analysis can be tailored to specific research designs and because this 

method of recording and analyzing variables also makes it possible to conduct aggregate and 

typological analysis, it was chosen as the most flexible method of analysis.  Many attributes have 

been linked with valuable information that can inform on technological behaviors at a site.  

Measurements of cortex have been linked to stage of reduction and type of tool produced 

(Johnson 1987; White 1963).  Debitage size and weight has been linked with raw material source 

locations (Beck 2008; Close 1996; Sassaman 1994).  Platform type and morphology has been 

used to differentiate between core reduction and biface reduction, and type of hammer used 

(Odell 1989; Parry and Kelly 1987; Shott 1994).   

What is important to emphasize is that no one method of flake analysis is sufficient to 

draw strong inferences from.  Likewise no single variable can definitively show what stage of 

reduction occurred, what type of hammer was used, etc.  By using both MSRT and Attribute 

Analysis, and ensuring that multiple variables are used for single inferences, this research aims to 
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strengthen the inferences made using these multiple lines of evidence.  For a complete list of all 

attributes measured see Appendix B. 

2.2 Statistical tests 

In order to interpret data and results yielded during this project statistical tests for 

significance are employed:  Pearson’s chi-square, Fisher’s exact test, ANOVA and Tukey’s post 

hoc test.  Pearson’s chi-square tests significance between variables with an expected cell outcome 

that is greater or equal to 5.  The test was used for nominal, ordinal, and binomial data such as 

artifact type, cortex, presence or absence of eraillure scar, etc.  The significance is determined at 

the 0.05 level and is two-sided.  Where the expected outcome of a variable is less than 5, Fisher’s 

exacts test is used.  Fisher’s exact test is used for nominal, ordinal, and binomial data and is 

measured at the 0.05 level.  When variables such as weight, dorsal scar count, utilized percent, 

etc. are tested for significance an ANOVA test can be used.  Both the one-way and two-way 

ANOVA tests are used in conjunction with Tukey’s post hoc test in order to determine which 

variables are significantly different from each other.  When there are less than 15 flakes in a 

sample being tested for significance, a t-test is used for ratio level data. Significance is measured 

at the 0.05 level.   

2.3 Field Methods 

The two seasons of excavation described in this project took place in 2009 and 2011 as 

part of the University of Alaska Fairbanks Archaeological Field School.  Both excavations began 

on May 18th and ran until late June.  A 1 x 1 m arbitrary grid pattern was applied to the site; each 

1 x 1 m area was referred to and labeled as a unit and a 2 x 2 m excavation area was labeled a 

Block. A single datum was set up for each Block.  A total station was used to 3-point all in situ 

artifacts, the total station was set up and calibrated at the beginning of each day by using a back 

shot to a datum point oriented directly grid north.  Excavators took care to 3-point as much as 

possible, when a total station could not be used due to line-of-sight issues, hand 3-pointing was 

conducted.  All excavated sediment was first screened for any remaining artifacts using a 1/8 in 

screen. In order to obtain the most constrained provenience possible even when an artifact is not 

3-pointed, sediment was screened by 25 x 25 cm quads and 5 cm levels.  In order to ensure that 

no artifacts were missed, all students’ screens were checked by an experienced field excavator 

until it was established that they could detect artifacts unaided.  When artifact concentrations 

were extremely dense and enough 3-points had been taken, the whole concentration would be 
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bagged for later screening in the lab.  This only happened in two instances in 2011, both 

concentrations were in a 15 x 15 cm area with well over 300 flakes.  Likewise, all hearth material 

and feature sediment was bagged for later screening or floatation in the lab.  Artifacts were 

labeled by Block and then field specimen (FS).  Each Block was excavated by two students who 

shared a running sequence of FS numbers.   

Excavations were done primarily by hand troweling, however the C2 horizon has about 

40 cm of sterile sediment.  After two levels of sterile excavation in this horizon, excavators were 

allowed to skim shovel.  At the end of each excavation profiles were recorded where possible 

(Figure 3.2).  Excavations were conducted in contoured arbitrary levels.  Each level was 5 cm and 

followed the natural slope of the original site surface.  Any overburden from previous excavation 

was first removed before taking surface measurements.  When artifacts were present, as many as 

possible flakes or bones were pedestaled and photographed in order to better represent the full 

scatter.  Additionally photographs of all features, scatters, large artifacts were taken.  A photo log 

was also kept for the site. 

2.4 Lab Methods 

Artifacts bagged for later screening in the field were screened in the lab using geologic 

sieves.  In order to remain consists with field collection methods flakes found in the 1/8th in 

screen were screened and bagged separately from flakes found in the 1/6th in screen.  Bags 

containing feature matrix were screened to obtain charcoal fragments for radiocarbon.  During 

cataloging and flake analysis stone artifacts were cleaned with a dry soft bristle.  Bone fragments 

were cleaned using a dry, grade four, flat-bristle paintbrush.  All artifact information including 

description and provenience information was checked for accuracy by cross-referencing bag 

information, field log information, and total station logs during cataloging.  All artifacts are 

currently housed in the UAF archaeological laboratory.  Any flake with a maximum dimension 

less than 0.3 cm was not included in the study.  The list of attributes recorded in this study for all 

artifacts classes (debitage, biface, uniface, microblade, burin, burin spall, modified flake, and 

flake core).  All characteristics recorded were chosen specifically to answer questions concerning 

lithic strategies used at the site and for compatibility with other relevant research (see above). 

Andrefsky (2005) divides chipped stone artifacts into two basic categories: detached 

pieces and objective pieces.  Detached pieces are artifacts that were created as a result of 

manufacture and reduction, objective pieces are artifacts which have been modified in any way 

such as cores, bifaces, or modified flakes.  For the purpose of this study the terms debitage or 
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debris, and flake to will refer to detached pieces.  This category may also include modified flakes 

that exhibit patterns of wear or retouch but were detached from a tool during sharpening or 

reshaping and not utilized as a piece by itself.  Debris refers to pieces of material that are 

purposefully removed but not utilized. 

Terms that can be classified as objective pieces in this study are core, biface, uniface, 

modified flake, burin or burin spall, and microblade.  The term tool is applied to any object that 

has been used to work or modify other material.  In order to be classified a tool an item must 

exhibit evidence of use.  In this study a low-power approach to usewear is taken that recognized 

wear-patterns by the presence or absence of small flake scars using 0-40x magnification.  

However, some objective pieces are not tools but rather created with specific roles in reduction 

strategies and tool manufacture, and they do not require evidence of use.  These items include 

burin spalls, microblades, cores and flake blanks and preforms.  Detailed lithic analytical methods 

are also provided in Appendix B. 
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Chapter 3 Background 

This chapter situates the Mead site in its physical and archaeological context. 

3.1 Site Location and Setting 

The Mead site is located on a 10 m high bluff overlooking Shaw Creek and the Shaw 

Creek Flats in the Tanana River basin.  The site is on an ecotone between the Tanana Lowlands 

and the Yukon-Tanana Uplands (Wahrhaftig 1965). The Yukon-Tanana Uplands is comprised of 

low rounded ridgelines as well as mountainous terrain, also associated with thick accumulation of 

aeolian sediments (Pewe 1975).  The lowlands are covered in alluvium from the Tanana River.   

3.2 History of Archaeological Investigation 

The Mead site is located on a south/southeast facing bluff edge that was used as a rock 

quarry during the 1950’s and 1960’s (Dilley 1998).  Mead was recognized as an archaeological 

site in the early 1970’s however formal excavation at the site was first conducted in 1990 and 

1992 when Holmes tested both the east and west lobes identified at Mead.  Holmes found mostly 

debitage and bone fragments but his research allowed him to make initial observations 

concerning the multiple components at Mead. Holmes identified four Cultural Zones (CZ), CZ1 

dated from 1,200 to 4,500 cal BP, CZ2 dated around 6,800 cal BP, CZ3 dated around 12,500 cal 

BP and CZ4 dated to around 13,500 cal BP (Holmes 2001).  Due to differences in research 

questions and collection methods, artifacts from the 1990 and 1992 assemblage are not used in 

the analysis. 

No work was done at the site between 1992 and 2009.  Excavation began in 2009 (Potter 

et al. 2011) with a total of 52 m dug in both the east and west lobes of the site.  In order to ensure 

a wide spatial context for the assemblage to be analyzed, only artifacts and results from the 

excavation of the East lobe at Mead, the largest contiguous excavation, will be included (Figure 

2.3).  One feature was recorded in the East Block with 2,306 debris flakes, 19 modified flakes, 

three microblades, and seven flake cores recovered. 

Excavation was continued in 2011 supervised by Dr. Potter.  Another 26 m were 

excavated (Figure 3.1) including the uncovering of the remaining half of a large hearth found in 

2009.  A total of eight features were uncovered including a large cache pit feature (Feature 2011-

4) associated with CZ1b.  Artifacts included 5,002 debris flakes, 49 modified flakes, three 

bifaces, one biface, two microblades, two burins, 2 burin spalls, and two flake cores.   
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It should be noted that a 2012 field season also occurred at the Mead site but the 

assemblage could not be included in the scope of this project.  Although the lithic assemblage 

was excluded, in order to better delineate the cultural components at Mead 2012 feature data was 

used.  More specifically, in order to obtain a confident date for CZ2, charcoal collected from a 

hearth (Feature 2012-4) during the 2012 excavations was dated.  Additionally, a new cultural 

occupation uncovered in 2012 lead to the delineation of CZ3a and CZ3b from the original CZ3. 
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Figure 3.1 East Block excavation area as of 2011 
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Figure 3.2 Stratigraphic profiles drawn for 2009 and 2011 
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3.3 Cultural Chronology 

Central Alaskan Archaeology has the potential to answer many questions concerning the 

behavior of the first humans in America.  The record offers windows into long-term adaptation 

and cultural change reflecting dynamic environmental and economic conditions.  However, the 

current state of Alaskan archaeology is somewhat problematic.  The prevalent theoretical 

paradigm at the time of the beginning of archaeological inquiry in Alaska has heavily influenced 

the approaches to archaeological research in the Subarctic.  The surge of archeological research 

geared towards late Pleistocene sites was initiated in a theoretical framework of transition from 

cultural-history to early processualism.  Although the processual paradigm and approaches have 

been strongly advocated by the broader North American archeological community, some Alaskan 

archaeologists tend to use a normative view of culture and focus on description and cultural 

typologies based on tool types.  This theoretical background has limited broader intellectual 

concerns and questions about past lifeways in interior Alaska.  This, in conjunction with larger 

problems such as ambiguous stratigraphy, radiocarbon problems and data gaps in the record, 

complicates research in the subarctic. 

Another limitation to regional archaeological research is the intense focus on lithic tools.  

This is partly because lithic tools are seen as culturally diagnostic, and other sources of assessing 

contemporaneity such as relevant charcoal and organics, were difficult to come by the early years 

of Alaskan archaeology (Erlandson et al. 1991). The focus on lithic tools is also due to the 

prevailing framework of cultural-historical theory (Binford 1965, 1968; Caldwell 1959; Flannery 

1967).  Archaeologists operating under a cultural-historic framework typically view tools as 

culturally-diagnostic typologies that represent real cultural differences (Phillips and Willey 1953; 

Spaulding 1953).  Following this, if similar tool types could be found in continuum through space 

and time, one could infer that a cultural continuum had also occurred (Lyman et al. 1997).  

Likewise, cultural discontinuity was inferred if tool types were not similar to each other.  Because 

of this, migration, diffusion and replacement, all forces of change occurring from the outside, 

were often used to explain changes in archaeological assemblages (Trigger 2006:311).  The 

growing need to explain cultural changes within a cultural group became apparent to 

archaeologists in the 1950’s.  At the beginning of processualism or “New Archaeology,” in the 

1960’s, archaeologists searched for ways to explain variability rather than describe it.  They 

began to entertain the idea that characteristics of tools and other material remains may be 

subjectively created rather than discovered and began forging the science of archaeology. 
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 Seminal papers discussing the shortcomings of the cultural historical framework 

(Caldwell 1959), and strength of processualism (Binford 1962, 1965) demonstrated to the 

archaeological community that new ways of approaching the record of the past provided the 

ability to explore, explain, and interpret meaning in a scientific manner.  Over the next few 

decades, processualist ideas were reviewed, altered and strengthened and the “New Archaeology” 

took hold in North American Archaeology.  However, Alaskan archaeology currently remains 

focused on descriptive research and cultural chronologies defined by tool typologies, seemingly 

unaware of the major theoretical and scientific leaps made in the 60’s and 70’s and the 

improvements of research techniques that followed. 

 The cultural-historical theoretical background can be seen in many early site excavations 

and interpretations of the central Alaskan archaeological record, and it persists throughout current 

projects (Dixon 1985; Powers and Hoffecker 1989).  Early excavations such as the Campus site, 

as well as Healy Lake, Donnelly ridge, Teklanika East and West, and Walker Road, were entirely 

descriptive in their formation (Nelson 1935, 1937; Rainey 1939; West 1967).  Using occupations 

found in these sites, descriptions were given based on variation in lithic type and shape, 

specifically presence and absence of microblades, and biface shape, and these differences were 

attributed to cultures. 

 Debate remains about the delineation of the Denali and Nenana complexes based on the 

presence or absence of microblade technology. Excavations at Swan Point helped to solidify the 

need for a microblade-absent Nenana complex, yet it also yielded the confusing discovery of an 

assemblage that dated earlier than the Nenana complex but was typical of the Denali complex 

toolset (Holmes 1998).  Further complicating this finding was the unearthing of cultural layers at 

the Swan Point and Broken Mammoth sites that had Nenana assemblages in stratigraphic layers 

near the surface, indicating cultural continuity and contemporaneity with the Denali complex 

(Holmes 2001).  It has been shown through radiocarbon dating that sites that do not have the 

typical Denali assemblage, should still be temporally categorized as Denali (Bever 2006; 

Dumond 2001).  These complication have begun to show that the study of tools as cultural 

typologies is a largely unrewarding practice (Binford 1983, 2001), however some Alaskan 

archaeologists continue on with this cultural-historic framework. 

 In 1985 Dixon published an important paper setting forth a cultural chronology for the 

Alaskan interior.  In it, he proposed five different cultural complexes: The Chindadn complex 

beginning around 13,000 years ago is based on the Chindadn and Nenana assemblages found at 
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Healy Lake and Dry Creek.  The American Paleoarctic tradition beginning around 12,500 years 

ago is described as the Denali complex as labeled by West (1967, 1975).  The Northern Archaic 

tradition begins around 6,000 years ago and is described by Dixon as a loss of microblade 

technology with the addition of notched points (although it has been demonstrated that 

microblades exist in this time and space as well (Esdale 2008; Potter 2008b).  The Late Denali 

complex beginning around 4,000 years ago is the same as the regular Denali complex but Dixon 

separated it out in order to explain the apparent gap in microblade technology.  Finally, Dixon 

ends the chronology with the Athabaskan cultural tradition beginning around 1,500 years ago 

(Dixon 1985).  With this, the underlying paradigm of cultural-history once again comes to light.  

It is clear that Dixon’s cultural chronology, as well as West and Dumond’s attempts, all base their 

findings on what they believe to be culturally diagnostic tools. This persists throughout the 

following chronologies as well. 

 In 2001, Holmes set forth a cultural chronology based on tool typologies as well as 

radiocarbon dates and cultural migrations (expaned in 2008).  Ultimately he argues for the use of 

“periods” rather than traditions as they are separated from cultural assignations and can 

encompass more variability than a tradition or complex.  His chronology is as follows: The 

Beringian Period encompasses the Early East Beringian tradition and a small portion of the Late 

East Beringian Tradition (as described by West (1996)), which corresponds with the 

nenana/chindadn complex and the denali complex, respectively.  The Transitional period spans 

the remaining portion of the Late Beringian tradition and most of the American 

Paleoarctic/Denali tradition.  The Taiga Period covers a time frame from around 9,000 years ago 

to historic times, split into early, middle and late periods associated (generally) with the 

Transitional Northern Archaic, the Northern Archaic, and Athabaskan traditions respectively 

(Holmes 2001, 2008).  While fairly useful in that the periods are somewhat separate from cultural 

descriptions and instead reliant on a number of defining factors, the varying methods used to 

derive the traditions ultimately complicate its application to research. 

 Alternatively Hoffecker and Elias (2007) offer a slightly different cultural chronology.  

Similar to Holmes (2008).  Hoffecker and Elias also use a broad “Beringian” tradition 

encompassing all of variability into one comprehensive culture with local variants. They differ in 

that for the same time period as Holmes’ Transitional period, they advocate for two separate 

cultures that are spatiotemporally contemporaneous: the Paleoarctic tradition characterized by the 

presence of microblade technology, and the Paleoindian tradition characterized by the absence of 
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microblade tools and a focus of bifacial technology.  The separation of these cultures based on 

tool typologies is once again reminiscent of cultural historic frameworks however Hoffecker and 

Elias also note that they believe the Paleoarctic tradition to have originated from northeast Asia 

and the Paleoindian tradition from a northward movement made by North American groups 

(2007:131). 

Some central Alaskan researchers have embraced a more processual approach or at least 

have leaned away from tool typologies as culturally diagnostic and started looking at other 

explanations for toolkit variability.  For example: Ackerman (2001) suggests microblades are 

associated with bow and arrow technology and bifaces with spear or other thrusting technology.  

Some suggest microblade technology is a risk minimizing strategy designed to conserve raw 

materials (Bamforth and Bleed 1997; Elston and Brantingham 2002; Flenniken 1987).  Bever 

(2001) and others (Hoffecker 2001; Powers and Hoffecker 1989) consider that the presence or 

absence of microblades may indicate different patterns of site function due to seasonal variability 

or site habitat.  While Bever did not go on to demonstrate this, Potter (2008b, 2011) effectively 

shows that a number of factors may explain the perceived dichotomy between microblades and 

non-microblade toolkits other than cultural differences.  Potter has demonstrated that variables 

such as habitat (2005, 2008b), specified prey, weapon systems, and seasonality (2011) may 

determine where microblade technology is employed.  In addition to these advances in the 

approach towards lithic variability, other more robust analytical approaches to understanding 

behavior and organizational patterns in the archaeological record have been increasingly applied 

in central Alaska.  

Although a few researchers have begun to investigate economic models of delineating 

cultural complexes in central Alaska (Potter 2000, 2005, 2008a, b, 2011; Potter et al. 2007; 

Wygal 2011), cultural complexes are most commonly defined using tool typologies and differing 

technology as the basis for their separation.  For this project, cultural designations to each 

occupation zone will not be emphasized, however in order for this research to be comparable to 

others some conclusions about cultural traditions must be drawn.   It is therefore necessary to 

outline the definition of each cultural complex in this paper. 

3.3.1 Swan Point/Dyuktai 

Holmes (2001) characterizes the Swan Point or Dyuktai phase in the Early Beringian 

Period of Alaskan archaeology  primarily by abundance of microblade technology.  This cultural 

complex is the oldest defined in central Alaska with dates coming mainly from the lower 



29 
 

 

 

occupations at Swan Point, Broken Mammoth, and Mead (CZ4) although only Swan Point has 

microblades in its lowest component. 

3.3.2 Nenana 

Powers and Hoffecker (1989) defined the Nenana complex using assemblages found at 

Dry Creek and Walker Road.  The criteria for the Nenana complex are the absence of microblade 

technology and the presence of bifacial projectile points (Powers and Hoffecker 1989).  A similar 

contemporaneous complex was defined by John Cook (1969) using artifacts from the Healy Lake 

site.  The Chindadn complex is defined by the presence of teardrop-shaped projectile points 

called Chindadn points.  Many of these points are present in occupations assigned to the Nenana 

complex, but the deciding factor continues to be the absence of microblade technology (Powers 

and Hoffecker 1989:278).  This cultural tradition is contemporaneous with CZ4 at Mead although 

the assemblage does not fit with expected patterns. 

3.3.3 Denali 

Although the Campus site, found in the early thirties, represents one of the defining 

Denali sites, it was not until the sixties that that the Denali complex would come into actuality.  

When Frederick Hadleigh-West (1967, 1981) excavated the Donnelley Ridge site, the distinct 

wedge-shaped microblade cores, Donnelly burins (flakes used as burins) and bifacial knives lead 

him to believe that cultural components containing these tool types consisted of a homologous 

culture shared between Donnelley and the Campus site, as well as the Teklanika East and 

Teklanika West sites.  Due to the resemblance of these artifacts with the Dyuktai culture found in 

Western Beringia West (1967) also believed that the Denali complex would date much older than 

previously found in Alaska, however new dates acquired on the site as well as at Campus and 

Teklanika West suggested otherwise.  Dates on Donnelly Ridge were found to be much earlier 

than West had predicted however these dates remain disputed by some (West 1967) and accepted 

by others (Shinkwin 1979). Campus was re-dated to the Mid-Holocene by Mobley (1991) as well 

as Pearson and Powers  (1999, 2001) once again shifting the Denali complex to a more recent 

period than previously thought.  Likewise, Teklanika West was dated to a more recent date of 

around 7,000 BP (Goebel 1992, 1996).  However, the last few decades of archaeology in central 

Alaska have revealed many more sites containing Denali assemblages broadening the age of 

Denali to what West may have first expected.  Although microblades, the defining lithic of the 

Denali complex, continue to surface throughout the archeological record into the proto-historic 
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era, Dixon (1985) and Hamilton and Goebel (1999) agree that the Denali complex officially ends 

at around 7,800 cal BP.  The Denali complex is related by radiocarbon dating to CZ3a, CZ3b, and 

possibly CZ2 at Mead. 

3.3.4 Northern Archaic Tradition 

Douglas Anderson initially described the Northern Archaic Tradition in 1968.  Like other 

traditions defined in Alaska, it is ambiguously defined and remains a complicated cultural 

typology. The Northern archaic tradition is traditionally defined by characteristic tool types, in 

this case lanceolate projectiles, end scrapers, and notched projectile points.  Microblade and burin 

technology is also associated with the Northern Archaic tradition, but the addition of notched 

points makes it unique (Esdale 2008).  Once again the heavy reliance on tool types as cultural 

signifiers is revealed in Alaskan archaeology.  Just as with microblade technology, the presence 

or absence of a specific tool type is shown to be problematic.  Some have hypothesized that the 

introduction of notched points represents population replacement of previous cultures while 

others have suggested that the notched point technology arose from diffusion of technological 

innovation (Esdale 2008). Complications aside, the Northern Archaic cultural tradition continues 

to be utilized in Alaskan archaeology, however unexplained in its origins and relations to other 

cultures it may be.  The Northern archaic tradition is temporaly associated with CZ1b and 

possibly CZ2 at Mead. 

3.3.5 Athabaskan 

The Athabaskan tradition is characterized by bone and antler tools as well as decorative items 

such as beads.  Technology in the Athabaskan tradition also shifts to bow and arrow tools.  Items 

such as boulder spall scrapers are also associated with Athabaskan technologies.  This shift began 

around 1500 years ago and continued until the contact period (Cook 1975).  Behavior attributed 

to the Athabaskan tradition involves reoccupation of camps resulting in the evidence of caching 

becoming more prevalent for this time period (Workman 1978).  Due to the preservation of 

Athabaskan sites and close relation to ethnographically documented central Alaskan cultures, the 

Athabaskan tradition is relatively demystified when compared with Chindadn, Nenana, Denali 

and Northern Archaic traditions.  No cultural occupation ate Mead is associated with the 

Athabaskan cultural tradition. 

3.3.6 Discussion 

 While each tradition has expected patterns of lithics, such as absence of microblades, 
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cultural occupations at Mead show that this is not always the case, thus demonstrating ambiguity 

among cultural typologies.  A culture is not merely made up of its material culture but rather its 

behaviors. In other words, for an archeologist to begin defining separate cultures they must first 

look at the behaviors of the culture represented rather than just artifacts.  Although this project 

intensely focuses on the characterization of lithics at Mead, a strong effort is made to rely on 

analysis of debitage as a way to infer behavior at the site and to understand how the site was used.  

By doing this rather than simply describing the tools and assigning cultures, an understanding of 

the function of the site and the differences in behaviors between occupation can being to unfold. 

3.4 Paleoenvironment 

Discussions about the paleoenvironment at Mead will be limited to climate events that 

may have affected human behavior at the site.  This is in order to better understand the context of 

any changes seen in the technological or spatial patterning between the different cultural 

components at Mead.  A general trend seen at Mead is that the cultural horizons, except for CZ4 

seem to correlate with characteristically cooler climatic periods according to proxy data (Gilbert 

2011).  

The Bolling/Allerod period was a warmer and wetter era marked by a rise in dwarf birch 

and willow (Bigelow and Edwards 2001).  Beginning at around 16,000 cal BP (Viau et al. 2008), 

this period is also associated with a discernible fall in megafauna (Haile et al. 2009) as well as the 

migration of the first humans in Beringia (Holmes 2001).  Viau (2008) found that precipitation 

increased during this period, peaking at around 11,000 cal BP then promptly decreasing until 

about 8,000 cal BP.  CZ4 at Mead occurs during this warming period. 

The Younger Dryas is a cold event occurring from 12,900-11,700 cal BP (Broecker et al. 

2010).  Effects of the Younger Dryas are varied throughout Alaska (Kokorowski et al. 2008).  

The sand levels at Mead that are located above the grey bedded sands and within the lower levels 

of loess deposition at the site are associated with conditions consistent with the Younger Dryas 

event (Gilbert 2011).  These sand levels attributed to the Younger Dryas also occur at other sites 

such as Dry Creek, Broken Mammoth, and Upward Sun River (Bigelow et al. 1990; Potter et al. 

2008).  In general, the Younger Dryas climate was cooler and drier than the present with varying 

periods of soil formation, loess deposition, sand deposition, and soil formation (Gilbert 2011).  

Dates of the Younger Dryas as well spatial assertion of the sand lenses with cultural materials 

correlate CZ3b, CZ3a, and possibly CZ2 with the latter part of the Younger Dryas.   
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The abandonment of the site after CZ3 correlates with a shift from Younger Dryas into 

the Holocene Thermal Maximum.  This supports evidence that a cooler climate was more 

favorable for occupation at Mead (Gilbert 2011).  Yesner (2001) notes that a depositional event 

occurred during Holocene Thermal Maximum and is characterized by increased loess deposition 

as well as a sand lens at Broken Mammoth.  The dates correspond with an increase in loess 

accumulation at Mead during this time.   
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Chapter 4 Component Delineation 

4.1 Introduction 

Five cultural zones were identified at Mead, using artifact backplots, features, 

stratigraphy, raw material types, and frequencies of artifacts by level to separate out cultural 

occupations.  Gilbert (2011) used both the east and West Block assemblages to delineate CZ1a, 

CZ1b, CZ2, CZ3, and CZ4, with CZ1a situated at the top of the soil profile and CZ4 closest to the 

bedrock.  Subsequent excavations in 2011 revealed that CZ1a and 1b could not be clearly divided 

into two separate occupations. Additionally, CZ3 has been split into CZ3a and CZ3b following 

2012 excavations.  CZ3a was found to be represented in the 2011 assemblage in small 

frequencies. 

Figures of all backplots are located in Appendix E.  Backplots of Block 101 (Figure E-1) 

show a clear separation of components.  CZ1b and CZ4 are both present and a single flake was 

identified to be in CZ3b making CZ3b in block 101 located about 70-80 cm BS.  Points taken on 

hearth Feature 2011-6 not only show the slope of CZ4 but solidify any flakes in the backplot in 

association with it to the dates obtained for the hearth.  Backplots for Block 102 (Figure E-2) also 

show a very clear single cultural occupation in the upper components, this is labeled CZ1b.  

Adjusting for slope in the lower cultural zones, the large vertical spread of the lower 

conglomeration begins to separate out into mostly CZ3b and a few CZ4 artifacts.  Block 103 

backplots are mostly unusable as the Block is disturbed by the large pit Feature 2011-4 (Figure 

E-3).  Backplots of Block 104 (Figure E-4) reflect the large concentration of CZ2 materials 

found.  The North backplot shows a small separation of material interpreted to be the separation 

of CZ1b and CZ2.  The mixing here is most likely due to bioturbation as a large tree was located 

on top on this Block.  CZ3b and CZ4 are best seen in the East backplot represented by three bone 

artifacts.  It is likely that there is a representation of CZ2 in Block 105 (Figure E-5), however 

backplots and stratigraphy could not help in its designation.  The two most prevalent components 

in the backplots are CZ1b and CZ3b.  The backplots of Block 106 (Figure E-6) show the distinct 

separation of CZ3a.  Again, turbation has mixed the upper components making CZ1b and CZ2 

difficult to delineate, however in this case the upper conglomeration of artifacts in the Block 106 

is mostly CZ2.  Block 107 (Figure E-7) has an upper cluster of artifacts with a large vertical 

spread however there was no discernible break, so all upper artifacts have been labeled CZ1b.  

The lower cluster of artifacts was determined to be CZ3b.  Blocks excavated in 2009 yielded 

relatively few artifacts compared to 2011 so their backplots are limited (Figure E-8 – Figure E-
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19).  However it should be noted that the backplots, even with so few artifacts, show a very clear 

separation between components, as expected of the well-defined stratigraphy at the site. 

4.2  CZ1b 

New radiocarbon dates for Cultural Zone 1b indicate an age of 4244-4008 cal BP.  This 

cultural zone is present throughout the East Block excavations and is found within the B horizon.  

Cultural artifacts consist of 3,934 flakes, 42 modified flakes, one burin, three microblades (two 

with edge damage), one burin spall with damage, and three flake cores.  Obsidian flakes have 

been sourced to Batza Tena, Wiki Peak and potentially Group K.  In 2009 CZ1b was separated 

from CZ1a, however after closer consideration of backplots, stratigraphy, raw material 

dispersion, and flake frequencies by level, it was determined that CZ1a and 1b likely represent 

the same cultural occupation.  Mixing and transmigration occurred due to cryoturbation and 

bioturbation.  The result is that there is one cultural occupation, CZ1, or CZ1b, spread throughout 

the upper 20-35 cm of sediment.  There is a single cultural feature in this occupation identified as 

a cache pit.  This occupation is spatially distinct due to artifact dispersal and density across the 

site. 
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Figure 4.1 CZ1b 3-pointed artifacts with isopleth map of all flakes 
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4.3 CZ2 

Cultural Zone 2 (Figure 4.2) is distinct when it appears, occurring between 10-20 cm 

below the lowest constraint for CZ1b in the B/C stratum.  In the northern portion of the site, the 

separation between CZ1b and CZ2 is less clear than the southern portions of the site due to the 

slop of the site.  CZ2 artifacts appear unimodal when looking at artifact frequencies by level, 

which is in contrast to the sometimes bimodal distribution of CZ1.  Dating for CZ2 remains 

complicated.  A hearth feature from 2012 was intended to be used, but two samples thought to be 

charcoal have proven to be insufficient for radiocarbon dating.  However, concrete dates on both 

CZ1b and CZ3a have been obtained.  Additionally stratigraphic dates on the B and C1 horizons 

further suggest that the dates of CZ are between 6900 cal BP and 8800 cal BP. CZ2 is unique in 

that it contains a high frequency of early-stage bifaces and lithic concentrations have clearly 

defined spatial boundaries.  The 2012 excavations resulted in additional large concentrations of 

CZ2 including primary reduction activity areas and two hearths.  
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Figure 4.2 CZ2 3-pointed artifacts with isopleth map of all flakes 
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4.4 CZ3a 

This cultural occupation was first recognized in 2011, but not clearly defined until the 

discovery of an associated hearth in 2012.  The 2011 excavations uncovered a total of 13 grey 

chert flakes in the northeast unit of Block 106.  Located well within the C2 horizon, CZ3a is at 

least 20 cm below CZ2 and 25 cm above the top of CZ3b.  No dates have been obtained for this 

cultural zone but CZ3a is thought to be around 10,00kya based on the spatial relationship with 

CZ3b. 
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Figure 4.3 CZ3a 3-pointed artifacts and isopleth map of all flakes 
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4.5 CZ3b 

Cultural Zone 3b (Figure 4.4) has a total of 480 lithics artifacts and 235 bones.  The 

bones are largely constrained due to three hearth features (Feature 2011-8, Feature 2011-9, and 

Feature 2011-5).  Because of the presence of multiple hearths, dates obtained for CZ3b are very 

reliable due to observed overlap in the dates.  One sample of charcoal from each of the Features 

2011-8, 2011-9 and 2011-5 have been radiocarbon dated.  The average date of all CZ3b samples 

is 11,500-12,080 cal BP.  Two obsidian flakes from this cultural level have been firmly sourced 

to Wiki Peak.  General spatial observations show that artifacts clusters seem to be closely 

associated to hearth features.  Also unique for this component is the presence of a two hearth 

features with only a few flakes associated, simultaneously occurring with hearth features 

associated with many flakes.  This will be discussed in Chapter 6.  General observations about the 

lithics in this component show that expedient tools are being favored along with an increase in the 

use of local high quality chert. 
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Figure 4.4 CZ3b 3-pointed artifacts with isopleth map of all flakes 
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4.6 CZ4 

This cultural zone has 1,073 lithic artifacts and 134 bone fragments.  Of the lithics,766 

artifacts are made from a quartz material found locally at the site.  CZ4 contains primary 

reduction of quartz cobbles found on the site with limited numbers of chert flakes.  Notably, 

nearly all modified flakes and tools in this occupation are made from grey chalcedony.  Five 

obsidian flakes from this cultural zone have been securely sourced to Wiki Peak.  Dating for this 

cultural zone is based on two hearth features that average 13,130-12,750 cal BP.  CZ4 is located 

in the C2 horizon, 5-15 cm below CZ3b (Figure 4.5 and Figure 4.6) and 5-20 cm above the grey 

bedded sands.  Spatial observations show a similarity to CZ3b, where the occurrence of a flake-

loaded and a flake-scarce hearth are simultaneously present.  Notably however a large diffuse 

scatter of artifacts is present as opposed to only tightly constrained clustered observed in CZ2 and 

CZ3b. 
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Figure 4.5 Features 2011-9 (left) and 2011-10 (right) showing separation of CZ3b and CZ4 

 
Figure 4.6 Separation of Feature 2011-5 (CZ3b) and quartzite scatter (CZ4) 
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Figure 4.7 CZ4 3-pointed artifacts and isopleth of all flakes  
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Chapter 5 Lithic Artifacts 

This chapter presents descriptive, classificatory, and analytical data on lithic artifacts and 

artifact attributes found at Mead.  Technological analysis is presented in Chapter 9. 

5.1 Material Types 

Material types were first categorized using five attributes; for each flake, the Munsell 

color, luster, texture, homogeneity, and quality were recorded.  After all flake cataloging was 

complete, raw materials were then defined using the ranges for each attribute to define broad 

material categories.  A total of 17 material types were defined, totals for each material 

summarized by CZ are outlined in Table 5.1.  For all components each material will be briefly 

described below.  Detailed descriptions can be found in Appendix D. 

 

Table 5.1 Raw material totals by CZ, all artifacts 

Raw Material CZ1b CZ2 CZ3a CZ3b CZ4 Totals 

andesite 1 0 0 43 38 82 

argillite 3 0 0 0 0 3 

banded chalcedony 14 10 0 52 7 83 

black basalt 25 0 0 0 0 25 

black chert 63 7 0 3 3 76 

brown chert 19 3 0 1 1 24 

brown quartzite 528 44 0 14 0 586 

grey quartzite 265 8 0 12 0 285 

grey basalt 15 0 0 29 7 51 

grey chalcedony 16 5 0 50 55 126 

grey chert 2488 1861 13 184 44 4590 

jasper 3 1 0 0 1 5 

petrified wood 0 

 

0 1 0 1 

obsidian 16 2 0 2 17 37 

red/grey siltstone 0 0 0 0 8 8 

rhyolite 574 6 0 0 0 580 

quartz 3 2 0 111 775 891 
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Andesite:  This is a medium-grained grey to dark grey material subjectively classified as 

fair quality.  All specimens have a distinctly dull luster.  A total of 82 artifacts made from this 

material were classified as andesite.  Main signifier of andesite when comparing to grey basalt or 

dull grey quartzite is the presence of small black speckles in the material. 

Banded Chalcedony:  Banded chalcedony is a grey chalcedony with green, brown and 

black variations in color that has a distinct mottled black banding pattern in the material.  The 

banding does not affect the fracture mechanics of the material.  Color variations in lightness or 

darkness of grey largely due to the thickness of the specimen being analyzed.  This material type 

has a distinctly waxy luster and is fine-grained and excellent quality.  The main criteria used to 

define a total of 77 artifacts in this group is the banding appearing within the material.  

Grey Chalcedony:  Grey chalcedony is a classification that consists of all other 

chalcedony found at the site that do not show banding.  Color is primarily grey with variations 

into green, white and brown hues.  This chalcedony is waxy in luster, very fine grained and of 

excellent quality.  A total of 118 pieces of grey chalcedony were recovered.   

Black Basalt:  Black basalt color ranges from very dark grey to black.  This basalt has a 

marked dull luster and ranges from excellent to fair quality with textures ranging from medium to 

fine grained.  A total of 25 artifacts were classes as black basalt.  Main differences  between black 

chert and black basalt: black chert and black basalt are both fine grained but chert is vitreous 

luster and black basalt is dull.  Black basalt is mostly medium grained and dull with visible 

fracture planes. 

Grey Basalt:  Grey basalt is dark to light grey in color, it is fine to medium grained and 

has slight variation in homogeneity with subjective quality grading from fair to excellent.  A total 

of 50 artifacts were made from grey basalt. 

Black Chert:  This raw material ranges from very dark grey to black in color.  It can be 

dull, vitreous or glassy in luster and fine in grain texture.  Homogeneity varies from 1-2 and 

quality likewise ranges from fair to excellent.  A total of 73 artifacts were made from black chert 

71 unmodified flakes and two modified forms. 

Grey Chert:  Grey chert by far makes up the majority of the stone artifacts found at the 

site.  There are many color variations within the larger classification of grey including brown, 

blue, and red.  Most notable one modified flake of a blue/grey chert is visually very distinct from 

the rest of artifacts classes as grey chert, but as the only one of its kind I have grouped it as grey 

chert for the purpose of analysis.  Luster for grey chert is mainly vitreous, but can also by waxy, 
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glassy, and dull.  It can be fine to medium grained with level 1-2 of homogeneity ranging from 

excellent to fair in quality.  A total of 4,560 flakes of grey chert were collected from Mead with 

4,515 being unmodified flakes, and 42 tools. 

Brown Chert:  Brown chert has color variations from light to dark brown, with yellow 

and olive hues.  Luster, texture, homogeneity, and quality range from dull to vitreous, fine` to 

medium, 1 to 3, and excellent to poor, respectively.  A total of 24 brown chert flakes were 

recovered from Mead with 1 modified flake and 23 unmodified flakes. 

Grey quartzite:  Grey Quartzite looks very similar to brown quartzite but is distinctly 

grey or dark grey in color.  Only a few specimens were fine grained while the rest were medium.  

Homogeneity ranges from 1 to 2 and quality has been defined as fair to poor.  A total of 285 

flakes were found all unmodified. 

Brown Quartzite:  The color ranges for brown quartzite very greatly with variations in 

intensities of yellow, red, brown, and grey.  This material is of fair to poor quality due to its 

medium to large grained texture.  It has a dull luster and homogeneity ranges from one to two.  

This material is found locally on site and of the 162 thermally altered artifacts found total, 48% 

are made from this brown quartzite.  Brown quartzite has 13.3% of its total artifacts thermally 

altered, this is the third highest percentage not including jasper and petrified wood which have 

very low total counts at the site.  Raw material types with no artifacts showing thermal alteration 

do not appear in the table.  This material type is found in CZ1b, CZ2 and CZ3b. 

Quartz:  Cobbles of this material are found naturally at the site within the grey bedded 

sands above the bedrock.  The cobbles found have a ventifacted surface however original cortex 

has been found on waste flakes. Both the ventifacted surface and original cortex were measured 

as cortex with the subtypes noted in a separate column.  There are a total of 884 quartz artifacts.  

108 have cortex on them with 19 artifacts (all debris) having original cortex and 88 having cortex 

in the form of the ventifacted surface.  1 flake has both types of cortex.  This material type is very 

distinct, with large to medium quartz crystal grains, and a homogeneity range of one to two  it can 

range from fair to poor quality.  Luster is either vitreous or glassy.  Colors come in different 

variations of white and grey with hues of brown and red. 

Rhyolite:  The rhyolite at Mead appears in dense clusters in Blocks 107 and 105 for 

CZ1b.  This raw material is very brittle and many pieces were broken during recovery.  

Additionally the coloring of the material was observed to be based in part on the surrounding 

matrix.  Because of this, the coloring of rhyolite varies greatly from different hues of brown, grey 
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and red.  The cortex found on the rhyolite at this site is a grainy pink rind cortex.  This cortex 

matches the cortex found on similar rhyolite pieces found at Gerstle River which have been 

sourced as “Type X” rhyolite. Luster can be vitreous to dull with a fine-grained texture.  

Homogeneity ranges from 1 to 2 and likewise quality ranges from excellent to fair.  A total of 579 

rhyolite flakes were found in all components at Mead. 

Other (petrified wood, red/grey siltstone, jasper):  Materials included in this category 

have very little representation at the site.  Jasper totals 5, red/grey siltstone 8, and petrified wood 

just 1.  Both the petrified wood and red/grey siltstone have questionable origins and although 

categorized as flakes here, may represent natural fracturing rather than cultural use.  The five 

flakes labeled as jasper were labeled so specifically because their deep red color.  However 4 out 

of the 5 flakes exhibit signs of thermal alteration.  It may be that the deep red color is due to heat 

treatment rather than raw material source however no other materials were observed to contain 

partially reddening in such a drastic way and therefore the red color is assumed to be a variance 

of raw material. 

 

 
Figure 5.1 Andesite 
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Figure 5.2 Banded chalcedony 

 

 
Figure 5.3 Grey chalcedony 

 

 
Figure 5.4 Black basalt 
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Figure 5.5 Grey basalt 

 

 
Figure 5.6 Black chert 

 

 
Figure 5.7 Grey chert 
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Figure 5.8 Brown chert 

 

 
Figure 5.9 Grey quartzite 
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Figure 5.10 Brown quartzite 

 
Figure 5.11 Quartz 
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Figure 5.12 Rhyolite 

 

 
Figure 5.13 Red/grey siltstone 

 

 
Figure 5.14 Petrified wood (left) and jasper (right) 
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5.1.1 Obsidian Sourcing 

A total of 26 obsidian flakes were analyzed using a portable XRF.  Small and thin flakes 

do not have as strong of a chemical signature as thick and large flakes and are skewed when 

trying to trace them to a volcanic source therefore only 18 flakes have unquestionable sourcing.  

Of the 18 flakes with confident sourcing, eight come from Batza Tena, eight are from the Wiki 

Peak source and one flake each has been sourced to Group K and Group P.  All Batza Tena flakes 

were found within CZ1b, however Wiki peak is found in all cultural zones where obsidian was 

present.  Group K is within CZ1b and Group P from CZ2 (Table 5.2). 

Cultural Zones 3b and 4 contain only obsidian from Wiki Peak while CZ1b and CZ2 

contain all four types of Batza Tena, Wiki Peak, Group P, and Group K.  Additionally CZ1b 

contains 4 out of the 5 utilized obsidian flakes, with the remaining specimen in CZ3b.  This 

suggests that there are fundamentally different strategies for procuring and using obsidian at the 

site between the Late Pleistocene and Mid Holocene occupations.   
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Figure 5.15 Obsidian 
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Table 5.2 Obsidian sourcing results 

XRF ID 

# 

Artifact 

ID Source CZ 

50225 101-149 Batza Tena CZ1b 

50420 102-69 Batza Tena CZ1b 

50422 105-157 Group K CZ1b 

4445 E32-11 Batza Tena CZ1b 

4436 E32-12 Batza Tena CZ1b 

4449 E32-14 Batza Tena CZ1b 

50425 E38-4 Batza Tena CZ1b 

4448 E40-7 Wiki Peak CZ1b 

4446 E52-13 Batza Tena CZ1b 

4447 E52-15 Batza Tena CZ1b 

50421 102-80 Wiki Peak CZ2 

50228 E13-13 Group P CZ2 

50428 E46-77b Wiki Peak CZ3b 

50224 101-255 Wiki Peak CZ4 

50410 101-342 Wiki Peak CZ4 

50411 101-247a Wiki Peak CZ4 

50415 101-247e Wiki Peak CZ4 

50416 101-247f Wiki Peak CZ4 

 

5.2 Local and Nonlocal Materials 

Each raw material was examined for patterns within each cultural occupation; however a 

general designation of nonlocal and local materials can be done using data from the entire site.  

Only three material types have a known location, obsidian (nonlocal) and brown quartzite and 

quartz (local).  The two quartzite materials mentioned are found on-site as cobbles, all other 

materials have no known locations.  Because of this, results presented here are not final and any 

designation of a material as local or nonlocal when the source location is not known, is a 

supposition.  In this project local is defined as being within 20km of the site and nonlocal as 

being farther than 20km from the site following Surovell (2009:78).  Additionally, for some 
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analyses I define the brown quartzite and quartz as “on-site” as a way to separate immediately 

available materials from materials available with some travel necessary.  In order to further 

classify other materials as local or nonlocal, a few attributes were measured and compared. 

Materials that have been classed as local include quartz, brown quartzite, grey quartzite, and grey 

chert.  All other materials were classified as nonlocal (Table 5.3). 

 

Table 5.3 Raw material local or nonlocal summaries, categorized by weight percent 

Raw Material n Wt. (g) n% Wt.% Mod. % Local/Nonlocal 

quartz 884 3646.077 12 41.1 0.3 Local 

brown quartzite 587 3061.69 7.9 34.6 0 Local 

grey quartzite 285 979.57 3.9 11.1 0 Local 

grey chert 4560 646.34 61.7 7.3 0.8 Local 

grey basalt 50 199.84 0.7 2.3 4 Nonlocal 

rhyolite 579 118.01 7.8 1.3 0.2 Nonlocal 

andesite 82 103.07 1.1 1.2 0 Nonlocal 

banded chalcedony 77 45.66 1 0.5 10.4 Nonlocal 

grey chalcedony 116 22.08 1.6 0.2 7.8 Nonlocal 

black chert 73 14.99 1 0.2 2.7 Nonlocal 

brown chert 22 14.98 0.3 0.2 4.3 Nonlocal 

obsidian 36 3.73 0.5 0 16.7 Nonlocal 

black basalt 25 3.12 0.3 0 0 Nonlocal 

red/grey siltstone 8 0.6 0.1 0 0 Nonlocal 

petrified wood 1 0.34 0 0 0 Nonlocal 

jasper 5 0.3 0.1 0 0 Nonlocal 
 

When comparing the total weight of each raw material against the percent of 

modification for each material, the observed pattern for obsidian and quartz can help to sort the 

other materials as local or nonlocal.  In Figure 5.16 it can be observed that obsidian has a very 

high percent of modification and low total weight, while quartz has a very low percent of 

modification and high total weight.  Because these sources are known, it can then be inferred that 

other materials containing similar ratios of modified percent and total weight should be classed 

similarly as local or nonlocal.   The two sources classed as local that do not have known sources 
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are grey chert and grey quartzite.  The grey quartzite is very similar to the on-site brown quartzite 

in texture, grain size, quality, and fracture mechanics, with the main difference being color.  This 

may suggest that the grey quartzite and brown quartzite are from the same source and the grey 

material of the on-site quartzite has not yet been located in the site.  Additionally the grey chert is 

defined as local but there are no cores of this material found in 2009 or 2011.  However in 2012, 

river-rolled chert cobbles were excavated, providing strong evidence that modified percent within 

each material compared to the total weight has classified local material correctly.  

 

 
Figure 5.16 Raw material type by modified percent and total weight 

 

 When comparing the percent of total flakes against the total percent of weight of a raw 

material, a similar pattern emerges.  The grey quartzite, brown quartzite, quartz, and grey chert 

are classified as local while other materials are nonlocal (see Figure 5.17). 
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Figure 5.17 Raw material type by number and weight 

 

 The classification of rhyolite as a local or nonlocal source requires further inquiry.  When 

comparing percent of total frequency and percent weight for rhyolite against other materials 

(Figure 5.17) rhyolite is intermediate.  Additionally the material has a very low modified percent 

and higher percent weight than almost all other nonlocal materials (Figure 5.16).   To better place 

rhyolite in a category as local or nonlocal flake scar counts and percent cortex were analyzed in 

comparison with a known local material, quartz, and known nonlocal material, obsidian.  A high 

frequency of flakes with cortex in a single raw material category is typically interpreted as a 

marker that the material is found locally (Andrefsky 2001:11). When comparing cortex at Mead, 

6.7% of obsidian flakes have cortex present, all with fewer than 50% cortex.  A total of 11.8% of 

quartz flakes have cortex present, 7.3% of which have 100% cortex.  In comparison rhyolite has 

similar percentages to obsidian, very low (1.9%) total cortex with most showing less than 50% 

coverage, however the remaining four flakes (.7%) have 100% cortex coverage (Table 5.4).  In a 

test for statistical significance Pearson’s chi-square showed that there is a significant relationship 

at the 0.05 level between cortex and the three raw materials �Ȥ2 = 47.069, p. = 0.000).  Because 

this information shows that cortex is a significant variable, but does not show which raw material 

has significantly different amounts of cortex, a Pearson’s chi-square was also performed between 
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the rhyolite and the quartz alone.  Results show there is a significant difference at the 0.05 level 

between rhyolite and quartz when looking at cortex �Ȥ2 = 48.180, p. = 0.000).  The frequency of 

obsidian does not allow for this test to be performed due to the expected frequency of cortex 

being less than five, in this case, fisher’s exact test was performed.  Results show there is no 

significant difference between rhyolite and obsidian for frequency of cortex �Ȥ2 = 2.189, p. = 

0.139).  Although the splitting of material types introduces some error, the findings are still 

expected to represent true results.  Therefore, the comparison of cortex between the materials 

supports rhyolite as a nonlocal material. 

 

Table 5.4 Cortex comparisons for rhyolite local/nonlocal classification 

Raw Material 

0% cortex 

coverage 

<50% cortex 

coverage 

>50% cortex 

coverage 

100% cortex 

coverage 

rhyolite 564 (98.1%) 7 (1.2%) 0 (0.0%) 4 (.7%) 

quartz 772 (88.2%) 21 (2.4%) 19 (2.2%) 63 (7.2%) 

obsidian 28 (93.3%) 2 (6.7%) 0 (0.0%) 0 (0.0%) 

  

High frequencies of shatter for a raw material have been demonstrated to correlate with 

primary reduction of a material at a site.  Primary reduction has also been shown to associate with 

local materials.  At Mead these statements hold true; no shatter was found for obsidian artifacts 

while 4.9% of the quartz artifacts are classified as shatter. Because the expected value for shatter 

for rhyolite is less than five, Fisher’s exact test was used to test significance between all 

materials.  There is no significant difference between rhyolite and obsidian in frequencies of 

shatter �Ȥ2 = 0.187, p. = 0.665), however there is a significant difference for shatter between 

rhyolite and quartz �Ȥ2 = 21.886, p. = 0.000).  Therefore, the frequency of shatter for rhyolite also 

seems to support its nonlocal nature. 

 The relative percentages of dorsal scar counts for raw materials can demonstrate a 

number of characteristics.  Counts can be used to infer types of reduction, stage of reduction, etc.  

In this case, stage of reduction can be related to the locality of a raw material.  Low dorsal scar 

counts are related to early stage reduction or primary reduction which has been demonstrated to 

be related to local materials.  High counts of dorsal scars relates to late stage reduction and 

possible to nonlocal materials.  At Mead, over half of all obsidian artifacts found has three or 

more dorsal scars.  A total of 95.5% of all quartz artifacts have two or less dorsal scars.  In 
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comparison, rhyolite flakes with two or less dorsal scars total 82.6%.  This would seem to support 

that rhyolite may be considered a locally obtained material however an ANOVA test with a post-

hoc Tukey test for statistical significance shows that between all three materials dorsal scar 

counts are significantly different (F = 492.832, p = 0.000; F = 1236.960, p = 0.000: F = 242.344, 

p = 0.000).  This means that rhyolite is significantly different from both local and nonlocal 

materials when looking at dorsal scar counts.  Therefore rhyolite does not actually resemble a 

local or nonlocal source using this category. 

 

Table 5.5 Dorsal scar count comparisons for rhyolite local/nonlocal classification 

Raw 

Material 

 

Dorsal Scar Count         

0 1 2 3 4 >4 

Rhyolite 4 (0.7%) 260 (45.2%) 211 (36.7%) 76 (13.2%) 18 (3.1%) 6 (1.0%) 

Quartz 56 (6.7%) 450 (54.1%) 289 (34.7%) 36 (4.3%) 1 (0.1%) 0 (0.0%) 

Obsidian 0 (0.0%) 4 (13.3%) 6 (20.0%) 10 (33.3%) 4 (13.3%) 6 (20.0%) 

  

Size class can also inform on the locality of a raw material.  A material with larger size 

classes represented is often linked to a more locally available material.  This is true at Mead; 

obsidian flakes are between size classes 1-4, while quartz flakes are between size classes 1-25. 

Rhyolite is intermediary with size classes ranging from 1-8.  Pearson’s chi square shows that 

there is a significant difference in size classes between rhyolite and quartz �Ȥ2 = 42.778, p = 

0.000), but not between rhyolite and obsidian �Ȥ2 = 5.725, p = 0.572).  This adds to the evidence 

that rhyolite is a nonlocal material 

The percent of modified flakes found for a raw material can also inform on locality.  

Fisher’s exact test was performed on the frequency of modified and unmodified flakes between 

TXDUW]�DQG�REVLGLDQ�DQG�UHVXOWV�VKRZ�D�VLJQLILFDQW�GLIIHUHQFH��Ȥ2 = 94.527, p = 0.000).  Therefore, 

the percentage of modified flakes within raw materials is assumed to have relevance to 

determining between local and nonlocal materials.  Using Fisher’s exact test, rhyolite is 

VLJQLILFDQWO\�GLIIHUHQW�IURP�REVLGLDQ�ZKHQ�FRQVLGHULQJ�SUHVHQFH�RI�PRGLILFDWLRQ��Ȥ2 = 81.942, p = 

�������DV�ZHOO�DV�SHUFHQW�PRGLILFDWLRQ�SHU�DUWLIDFW��Ȥ2 = 97.495, p = 0.000).  No significant 

GLIIHUHQFH�ZDV�IRXQG�EHWZHHQ�UK\ROLWH�DQG�TXDUW]��Ȥ2 = 0.364, p = 0.546) This suggests that 

rhyolite is more similar to quartz and may be local.  However the mere frequency of modified 
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flakes may not take into account important factors.  Although there is only a single modified 

artifact made from rhyolite, it is a heavily curated long-axis scraper whereas all three quartz 

artifacts are lightly modified flakes.  To account for this, percent utilization was tested in addition 

to presence or absence of modification.  In sum, this category suggests that rhyolite may be found 

locally. 

 

Table 5.6 Size class comparisons for rhyolite local/nonlocal classification 

Size Class Obsidian Quartz Rhyolite 

SC1 2 (6.7%) 78 (8.9%) 93 (16.1%) 

SC2 18 (60.0%) 434 (49.6%) 261 (45.2%) 

SC3 8 (26.7%) 179 (20.5%) 126 (21.8%) 

SC4 2 (6.7%) 67 (7.7%) 57 (9.9%) 

SC5 0 (0.0%) 39 (4.5%) 21 (3.6%) 

SC6 0 (0.0%) 27 (3.1%) 11 (1.9%) 

SC7 0 (0.0%) 16 (1.8%) 8 (1.4%) 

SC8 0 (0.0%) 7 (0.8%) 1 (0.2%) 

SC9 0 (0.0%) 8 (0.9%) 0 (0.0%) 

SC10-25 0 (0.0%) 20 (2.1%) 0 (0.0%) 

 

Table 5.7 Modification frequency comparisons for rhyolite local/nonlocal classification 

Raw Material Modified Unmodified 

Obsidian 6 (16.7%) 30 (83.3%) 

Rhyolite  1 (0.2%) 578 (99.8%) 

Quartz 3 (0.3%) 875 (99.7%) 

 

Other evidence to consider is the presence of cores.  The presence of cores at a site has 

been linked with local materials (Andrefsky 1994, 2005; Binford and O'Connell 1984).  Neither 

obsidian nor rhyolite have any cores found at the site, however there are a total of six quartz 

cores.  This further suggests that rhyolite may not be a locally available material. 

Differences between variables indicative of locality between rhyolite, obsidian, and 

quartz show that while rhyolite is somewhat intermediary.  Dorsal scar count shows that rhyolite 

is in between local and nonlocal, modification percent shows that rhyolite may be considered 
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local, while cortex, shatter and size class all show that rhyolite is most likely to be nonlocal.  

Considering the bulk of the evidence points towards rhyolite as being nonlocal, for the purpose of 

this project, rhyolite will hereafter be considered a nonlocal material.  It is important to note that 

the designation of all materials at Mead except for quartz, brown quartzite and obsidian are purely 

postulations.  Only the quartz and obsidian have known sources and locality of all other materials 

is a merely a best guess.  Any reference made to a material’s locality is an approximation until the 

source location is identified and distance from the site can be measured. 

5.3 CZ1b Artifacts 

A total of 3,982 stone artifacts were recovered from Cultural Zone 1b.  Artifacts by 

category include two burin spalls, one burin, three flake cores, three microblades (two of which 

have edge damage), 38 modified flakes, one boulder spall scraper, and two other scrapers.   In 

general, the tools assemblage for CZ1b does not exhibit intense curation or exhaustive reduction.  

Each tool class is discussed below. 

Burin Spalls (n=2) 

 Both burin spalls found in CZ1b are made from grey chert (Figure 5.18).  Both are 

categorized as secondary burin spalls.  Specimen 105-216 measures 0.45 cm in width, 1.47 cm in 

length, 0.17 cm in thickness and 0.12 g in weight. Artifact 105-216 has evidence of light retouch 

on the right lateral edge on the dorsal face totaling 0.26 cm in length.  The working edge angle is 

��Û��6SHFLPHQ����-56 measures 0.5 cm in width, 1.58 cm in length, 0.22 cm in thickness and 0.24 

g in weight.  

 
Figure 5.18 CZ1b burin spalls 
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Flake Cores (n=3) 

 All three flake cores found in CZ1b are the brown quartzite material type.  E17-99 is a 

multidirectional core with a total of six flake scars.  The maximum flake scar dimension measures 

9.33 cm in length by 9.47 cm in width.  The maximum linear dimension of the core is 6.47 cm 

and it weighs 0.12 kg.  This flake core shows evidence of thermal alteration through a deep 

reddening of the material.  E17-106 is a multidirectional core with a total of five flake scars.  

Maximum scar dimension measures 4.94 cm in length by 4.33 cm in width.  The maximum linear 

dimension of the core is 9.47 cm and it weighs 0.30 kg.   E26-31 is a unidirectional core with a 

total of four flake scars.  The maximum flake scar dimension measures 12.81 cm in length by 

6.42 cm in width.  The maximum linear dimension of the core is 12.92 cm and it weighs 0.24 kg.   

Microblades (n=3) 

 All three microblades in this cultural zone have been classified as grey chert and are 

fragments (Figure 5.19).  Two of the three microblades show evidence of edge damage.  

Specimen 103-181 measures 1.03 cm in length by 0.81 cm in width and by 0.11 cm in thickness 

and weighs 0.09 g.  It a single arris and the right lateral edge shows evidence of light 

microchipping measuring 1.07 cm in length on the ventral face with DQ�HGJH�DQJOH�RI���Û�  

Specimen E46-28 measures 1.73 cm in length by 0.65 cm in width and by 0.14 cm in thickness 

and weighs 0.19 g.  It has two arrises and the left lateral edge shows evidence of light retouch and 

chipping totaling 1.31 cm in length clustered on the dorsal face with an edge angle of 3�Û���

Specimen E46-20 measures 1.54 m in length by 0.54 cm in width and by 0.09 cm in thickness 

and weighs 0.08 g.  It has two arrises and shows no evidence of edge damage. 
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Figure 5.19 CZ1b microblades 

Burin (n=1) 

 The single burin specimen for this cultural zone is comprised of a brown-grey chalcedony 

classed as grey chalcedony and a banded chalcedony (Figure 5.20). The grey chalcedony burin is 

a transverse burin measuring 3.06 cm in length, 1.63 cm in width, 0.42 cm in thickness and 

weighing 3.51 g.  There is evidence if thermal alteration in a slight reddening of some of the 

material.  There are a total of two burin scars of an indeterminate location.  There is evidence 

crushing and burin wear on the dorsal and ventral faces of the perceived right lateral edge, and 

chipping on the ventral face of the perceived proximal end of the right edge.  Modified edges 

measure 84Û�LQ�ZRUNLQJ�DQJOH� 
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Figure 5.20 CZ1b burin 

 

Modified Flakes (n=38) 

 This category includes both detached and objective pieces however flakes that could be 

more commonly categorized as scrapers have been separated out for the purpose of description.  

Six raw material types were present in modified flakes for CZ1b.  Raw materials included 

obsidian (n=5, 12.2%), grey chert (n=30, 75.7%), one bluish grey chert (n=1, 2.4%), brown chert 

(n=1, 2.4%), black chert (n=1, 2.4%), and banded chalcedony (n=2, 4.9%).  A total of four flakes 

have complex platforms (19.0%), one prepared (4.8%), 16 simple (76.2%).  Four platforms are 

lipped.  One grey chert flake shows evidence of thermal alteration in the form of a reddening of 

the material as well as potlidding.  This flake is also the only modified flake in CZ1b to have 

cortex (less than 50%).   Out of the 11 complete flakes, one flake (9.0%) has a single facet on the 

dorsal surface, two flakes have two facets (18.2%), four flakes have a count of three facets each 

(36.4%), two flakes have four facets (18.2%), and two flakes contain over four facets (18.2%).    

Only one modified piece was made on a blade blank, all others are categorized as simple flakes.  

Average mean weight of 1.9±4.64 cm (median=0.19 cm), mean width of 1.55±1.15 cm 

(median=1.05 cm), mean length of 1.76±1.51 cm (median=1.2 cm), mean thickness of 0.26±0.22 

cm (median=0.21 cm).  All means appear larger for modified flakes when compared to the means 
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of unmodified flake measurements, but only width, length and weight are statistically 

significantly larger at the 0.05 level (width t = 4.714, p = 0.000; length t = 5.068, p = 0.000; 

thickness t = 1.569, p = 0.117; weight t = 2.969, p = 0.003). 

 Some specimens have markedly different edge damage characteristics depending on 

which edge was analyzed so a secondary class, modification unit, was added.  A modification unit 

accounts for each worked edge on and every flake.  A total of 43 modification units account for 

the modified flake assemblage.  Modified flakes were predominately (n=33) altered by only one 

unit, with five specimens having two modified units.  Five modifications units were categorized 

as heavy retouch, the remaining 38 units were classified as light.  Modification type consisted 

mostly of retouch (n=36), with chipping the next most common (n=6), and only one unit showing 

evidence of microchipping.  Modification position was generally evenly distributed between right 

lateral (n=12, 27.9%), left lateral (n=15, 34.9%) and distal (n=15, 34.9%) location.  One unit was 

modified on the proximal edge (2.3%).  Most units were modified only on the dorsal face of the 

specimen (n=23, 53.5%).  There was also a high number of modified units located on only the 

ventral surface (n=15, 34.9%).  Three (6.9%) units were found to be on the direct edge of a 

specimen and two (4.7%) flakes had one modification unit each with damage on both the ventral 

and dorsal faces.  Edge shapes occurred as either concave (n=10, 21.7%), convex (n=3, 6.5%), or 

straight (n=33, 71.8%).  Mean modification length for all units is 2.38±5.61, with a mean for the 

sum of modification lengths per flake of 3.82±9.5.  The percentage of modified edges for each 

flake (total # modified edges/total edges) averages to 29.61%.  The modified edge angle average 

is 30Û���Û.  Modified flakes generally comprise of small (n=31, 72.2%) and very small (n=1, 

2.2%) flakes, with eight (18.6%) medium flakes and three (7.0%) large flakes.  

Boulder Spall Scraper (n=1) 

The grey basalt boulder spall scraper was found in situ in three separate pieces that 

accurately conjoin (Figure 5.21).  The conjoined whole was analyzed as one tool.  The boulder 

spall scraper measures 5.61 cm in length, 8.94 cm in width1.51 in thickness, and weighs 84.34g.  

The scraper has no discernible platform with evidence of a break along the proximal edge and the 

dorsal surface is 100% cortex in the form of a smoothed weathered river-cobble-like surface.  

These distal and partial lengths of the left and right laterals on the dorsal surface showed evidence 

of light retouch measuring 12.19 FP�LQ�OHQJWK�ZLWK�DQG�HGJH�DQJOH�UDQJLQJ�IURP���ÛWR���Û� 
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Figure 5.21 CZ1b boulder spall scraper 

 

Scrapers (n=2)  

 There are two unifacially-flaked scrapers found in CZ1b at Mead (Figure 5.22). One is a 

long-axis rhyolite scraper measuring 6.99 cm in length, 4.74 cm in width, 0.74 cm in thickness, 

and weighs 19.14 g. It has a simple platform with a salient bulb of force and over four dorsal 

scars.  The modification is classified as heavy/intense retouch and is located on the dorsal face of 

the left lateral edge.  The total modification length measures 8.57 FP�ZLWK�DQG�HGJH�DQJOH�RI���Û.  

The other unifacially-flaked scraper is both a long-axis and short axis scraper.  It is made from the 

banded chalcedony at the site and appears dark grey to black in color.  It measures 6.96 cm in 

length, 4.76 cm in width, 0.7 cm in thickness, and weighs 26.08 g.  It has a complex platform 

with a salient bulb of force and visible eraillure scar. Modification is present on the left and right 

lateral margins as well as on the distal end.  All modification has been classified as heavy 
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retouch.  The distal and left lateral margins have a straight edge shape with modification on the 

dorsal surface while the right lateral is convex and has modification on the ventral surface.  

Modification length totals 18.22 FP�ZLWK�HGJH�DQJOHV�UDQJLQJ�IURP���Û�WR���Û� 

 

 
Figure 5.22 CZ1b scrapers 

 

Unmodified Flakes (n=3933) 

Of the 1,307 flakes that have platforms 3.1% have eraillure scars.  A total of 33.9% of 

flakes with platforms have lipped platforms. Of the 1,310 flakes that have discernible bulbs of 

force, 71.4% have diffuse bulbs, while 28.6% have salient bulbs.  Platform types consist of 

complex (n=127, 9.8%), cortical (n=11, 0.8%), crushed (n=2, 0.2%), prepared (n=22, 1.6%) and 

simple (n=1145, 87.6%).  Considering cortex, 99.1% of the total 3,933 flakes have no cortex, 

0.5% has less than 50%cortex, 0.1% has more than 50%, and 0.3% have 100% cortex.  The 

average weight for the debitage assemblage of CZ1b is 0.90 g.  Other averages for metric 
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measurements include 0.98 cm for width, 0.85 cm for length, and 0.19 cm for thickness.  To total 

of 98 flakes have evidence of thermal alteration.  The most common indication of this is 

reddening of the material, but it can also include potlidding, blackening of the materials, changes 

in luster and crazing. 

Further flake analysis using MSRT size classes are partitioned by raw material type.   

Following Prentiss (2001) and Sullivan and Rozen (1985) the MSRT frequencies can be used to 

differentiate between core and tool reduction.  In this case a core reduction is defined as the 

manufacture of flakes from “a mass of material…performed by the worker to the desired shape to 

allow for the removal of a definite type of flake or blade” (Crabtree 1972:30).  Tool production is 

then defined as “other results of the lithic reduction/shaping process” including bifaces and 

modified flakes (Prentiss 2001:149).    

 

Table 5.8 CZ1b flake totals by raw material type 

Raw Material N % Weight % 

andesite 1 0.0% 0.26 0.01% 

jasper 3 0.1% 0.18 0.01% 

quartz 3 0.1% 0.97 0.03% 

obsidian 8 0.2% 1.12 0.03% 

banded chalcedony 10 0.3% 0.68 0.02% 

grey basalt 13 0.3% 3.33 0.09% 

grey chalcedony 14 0.4% 1.67 0.05% 

brown chert 16 0.4% 3.26 0.09% 

black basalt 25 0.6% 3.07 0.09% 

black chert 61 1.6% 6.66 0.19% 

grey quartzite 266 6.8% 979.99 27.77% 

brown quartzite 522 13.2% 2150.67 60.95% 

rhyolite 572 14.5% 92.04 2.61% 

grey chert 2419 61.5% 284.39 8.06% 

Total 3933 100.0% 3528.42 100.00% 
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Table 5.9 CZ1b dorsal scar counts by raw material 

Raw Material 
Dorsal Scar Count         

0 1 2 3 4 >4 

Brown Quartzite 2 (2.7%) 37 (49.3%) 42 (32.0%) 11 (14.7%) 0 (0.0%) 1 (1.3%) 

Rhyolite 0 (0.0%) 22 (42.3%) 18 (34.6%) 9 (17.3%) 1 (1.9%) 2 (3.8%) 

Grey Chert 0 (0.0%) 89 (33.2%) 107 (39.9%) 58 (21.6%) 7 (2.6%) 7 (2.6%) 

Grey Quartzite 0 (0.0%) 7 (31.8%) 7 (31.8%) 6 (27.3%) 2 (9.1%) 0 (0.0%) 

Black Chert 0 (0.0%) 1 (7.1%) 8 (57.1%) 3 (21.4%) 1 (7.1%) 1 (7.1%) 

 

Noticeably, flake fragments tend to dominate the brown quartzite assemblage, 

particularly in the medium, small and very small size classes (Table 5.10).  According to Prentiss’ 

model, two things may account for this: soft hammer reduction, or biface reduction.  Biface 

reduction should produce small medium and large flakes with a high number of flake fragments, 

reduced number of broken flakes, and very low numbers of complete flakes.  This hold true for 

the small size category but not for the medium and very small categories.  Given that there are no 

modified flakes for brown quartzite and a very low percentage of complex platforms, it is not 

likely that biface reduction accounts for the distribution of typologies in these smaller size 

classes.  It is more likely that the use of soft hammer reduction tool accounts for the high 

frequency of fragments.  The high percentage of complete flakes in the large and very large 

categories indicates hard hammered large core reduction.  The presence of large and medium split 

flakes also suggests this.  Medium flake core reduction is also suggested by the high numbers of 

small fragments.  These patterns indicate that core reduction, for the purpose of flake blank 

production, was the dominant lithic activity in CZ1b. 

 

Table 5.10 MSRT summary for CZ1b brown quartzite 

MSRT size Broken Complete Frag Shatter Split 

Very small 19 (9.9%) 21 (10.9%) 151 (78.6%) 1 (.5%) 0 (0.0%) 

Small 54 (25.8%) 23 (11.0%) 130 (62.2%) 2 (1.0%) 0 (0.0%) 

Medium 21 (25.6%) 14 (17.1%) 40 (48.8%) 3 (3.7%) 4 (4.9%) 

Large 6 (15.8%) 16 (42.1%) 11 (28.9%) 1 (2.6%) 4 (10.5%) 

Very large 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
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The suggestion of large and medium core reduction in brown quartzite is also supported 

by frequencies of cortex and dorsal scar counts, where 84% of all brown quartzite flakes have less 

than three dorsal scars (indicative of primary core reduction) and 2.3% of the assemblage has 

some cortex present.  A total of 1.0% of brown quartzite flakes in CZ1b have less than 50% 

cortex on their dorsal surface.  0.2% of flakes have over 50% cortex coverage, and 1.1% has 

100% cortex coverage on their dorsal surface.  Additionally, of the 183 brown quartzite flakes 

with platforms 0.5% are complex, 2.2% are cortical and 97.3% are simple.  The low frequency of 

complex platforms and higher count of cortical platforms is indicative of core reduction, which is 

consistent of all other data.  The data suggests that in CZ1b, brown quartzite was being reduced 

as primary core reduction of large and medium sized cores with hard hammers.  Once reduced, it 

is likely that more precise soft hammer production of medium sized flakes occurred. 

 One note should be clarified.  For the brown quartzite material specifically, core 

reduction is expected to produce higher frequency of shatter than seen here.  The low frequency 

of shatter is mostly likely due to cataloging error.  Because the material occurs naturally at the 

site, brown quartzite pebbles are also found.  If cultural association could not be confirmed 

through the presence of a ventral surface and other factors, it was most likely cataloged as a 

pebble rather than shatter.  

For rhyolite, a high frequency of fragments in the small, very small and medium size 

categories once again may suggest soft hammer production (see Table 5.11).  Additionally, the 

distribution of flakes between the other typologies is similar to the expected outcome for biface 

reduction. 

 

Table 5.11 MSRT summary for CZ1b rhyolite 

MSRT size Broken Complete Frag Shatter Split 

Very small 54 (15.6%) 31 (9.0%) 259 (74.9%) 2 (.6%) 0 (0.0%) 

Small 44 (21.5%) 16 (7.8%) 142 (69.2%) 0 (0.0%) 3 (1.5%) 

Medium 7 (33.3%) 4 (19.0%) 9 (42.9%) 0 (0.0%) 1 (4.8%) 

 

 However, dorsal scar counts do not support biface reduction.  While bifacial reduction is 

expected to produce an assemblage with the largest proportion of flakes having three or more 

dorsal scars, the rhyolite assemblage has only 23% fitting this description.  Dorsal scar counts for 

rhyolite indicate that rhyolite was in stages of primary or secondary reduction, not tertiary/biface 
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reduction.  Although dorsal scar count has been used in a multitude of research as a way to 

classify between core and biface reduction, this assemblage may act differently.  It has already 

been shown that dorsal scar counts are an unimportant factor when comparing quartz and 

obsidian at Mead.  The treatment of these two materials is vastly different, and a statistically 

significant difference between dorsal scar counts was expected, but not found.  This could be 

corrected if dorsal scar counts are controlled for by flake size 

 Other evidence suggests biface reduction may not have been the primary goal of rhyolite 

reduction.  Of the 160 rhyolite flakes with platforms 6.9% are complex, 2.5% are cortical, and 

90.6% are simple.  Both cortical and complex platforms are present, however the high percentage 

of simple platforms suggests nonbifacial thinning. Cortex also informs on the reduction of 

rhyolite.  A total of1.2% of rhyolite flakes have less than 50% cortex and 0.7% have 100% 

coverage.  No flakes have over 50% cortex coverage, and the rest (98.1%) have no cortex.  This 

would suggest that secondary reduction may be most likely for rhyolite reduction.  The total 

evidence then suggests that rhyolite was being reduced with soft hammer tools.  Medium or large 

sizes blanks or cores were primarily being nonbifacially thinned for the production of tools with 

little biface production occurring. 

 For grey chert, the high percentage of complete flakes in the large size category suggests 

hard hammer core reduction.  The medium, small and very small size categories have similar 

distributions with a high percentage (over half) of flake fragments, with broken flakes being the 

next most prevalent and very few complete flakes. This matches expected outcomes for biface 

reduction.  The small and very small categories also have some split flakes present and notable 

the small category has nearly 30% broken flakes.  This suggests some pressure flaking could be 

occurring. 

 

Table 5.12 MSRT summary for CZ1b grey chert 

MSRT size Broken Complete Frag Shatter Split 

Very small 345 (20.1%) 175 (10.2%) 1169 (68.0%) 5 (0.3%) 25 (1.5%) 

Small 194 (29.3%) 80 (12.1%) 384 (57.8%) 1 (0.2%) 4 (0.6%) 

Medium 7 (19.4%) 9 (25.0%) 20 (55.6%) 0 (0.0%) 0 (0.0%) 

Large 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 
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Dorsal scar counts indicate that primary core reduction should have been occurring as 

well as some tool and biface production.   Cortex frequencies support bifacial thinning with 0.2% 

of flakes having cortex.  Of the 839 grey chert flakes with platforms 12.5% are complex, 0.1% 

are cortical, 0.2% are crushed, 2.4% are prepared, and 84.8% are simple.  A higher number of 

complex platforms, although still small compared with simple platforms, also may suggest some 

biface reduction occurred.  With all the evidence together grey chert in CZ1b most likely had 

some secondary and tertiary blank and biface reduction occurring with soft hammer tools. 

For grey quartzite, MSRT distributions once again show a high frequency of fragments, 

40% in the large size category, 68.2% in the medium size category, 81.1% in the small category, 

and 88% in the very small size category.   The higher percentage of complete flakes in the large 

category suggests soft hammer core reduction.  The high percentage of complete flakes than 

broken flakes in the medium category indicates medium size cores were being reduced again with 

a high probability of soft hammer percussion.  The distribution of small and very small flakes 

with high or more even percentages of broken flakes compared with complete flakes, as well as 

the presence of shatter and split flakes and the consistently high number of flake fragments 

suggests soft hammer tool production from medium sized cores or blanks. 

 

Table 5.13 MSRT summary for CZ1b grey quartzite 

MSRT size Broken Complete Frag Shatter Split 

Very small 5 (4.3%) 7 (6.0%) 103 (88.0%) 1 (0.9%) 1 (0.9%) 

Small 12 (13.3%) 3 (3.3%) 73 (81.1%) 1 (1.1%) 1 (1.1%) 

Medium 4 (9.1%) 7 (15.9%) 30 (68.2%) 2 (4.5%) 1 (2.3%) 

Large 3 (20.0%) 5 (33.3%) 6 (40.0%) 1 (6.7%)  0 (0.0%) 

 

With 63.6% of flakes having less than three flake scars, dorsal scar counts also suggest 

that both tool production and core reduction were occurring.  A total of 0.8% of flakes have some 

cortex suggesting cores may not have been brought in as raw cobbles of material, but rather 

reduced cores.  Additionally all 49 flakes with platforms present have single facet platforms.  The 

evidence together suggests that medium and large cores or blanks were being reduced, and tools 

were then being produced from that using a soft hammer. 

 For black chert in CZ1b size classes include medium, small and very small.  In the 

medium category, one flake fragment suggests soft hammer reduction.  In the small size category, 
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the broken flakes have the highest percentage indicating tool production.  In the very small size 

category, the high percentage of flake fragments and the even distribution of broken and complete 

flakes suggest biface reduction. 

 

Table 5.14 MSRT summary for CZ1b black chert 

MSRT size Broken Complete Frag Shatter Split 

Very small 9 (20.5%) 10 (22.7%) 24 (54.5%) 1 (2.3%) 0 (0.0%) 

Small 7 (43.8%) 4 (25.0%) 5 (31.3%) 0 (0.0%) 0 (0.0%) 

Medium 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 

 

Because 64% of black chert complete flakes have less than 3 dorsal scars, it can be 

inferred that some core reduction occurred.   No black chert flakes have any cortex suggesting 

cores may have been prepared or reduction occurred on prepared blanks.  This is supported by 

evidence of prepared platforms in the black chert assemblage.  Of the 29 black chert flakes that 

have platforms, 13.8% have complex platforms, 3.4% have prepared platforms, and 82.8% have 

simple platforms.  The frequency of complex and prepared platforms suggest some bifacial 

reduction occurred alongside nonbifacial thinning.  The evidence together indicates some soft 

hammer core reduction with tool production and biface reduction occurring later on in the 

reduction sequence. 

5.4 CZ2 Artifacts 

A total of 1,942 stone artifacts were recovered from Cultural Zone 2.  Artifacts by 

category include one microblade with edge damage, three bifaces, three modified flakes, and 

1,935 debitage flakes.   In general, the tool assemblage for CZ2 does not exhibit intense curation 

or exhaustive reduction.   

Microblades (n=1) 

The single microblade found in CZ2 is made from grey chert.  It measures 2.12 cm in 

length, 0.92 cm in width, 0.18 cm in thickness, and weighs 0.42 g.  The specimen is a proximal 

fragment with a snap on the distal margin and one arris on the dorsal surface.  The platform is 

simple with a salient bulb of force. Edge damage occurs on a continuous section measuring 0.53 

cm in length on the distal portion of right lateral margin.  The retouch has been classed as light 

PRGLILFDWLRQ�ZLWK�DQ�HGJH�DQJOH�RI���Û���7KH�UHWRXFK�RFFXUV�RQ�WKH�HGJH�RI�WKH�PDUJLQ�ZLWK�QR�
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scars on either the dorsal or ventral face.  There is evidence of trampling shown in a small pock 

mark on the dorsal surface as well as chipped and uneven margins.   

 

 
Figure 5.23 CZ2 microblade 

Bifaces (n=3) 

The three bifaces found at the 2009 and 2011 Mead site excavations in the East Block 

were all found in CZ2 within 1 m2 in Block 106.  All specimens are made from a very dark grey 

chert with subtle light grey banding that has been grouped a grey chert raw material.  Artifact 

106-121 (Figure 5.24, right) has a bending fracture cause by raw material imperfection on the 

proximal margin however, the artifact was utilized after this break occurred and therefor has been 

termed a completely intact specimen.  Clear evidence of retouch marks this biface as stage four, a 

utilized tool.  Artifact 106-121 measures 6.46 cm in length, 2.77 cm in width, 0.77 cm in 

thickness, and weighs 15.14 g with a ��Û�HGJH�DQJOH�   There is no hafting present and  retouch 

continues all the way to base which may indicate that this biface was probably not used as 

projectile, more likely it functioned as a knife or scraper.  For a utilized bifacial tool it is poorly 

formed, in profile view the edges are jagged and there are steep edge angles due to bad flaking at 

some areas along the edge.  There is bimarginal clustered retouch on both the left and right 

laterals.  This piece is not heavily reworked or utilized, the poor construction did not allow for 

much in the way of reshaping or sharpening. 

Biface 106-258 (Figure 5.24, middle) is a proximal fragment measuring 3.68 cm in 

length, 2.77 cm in width, 0.83 cm in thickness, weighing 7.51 g with a 42Û�HGJH�DQJOH���$�EHQGLQJ�
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fracture occurring probably during sharpening.  The modification is unimarginal retouch. The 

right margin has more invasive feathered flaking with microchipping and polish, while the left 

lateral has stepped and feathered retouch continuously and has a more glossy polish.  The left 

lateral also has more acute edge angles while the right lateral has larger edge angles.  Hafting 

occurred at as lanceolate type haft, this is indicated by a flaring out towards the distal end.  Since 

retouch and utilization is present on the haft, this biface was probably hafted, used a projectile, 

broken and then utilized as a hand tool to a small degree. 

Specimen 106-308 (Figure 5.24, left) is a distal fragment measuring 2.71 cm in length, 

1.93 cm in width, 0.36 cm in thickness, weighing 2.16 J�ZLWK�D���Û�HGJH�DQJOH� This is technically 

a utilized biface but is in a very early stage of production.  Flake scars measure 0.55 cm on either 

surface, but no flake scars present across the whole face.  Unimarginal retouch is only present on 

only one surface, both the left and right laterals have short amounts of feathered retouch (1.0 cm 

and 1.04 cm).  No hafting occurred. 

It should be noted that one other biface was found made from the same banded grey chert 

material during the 1990s excavations.  This biface is similar to specimen 106-121 in that it was 

more likely used as a scraper rather than a projectile.   

 

 
Figure 5.24 CZ2 bifaces 
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Modified flakes (n=3) 

There are a total of three modified flakes, found in CZ1b. Specimen 104-147 is a broken 

grey chert flake with metric dimensions of 0.85 cm width, 1.76 cm length, 0.15 cm thickness, and 

0.28 g in weight. Only the left lateral edge on the ventral surface was utilized showing evidence 

of microchipping for a continuous length of 0.85 cm.  The modified edge is straight and has an 

edge angle of 25Û�  104-147 also has a single facet lipped platform.  Artifact 104-185 is a grey 

chert flake fragment with metric dimensions of 3.77 cm in width, 1.36 cm in length, .48 cm in 

thickness, and 0.03 g in weight. Only the right lateral edge on the ventral surface was utilized 

showing evidence of light retouch for a continuous length of 1.59 cm.  The modified edge is 

straight and has an edge angle of 38Û���The final specimen 104-235, is a grey chert flake fragment.  

Measurements are 0.75 cm in width, 0.29 cm in length, 0.14 cm in thickness, and 0.03 g in 

weight.  Edge modification occurs only on the proximal edge, showing clustered light retouch for 

a total of 0.33 cm in length.  The edge damage occurred along the ventral surface with and edge 

angle of 17Û���'XH�WR�WKH�DFXWH�HGJH�DQJOH��DQG�WKH�RFFXUUHQFH�RI�WKH�damage along a broken edge 

of a small flake, this damage is most likely due to post depositional disturbance. 

Unmodified flakes (n=1,935) 

There are a total of 1,935 unmodified flakes in CZ2.  Of the 732 flakes that have 

platforms 1.1% have eraillure scars.  52.9% of flakes with platforms have lipped platforms. Of 

the 733 flakes that have discernible bulbs of force, 72.3% have diffuse bulbs, while 27.7% have 

salient bulbs.  Platform types consist of complex (n=78, 10.6%), cortical (n=1, .1%), and simple 

(n=653, 89.2%).  Considering cortex, 99.8% of the total 1,935 flakes have no cortex, 0.1% has 

less than 50% coverage of their dorsal surface, 0.1% has 100% cortex coverage.  The average 

weight for the debitage assemblage of CZ2 is 0.27 g.  Other averages for metric measurements 

include 0.78 cm for width, 0.62 cm for length, and 0.11 cm for thickness.  A total of 13 flakes 

have evidence of thermal alteration.  The most common indication of this is reddening of the 

material, but it can also show as changes in luster. 

 

Table 5.15  CZ2 dorsal scar counts by raw material 

Raw Material 
Dorsal Scar Count         

0 1 2 3 4 >4 

Brown Quartzite 0 (0.0%) 1 (10.0%) 6 (60.0%) 2 (20.0%) 1 (10.0%) 0 (0.0%) 

Grey Chert 0 (0.0%) 136 (46.7%) 80 (27.5%) 46 (15.8%) 18 (6.2%) 11 (3.8%) 
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Table 5.16 CZ2 flake totals by raw material type 

Raw Material N % Weight (g) % 

jasper 1 0.1% 0.05 0.01% 

obsidian 2 0.1% 0.09 0.02% 

quartz 2 0.1% 0.12 0.02% 

brown chert 3 0.2% 1.34 0.25% 

grey chalcedony 5 0.3% 0.33 0.06% 

rhyolite 5 0.3% 5.12 0.97% 

black chert 7 0.4% 0.16 0.03% 

grey quartzite 8 0.4% 35.24 6.69% 

banded chalcedony 10 0.5% 0.26 0.05% 

brown quartzite 44 2.3% 310.98 58.99% 

grey chert 1847 95.5% 173.46 32.91% 

Total 1934 100.0% 527.15 100.00% 

 

MSRT distributions of brown quartzite in CZ2 have a high percentage of complete flakes 

in the very large and large size classes which indicate large core reduction.  The high percentage 

of broken flake sin the medium category suggests tool production.  In the small and very small 

categories the distribution of fragments and complete flakes indicates soft hammer tool reduction 

as well. 

 

Table 5.17 MSRT percentage summary for CZ2 brown quartzite 

MSRT size Broken Complete Frag Shatter Split 

Very small 0 (0.0%) 2 (15.4%) 11 (84.6%) 0 (0.0%) 0 (0.0%) 

Small 4 (19.0%) 5 (23.8%) 11 (52.4%) 0 (0.0%) 1 (4.8%) 

Medium 3 (42.9%) 1 (14.3%) 3 (42.9%) 0 (0.0%) 0 (0.0%) 

Large 1 (50.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Very large 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

 

In total 70% of brown quartzite flakes have less than three flake scars which indicates 

core reduction.  Additionally, 42 (95.5%) brown quartzite flakes have no cortex, one flake (2.3%) 

has less than 50% cortex, and one flake (2.3%) has complete coverage of its dorsal surface.  This 
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suggests that large original cobbles are not being reduced and supports the evidence for tool 

reduction. However of the 19 brown quartzite flakes that have platforms present one (5.3%) flake 

has a cortical platform, and 18 (94.7%) have simple platforms.  This suggests primary reduction.  

The total evidence then indicates that some primary reduction of brown quartzite occurred with a 

focus shifting towards tool production as the reduction sequence continued. 

 For grey chert the single large fragment and the distribution of complete and fragmented 

flakes suggests medium core reduction with soft hammer.  The very small and small size 

categories have similar distributions with more than half al the flakes categorized as fragments, 

with the next most abundant flake type as broken and complete flakes just under those 

percentages.  Additionally a few shatter and split flakes are present in these size classes.  This 

suggests soft hammer biface reduction. 

 

Table 5.18 MSRT percentage summary for CZ2 grey chert 

MSRT size Broken Complete Frag Shatter Split 

Very small 292 (20.5%) 198 (13.9%) 924 (64.9%) 3 (0.2%) 7 (0.5%) 

Small 106 (27.5%) 80 (20.7%) 198 (51.3%) 0 (0.0%) 2 (0.5%) 

Medium 5 (13.9%) 14 (38.9%) 17 (47.2%) 0 (0.0%) 0 (0.0%) 

Large 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 

 

Dorsal scar counts for grey chert suggest that there was some core reduction occurring.  

Of the 1,847 grey chert flakes in CZ2, one flake (0.1%) has less than 50% cortex coverage. This 

contradicts evidence from dorsal scar counts and indicates the reduced cores may not be original 

cobbles.  Of the 699 flakes that have platforms present 11.2% have complex platforms, and 

88.8% have simple platforms.  This suggests that there was some bifacial thinning occurring 

alongside nonbifacial thinning. 

5.5 CZ3a Artifacts 

A total of 13 grey chert flakes were found in CZ3a.  Although the sample size from the 

2009 and 2011 excavations is very small, the flakes merit a short description.  Four flakes are 

complete, eight are fragments, and one is broken.  Of five flakes with discernible platforms, three 

have simple platforms while two have complex and three platforms are lipped.  No flakes have 

cortex.   Total weight calculates to 3.07 g.  Maximum dimensions range from 0.33 cm to 2.49 cm.  
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According to MSRT size classes five flakes classify as very small and eight classify as small.  

Not much can be determined about this component due to the extremely small sample size, 

however the limited data suggests that soft hammer intermediate and late stage biface production 

occurred.  The frequency of complex and lipped platforms, dorsal scar count, fragments and 

presence of only small and very small flakes determines this. 

5.6 CZ3b Artifacts 

A total of 487 stone artifacts were recovered from Cultural Zone 3b.  Artifacts by 

category include one microblade, two flake cores, 12 modified flakes, and 472 waste flakes.   In 

general, the tool assemblage for CZ3b does not exhibit intense curation or exhaustive reduction 

except on banded and grey chalcedony.   

Microblades (n=1) 

The single microblade specimen in CZ3b is a medial section made from fine-grained grey 

basalt (Figure 5.25).  Metric measurements are 0.99 cm in width, 1.77 cm in length, 0.27 cm in 

thickness, and 0.61 g in weight.  The microblade has two arrises on its dorsal surface and is 

modified along the right lateral dorsal face.  Modification is light chipping and found as clustered 

groups measuring 0.65 cm in total length with and edge angle of 47Û� 

 

 
Figure 5.25 CZ3b microblade 

 

Flake Cores (n=2) 

Both flake cores found in CZ3b are made from the light grey quartz.  102-256 is a 

multidirectional core with a total of five flake scars.  The maximum flake scar dimension 
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measures, 6.32 cm in length and 8.8 cm in width.  The maximum linear dimension of the core is 

6.32 cm with a total weight of 0.18 kg. This flake core shows evidence of thermal alteration 

through a reddening of the material. E52-232 is a unidirectional core also made from quartz.  This 

core has a total of four flake scars, with the largest flake scar measuring 9.97 cm in length and 

5.11 cm in width.  The maximum linear dimension of the core is 9.97 cm and it weighs 0.14 kg 

total. 

Modified flakes (n=12) 

Five raw material types were present in modified flakes for CZ3b.  Raw materials 

included obsidian (n=1, 8.3%), grey chert (n=2, 16.7%), grey basalt (n=1, 8.3 %), grey 

chalcedony (n=3, 25.0%), and banded chalcedony (n=5, 41.7%).  A single flake has a complex 

platform (12.5%), while seven have simple platforms (87.5%).  Two platforms are lipped.  No 

flakes exhibit any sings of thermal alteration or have any cortex evident.   Out of the four 

complete flakes, two flakes have a count of three facets each (50.0%), one flake has four facets 

(25.0%), and one flakes contain over four facets (25.0%).    Mean weight of the assemblage is 

5.54 g, mean width is 2.37 cm, mean length is 2.73 cm, and mean thickness is 0.42 cm.  All 

means of metric measurements larger in modified flakes than in unmodified flakes and all 

categories (width, length, thickness, and weight) are statistically significantly different at the 0.05 

level.  Modified flakes generally comprise of small (n=5, 41.7%), with four (33.3%) medium 

flakes and three (25.0%) large flakes.  

 While there are total of 12 modified flakes, there are 17 modification units for the CZ3b 

modified flake assemblage.  Modified flakes were predominately (n=8) altered by only one unit, 

with three specimens having two modified units, and one having three modified units.  Three 

modifications units were categorized as having heavy retouch, the remaining 14 units were 

classified as light.  Modification type consisted mostly of retouch (n=15), with two artifacts 

having chipping.  Modification positions included seven flakes with right lateral retouch (41.2%), 

nine flakes modified on the left lateral (52.9%) and one flake modified on the proximal edge 

(5.9%). Most units were modified only on the dorsal face of the specimen (n=13, 76.5%) with the 

rest on the ventral surface (n=4, 23.5%).  Edge shapes occurred as either concave (n=5, 29.4%) or 

straight (n=12, 70.6%).  Mean modification length for all units is 2.46 cm, with a mean for the 

sum of modification lengths per flake of 4.0 cm.  The percentage of modified edges for each flake 

(total # modified edges/total edges) averages to 41.18%.  The modified edge angle average is 38Û��� 

 Unmodified flakes (n=472) 
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There are a total of 472 unmodified flakes in CZ3b.  Of the 197 flakes that have 

platforms 0.5% have eraillure scars.  36.5% of flakes with platforms have lipped platforms. Of 

the 198 flakes that have discernible bulbs of force, 70.2% have diffuse bulbs, while 29.8% have 

salient bulbs.  Platform types consist of complex (n=18, 9.1%), cortical (n=3, 1.5%), crushed 

(n=1, .5%), and simple (n=175, 88.9%).  Considering cortex, 98.8% of the total 472 flakes have 

no cortex, 0.6% has less than 50% coverage of their dorsal surface, 0.4% has over 50% cortex 

coverage, and 0.2% has 100% cortex coverage.  The average weight for the debitage assemblage 

of CZ3b is .77 g.  Other averages for metric measurements include .91 cm for width, .82 cm for 

length, and 0.19 cm for thickness.  A total of seven flakes have evidence of thermal alteration.  

The most common indication of this is reddening and blackening of the material, but it can also 

show as changes in luster. 

 

Table 5.19 CZ3b flake totals by raw material type 

Raw Material N % Weight (g) % 

Brown Chert 1 0.2% 0.08 0.02% 

Petrified Wood 1 0.2% 0.34 0.06% 

Black Chert 3 0.6% 0.12 0.02% 

Grey Quartzite 12 2.5% 84.10 16.02% 

Brown Quartzite 14 3.0% 33.97 6.47% 

Grey Basalt 25 5.3% 173.46 33.03% 

Banded Chalcedony 42 8.9% 1.36 0.26% 

Andesite 43 9.1% 95.14 18.12% 

Grey Chalcedony 44 9.3% 4.11 0.78% 

Quartz 107 22.7% 105.97 20.18% 

Grey Chert 180 38.1% 26.44 5.04% 

Total 472 100.0% 525.09 100.0% 
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Table 5.20 CZ3b dorsal scar counts by raw material 

Raw Material 
Dorsal Scar Count         

0 1 2 3 4 >4 

Andesite 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Banded Chalcedony 0 (0.0%) 0 (0.0%) 4 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Grey Chalcedony 0 (0.0%) 1 (16.7%) 3 (50.0%) 2 (33.3%) 0 (0.0%) 0 (0.0%) 

Grey Chert 0 (0.0%) 11 (31.4%) 21 (60.0%) 2 (5.7%) 1 (2.9%) 0 (0.0%) 

Quartz 0 (0.0%) 5 (41.7%) 4 (33.3%) 3 (25.0%) 0 (0.0%) 0 (0.0%) 

 

 MSRT distributions for andesite include large, medium, small and very small flake size 

classes.  Large and medium sizes both have higher percentages of broken flakes which may 

indicate tool production.  Both the small and very small categories have a higher percentage of 

fragments, with broken flakes being the next most common and very few shatter and split flakes.  

This distribution indicates biface reduction. 

 

Table 5.21 MSRT percentage summary for CZ3b andesite 

MSRT size Broken Complete Frag Shatter Split 

Very small 4 (22.2%) 0 (0.0%) 11 (61.1%) 3 (16.7%) 0 (0.0%) 

Small 4 (21.1%) 0 (0.0%) 14 (73.7%) 0 (0.0%) 1 (5.3%) 

Medium 3 (75.0%) 0 (0.0%) 1 (25.0%) 0 (0.0%) 0 (0.0%) 

Large 1 (50.0%) 1 (50.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

 

Of the 43 total andesite flakes, 41 (95.3%) have no cortex, and two (4.7%) flakes have 

less than 50% cortex, which suggest secondary or tertiary reduction.  Of the 14 flakes that have 

platforms, three (21.4%) are cortical, while 11 (78.6%) are simple, which suggests mostly 

secondary reduction occurred.  Looking at the evidence together, the data indicates that large to 

medium size blanks of andesite were reduced for the production of tools with some bifacial 

reduction occurring as the objective piece was reduced. 

 For banded chalcedony the higher percentage of broken flakes in the small size class and 

the higher frequency of fragments with some broken flakes and few complete flakes suggests tool 

production and biface reduction. 
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Table 5.22 MSRT percentage summary for CZ3b banded chalcedony 

MSRT size Broken Complete Frag Shatter Split 

Very small 15 (39.5%) 3 (7.9%) 20 (52.6%) 0 (0.0%) 0 (0.0%) 

Small 2 (50.0%) 1 (25.0%) 1 (25.0%) 0 (0.0%) 0 (0.0%) 

  

The absence of cortex indicates tertiary reduction of banded chalcedony.  Of the 21 complete 

banded chalcedony flakes, six (28.6%) are complex and 15 (71.4%) are simple.  The 

comparatively high percentage of complex platforms to other raw materials in CZ3b suggests that 

bifacial thinning may have been occurring alongside nonbifacial reduction.  All together it is 

likely banded chalcedony was both being reduced and shaped into tool forms as well as being 

sharpened after use. 

 For grey chalcedony the distribution of flakes in the small and very small categories also 

suggest bifacial reduction.  The small category has a higher percentage of fragments with and 

even distribution of complete and broken flakes, while the very small category has the typical 

distribution of high fragments, some broken flakes and a few complete flakes. 

 

Table 5.23 MSRT percentage summary for CZ3b grey chalcedony 

MSRT size Broken Complete Frag Shatter Split 

Very small 12 (32.4%) 4 (10.8%) 20 (54.1%) 0 (0.0%) 1 (2.7%) 

Small 2 (28.6%) 2 (28.6%) 3 (42.9%) 0 (0.0%) 0 (0.0%) 

 

A total of 83.3% of complete flakes have three or more dorsal scars indicating bifacial 

reduction.  No cortex present on any flakes indicating tertiary reduction, and of the 21 complete 

flakes, two (9.5%) are complex, one (4.8%) is crushed, and 18 (85.7%) are simple suggesting 

some nonbifacial reduction occurred.  Together the evidence indicates that bifacial reduction and 

sharpening occurred on grey chalcedony. 

 For grey chert the medium flake category has a higher percentage of complete flakes 

indicating medium size core reduction.  The small and very small categories have a typical 

distribution for this site with a high percentage of fragments, some broken flakes and a few 

complete flakes.  This indicated bifacial reduction. 
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Table 5.24 MSRT percentage summary for CZ3b grey chert 

MSRT size Broken Complete Frag Shatter Split 

Very small 38 (27.5%) 28 (20.3%) 71 (51.4%) 1 (0.7%) 0 (0.0%) 

Small 13 (32.4%) 5 (13.2%) 20 (52.6%) 0 (0.0%) 0 (0.0%) 

Medium 1 (25.0%) 2 (50.0%) 1 (25.0%) 0 (0.0%) 0 (0.0%) 

 

Dorsal scar counts indicate core reduction however, as previously mentioned, dorsal scars 

probably do not significantly inform on reduction strategy unless corrected for size.  A single 

flake (0.6%) has more than 50% cortex coverage, and all others (n=179, 99.4%) have no cortex 

present indicating secondary and tertiary reduction.  Of the 87 complete flakes, eight (9.2%) are 

complex, and 79 (90.8%) are simple which suggests nonbifacial reduction.  All together the 

evidence does not support one reduction strategy more than another.  Secondary reduction seems 

most likely therefor it can be inferred that some tool and biface reduction occurred. 

 For quartz, natural cobbles are found on site therefore evidence is expected to suggest 

primary reduction.    The almost even distribution of complete flakes, fragments, and shatter in 

the medium size category matches with the expected patterns for primary reduction on medium 

size cores.  The small and very small categories match patterns expected for soft hammer tool 

production with very high frequencies of fragments and broken flakes. 

 

Table 5.25 MSRT percentage summary for CZ3b quartz 

MSRT size Broken Complete Frag Shatter Split 

Very small 9 (12.3%) 6 (8.2%) 56 (76.7%) 1 (1.4%) 1 (1.4%) 

Small 9 (34.6%) 3 (11.5%) 14 (53.8%) 0 (0.0%) 0 (0.0%) 

Medium 0 (0.0%) 3 (37.5%) 3 (37.5%) 2 (25.0%) 0 (0.0%) 

 

Of the 12 complete flakes of quartz 75.0% have less than three dorsal scars which is 

consistent with core reduction.  Of the 107 quartz flakes, one flake each (0.9%) has less than 

50%, more than 50% and 100% cortex coverage suggesting some primary and secondary 

reduction.  The remaining 104 (97.2%) flakes have no cortex.  Of the 31 complete flakes, two 

(6.5%) are complex, and 29 (93.5%) are simple indicating nonbifacial reduction.  All together the 

data suggest primary core reduction to secondary soft hammer tool reduction.   
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 It should be noted, that while quartz is found on site, the signatures of the CZ3b quartz 

assemblage seem to differ from the signatures of the CZ4 quartz assemblage.  In CZ3b cores are 

smaller, flakes sizes are smaller, there is less cortex and some complex platforms.  This may 

indicate that the original cobbles were no longer readily available to the inhabitants in CZ3b like 

they were to those people who occupied the site in CZ4 or that a reliance on raw material has 

shifted to another. 

5.7 CZ4 Artifacts 

  There are a total of 940 stone artifacts for CZ4.  Tools by category include four flake 

cores, 11 modified flakes, 923 unmodified flakes, two burins, and one unifacial scraper.  The 

unifacial scraper was used as a burin after discard and while it counts as a single artifact, it is 

classified as two different formal tool types and will be included under both categories. 

 Flake cores (n=4) 

 All flake cores in CZ4 are made from the quartz found on site in the grey bedded sands 

just below the sediment of CZ4.  Specimen 102-243 is a multidirectional core with a total of 10 

flake scars.  The largest flake scar measures 7.44 cm in length and 9.51 cm in width.  The 

maximum linear dimension of the core is 12.88 cm with a total weight of 0.82 kg. This core 

shows evidence of thermal alteration through a reddening of the material.  Specimen E52-69 is a 

multidirectional core with a total of four flake scars.  The largest flake scar measures 10.53 cm in 

length and 7.07 cm in width.  The maximum linear dimension of the core is 11.54 cm with a total 

weight of 0.48 kg. This core has a size value of 5.54. Specimen E52-110 is a bidirectional core 

with a total of four flake scars.  The largest flake scar measures 10.80 cm in length and 3.61 cm in 

width.  The maximum linear dimension of the core is 11.66 cm with a total weight of 0.18 kg. 

This core has a size value of 2.10.  Specimen E52-172 is a multidirectional core with a total of 5 

flake scars.  The largest flake scar measures 8.74 cm in length and 4.04 cm in width.  The 

maximum linear dimension of the core is 9.98 cm with a total weight of 0.22 kg. This core has a 

size value of 2.20.  Cores for CZ4 average a size value of 5.10 and cores for CZ3b average a size 

value of 1.49 however these are not statistically significantly different ( t = -1.208, p = 0.294). 

 Burin on Snaps (n=2) 

 The two burins found in this component are made from grey chalcedony (Figure 5.26, 

right), and black chert (Figure 5.26, left).  The black chert specimen, E40-92, is a burin-on-snap 

measuring 2.89 cm in length, 1.75 cm in width, 0.64 cm in thickness, and 4.36 g in weight.  There 

is a burinated facet located on the left lateral edge of the burin.  There is evidence of chipping, 
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retouch and burin wear, on multiple edges and both the ventral and dorsal surfaces.  The modified 

HGJH�DQJOH�PHDVXUHV���Û�  The second burin, 101-263, is made from a heavily curated broken 

unifacial scraper made from grey chalcedony. It is classified as a burin-on-snap type.  Metric 

measurements are as follows: 1.19 cm in length, 2.33 cm in width, 0.57 cm in thickness, and 2.26 

g in weight.  Modification is on the distal edge on the ventral face and consists of burin wear and 

FKLSSLQJ����7KH�HGJH�DQJOH�RI�WKH�PDUJLQ�XWLOL]HG�DV�D�EXULQ�LV���Û� 

 

 
Figure 5.26 CZ4 burins 

 

 Scrapers (n=1) 

 Specimen 101-263 is a medial segment of a heavily worked unifacial scraper (Figure 

5.26, right).  It is made from grey chalcedony and was utilized as a burin after it was broken.  In 

cross section this artifact is planoconvex.   Measurements for this scraper are 1.19 cm in length, 

2.33 cm in width, 0.57 cm in thickness, and 2.26 g in weight.  Edge wear consists of heavy 

retouch on both the right and left lateral margins on the dorsal surface.  The modified edges are 

straight in shape.  The total modification length for this artifact is 2.07 cm with edge angles 

UDQJLQJ�IURP���Û�WR���Û��� 

 Modified flakes (n=11) 

Four raw material types were present in modified flakes for CZ4.  Raw materials 

included quartz (n=3, 27.3%), grey chalcedony (n=6, 54.5%), black chert (n=1, 9.1 %), banded 
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chalcedony (n=1, 9.1%).  A single flake has a cortical platform (20.0%), while four have simple 

platforms (80.0%).  No platforms are lipped.  No flakes exhibit any signs of thermal alteration 

and two flakes have less than 50% cortex on the dorsal surface.  Both of these flakes are quartz 

and the cortex is the ventifacted surface.   Out of the 2 complete flakes, one flake has a count of 

two facets (50.0%), and one flake has four facets (50.0%).  Average mean weight of the 

assemblage is 4.07 g, mean width is 1.59 cm, mean length is 2.37 cm, and mean thickness is 0.48 

cm.  All means of metric measurements are larger in modified flakes than in unmodified flakes 

but only the length category is statistically significantly different at the 0.05 level (width t = 

1.760, p = 0.079; length t = 5.413, p = 0.000; thickness t = 1.257, p = 0.209; weight t = 0.640, p = 

0.523).  Modified flakes generally comprise of small (n=6, 54.5%), with four (36.4%) medium 

flakes and one (9.1%) large flake.  

 While there are total of 11 modified flakes, there are a total of 12 modification units for 

the CZ3b modified flake assemblage.  Modified flakes were predominately (n=10) altered by 

only one unit, with one specimen having two modified units.  Two modifications units were 

categorized as having heavy retouch, the remaining 11 units were classified as light.  

Modification type consisted mostly of retouch (n=10), with one artifact having chipping and one 

artifact having both chipping and retouch.  Modification positions included 4 flakes with right 

lateral retouch (33.3%), six flakes modified on the left lateral (50.0%) and two flakes modified on 

the distal edge (16.7%). Most units were modified only on the dorsal face of the specimen (n=9, 

75.0%) with the some on the ventral surface (n=2, 16.7%) and one specimen (8.3%) containing 

edge modification on both surfaces (retouch on the dorsal surface, but chipping on the ventral 

surface).  Edge shapes occurred as either convex (n=1, 8.3%) or straight (n=11, 91.7%).  Mean 

modification length for all units is 2.04 cm, with a mean for the sum of modification lengths per 

flake of 2.72 cm.  The percentage of modified edges for each flake (total # modified edges/total 

edges) averages to 29.17%.  The modified edge angle average is 45Û��� 

 Unmodified flakes (n=923) 

There are a total of 923 unmodified flakes in CZ4.  Of the 240 flakes that have platforms 

1.7% have eraillure scars.  19.6% of flakes with platforms have lipped platforms. Of the 241 

flakes that have discernible bulbs of force, 71.4% have diffuse bulbs, while 28.6% have salient 

bulbs.  Platform types consist of complex (n=6, 2.5%), cortical (n=25, 10.4%), and simple 

(n=209, 87.1%).  Considering cortex, 89.3% of the total 923 flakes have no cortex, 2.2% have 

less than 50% coverage of their dorsal surface, 2.0% has over 50% cortex coverage, and 6.6% has 
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100% cortex coverage.  The average weight for the debitage assemblage of CZ4 is 1.54 g.  Other 

averages for metric measurements include 1.07 cm for width, 0.92 cm for length, and 0.31 cm for 

thickness.  A total of 38 flakes have evidence of thermal alteration.  The most common indication 

of this is reddening of the material, as well as pot lidding. 

 

Table 5.26 CZ4 flake totals by raw material type 

Raw Material N % Weight (g) % 

brown chert 1 0.10% 0.07 0.00% 

jasper 1 0.10% 0.05 0.00% 

banded chalcedony 5 0.50% 0.14 0.01% 

grey basalt 7 0.80% 7.89 0.55% 

red/grey siltstone 8 0.90% 0.6 0.04% 

obsidian 17 1.80% 0.6 0.04% 

andesite 38 4.10% 7.67 0.54% 

grey chalcedony 41 4.40% 2.71 0.19% 

grey chert 44 4.80% 22.08 1.55% 

quartz 761 82.40% 1383 97.07% 

Total 923 100.00% 1424.81 100.00% 

 

Table 5.27 CZ4 dorsal scar counts by raw material 

Raw Material 
Dorsal Scar Count         

0 1 2 3 4 >4 

Andesite 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

Grey Chalcedony 0 (0.0%) 2 (11.1%) 6 (33.3%) 6 (33.3%) 2 (11.1%) 2 (11.1%) 

Grey Chert 0 (0.0%) 1 (12.5%) 2 (25.0%) 3 (37.5%) 1 (12.5%) 1 (12.5%) 

Quartz 4 (5.3%) 32 (42.7%) 32 (42.7%) 7 (9.3%) 0 (0.0%) 0 (0.0%) 

 

 MSRT distribution for andesite in CZ includes the size categories of small and very 

small.  For both categories, a high percentage of fragments and broken flakes may indicate soft 

hammer tool production.   
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Table 5.28 MSRT percentage summary for CZ4 andesite 

MSRT size Broken Complete Frag Shatter Split 

Very small 7 (30.4%) 1 (4.3%) 14 (60.9%) 1 (4.3%) 0 (0.0%) 

Small 3 (20.0%) 0 (0.0%) 12 (80.0%) 0 (0.0%) 0 (0.0%) 

  

The single complete andesite flake has 2 dorsal scars and out of the 38 andesite flake no 

cortex is found.  All 11 andesite flakes that have platforms are single faceted.  This is consistent 

with MSRT data and together suggests andesite tools were being made with soft hammer 

percussion. 

 For grey chalcedony the small category has an equal distribution of broken and 

fragmented flakes while the very small size class is dominated by complete flakes.  This indicates 

tool production.   

 

Table 5.29 MSRT percentage summary for CZ4 grey chalcedony 

MSRT size Broken Complete Frag Shatter Split 

Very small 4 (12.1%) 16 (48.5%) 13 (39.4%) 0 (0.0%) 0 (0.0%) 

Small 3 (37.5%) 2 (25.0%) 3 (37.5%) 0 (0.0%) 0 (0.0%) 

  

Over half of the complete grey chalcedony flakes have three or more dorsal flake scars 

indicating bifacial reduction occurred.  Just over half of the complete flakes have three or more 

dorsal scars suggesting some bifacial reduction occurred.  No grey chalcedony flakes have cortex 

which is suggestive of tertiary reduction.  Of the 25 grey chalcedony flakes that have platforms, 

three (12.0%) have complex platforms, and 22 (88.0%) have simple platforms.  All together it is 

likely that grey chalcedony tools were being sharpened in CZ4. 

 For grey chert, medium, small and very small size categories are present.  The medium 

category with a single complete flake suggests medium sized core reduction.  The small category 

with and even distribution of fragmented and broken flakes, suggests tool production.  The very 

small size class has a higher frequency of fragmented flake with broken flake the next most 

common and a few complete flakes.  This indicates biface reduction. 
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Table 5.30 MSRT percentage summary for CZ4 grey chert 

MSRT size Broken Complete Frag Shatter Split 

Very small 10 (30.3%) 5 (15.2%) 18 (54.5%) 0 (0.0%) 0 (0.0%) 

Small 4 (40.0%) 2 (20.0%) 4 (40.0%) 0 (0.0%) 0 (0.0%) 

Medium 0 (0.0%) 1 (100%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

 

Dorsal scar counts show that 62.5% of complete flakes have three or more dorsal scars 

showing that bifacial reduction occurred.  This is supported by the absence of cortex.  Of the 22 

grey chert flakes that have platforms, three (13.6%) have complex platforms, while 19 (86.4%) 

have simple platforms.  This suggests that nonbifacial reduction occurred.  All together the 

evidence suggests that chert blanks were brought to the site, reduced to tools, some bifacial, and 

sharpened. 

 Quartz cobbles are found on site and MSRT and other lines of evidence support the 

expected pattern of large cobble primary reduction.  The frequency of complete flakes as well as 

shatter for the large and very large size classes suggests large core reduction.  In the medium size 

category, a high frequency of fragments with broken flake being the next most abundant and a 

few complete flakes as well as shatter and a split flake suggest medium core reduction and/or tool 

production.  The small and very small size classes have similar signatures with high frequency of 

fragments with broken flake being the next most abundant and a few complete flakes as well as 

shatter and a split flake suggest tool production and medium flake production. 

 

Table 5.31 MSRT percentage summary for CZ4 quartz 

MSRT size Broken Complete Frag Shatter Split 

Very small 31 (7.1%) 42 (9.6%) 348 (79.5%) 17 (3.9%) 0 (0.0%) 

Small 40 (16.1%) 18 (7.3%) 172 (69.4%) 17 (6.9%) 1 (0.4%) 

Medium 17 (26.6%) 13 (20.3%) 29 (45.3%) 4 (6.3%) 1 (1.6%) 

Large 3 (30.0%) 1 (10.0%) 5 (50.0%) 1 (10.0%) 0 (0.0%) 

Very large 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

  

More than 90% of the complete quartz flakes have dorsal scars less than three further 

indicating core reduction for the quartz material.  Of the 759 quartz flakes, 660 (87.0%) have no 

cortex, 20 (2.6%) have less than 50% cortex coverage, 18 (2.4%) have more than 50% cortex, and 
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61 (8.0%) have 100% cortex coverage on their dorsal surface.  The high percentage of more than 

50% cortex coverage is consistent with primary core reduction.  Of the 168 quartz flakes that 

have platforms, 25 (14.9%) flakes have cortical platforms and 143 (85.1%) flakes have simple 

platforms. This again is consistent with primary core reduction.  Additionally 36 flakes (4.7%) 

have been thermally altered primarily showing as a deep reddish color, suggesting some heat 

treatment or cobbles may have been attempted.  Results indicate, as expected, that quartz 

primarily reduced at the site and used for tool production. 

5.8 Comparisons by Cultural Zone 

There are clear differences in the treatment of raw materials between the cultural 

components at Mead.   A first approximation of CZ comparison was calculated using the Shannon 

Weaver Diversity Index and the Simpsons Index of Evenness.  Both indices have been 

successfully applied to archaeological research and shown to be useful in comparing analytical 

units (Bever 2000; Potter 2005; Surovell 2003).  The diversity and evenness indices for raw 

material types in each component (see Table 5.32) show that CZ1b has higher diversity of raw 

materials with medium evenness across the site.  CZ2 has low diversity of raw materials.  CZ3a, 

as expected, has no diversity of material types and is uneven because only one material type is 

found in this component.  CZ3b has high diversity of material and is very even.  CZ4 has medium 

diversity and is somewhat uneven.  The results indicate that the most even spread of raw 

materials with highest diversity in tool types occur in CZs 3b and 1b.  The diversity and evenness 

indices for formal tool types in each cultural component (see  

Table 5.33) show that CZ1b has a high diversity of tool types.  CZ4 has a medium 

diversity, while CZ2 has a low diversity in tool types found.  Both CZs 3a and 3b have no 

diversity in formal tool types.  The high diversity of raw material types and formal tool types 

found in CZ1b indicate that it may have been a long term occupation, at least longer than the 

other cultural occupations at the site.  The high diversity of material types in CZ3b may also 

suggest a longer occupation length for CZ3b however contradicting the assumption for long term 

occupation is the absence of any diversity in formal tool types.  This is likely due to sampling 

error, the addition of the 2012 data may reveal a higher diversity of formal tool types in CZ3b 

that was not found in 2009 or 2011. 
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Table 5.32 Diversity and evenness indexes for raw material 

CZ 
Number of 

Lithics 

Number of Raw 

Material Types 

Shannon-Weaver 

Diversity  Index (H') 

Simpson Index of 

Evenness(1-D) 

1b 3933 15 1.2351 0.5792 

2 1934 11 0.2593 0.0874 

3a 13 1 0.0000 0.0000 

3b 472 11 1.7704 0.7755 

4 923 10 0.7687 0.3141 

 

Table 5.33 Diversity and evenness indexes for tool classes 

CZ 
Number of 

Formal Tools 
Tool Classes Shannon-Weaver 

Diversity  Index (H') 

Simpson Index 

of Evenness(1-

D) 

1b 6 4 1.3297 0.8667 

2 4 2 0.3466 0.5000 

3a 0 0 0.0000 1.0000 

3b 1 1 0.0000 1.0000 

4 3 2 0.6365 0.6667 

 

Differences in these indices show that there is variation between each component, but 

they do not look specifically at how materials were being used in each cultural occupation. By 

tracking the frequency of modified flakes and debitage for prevalent raw materials in each 

cultural component (Figure 5.27) specific changes in raw material use can be elucidated.   



 
 

 

 

 
Figure 5.27 Percent debitage and modified debitage by raw material and CZ 
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         Figure 5.28 Grey chert and quartz use for each CZ 
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A clear contrast between the use of chert, the chalcedonies and the use of quartz at the 

site becomes evident when looking at Figure 5.28.  In CZ4 and CZ3b, modified flakes are 

predominately made from grey or banded chalcedony.  However after CZ3a, grey chert becomes 

the preference for modified flakes.  This could be due to a change in procurement strategy.  The 

CZ3b and CZ4 FKDOFHGRQ\�PRGLILHG�IODNHV�KDYH�D�PXFK�KLJKHU�DYHUDJH�HGJH�DQJOH�DW���Û�ZKLOH�

the CZ1b chalcedony modified flakes have an average of 17Û�HGJH�DQJOHV��DOWKRXJK�WKLV�LV�QRW�

statistically significantly different (t = -1.223, p = 0.242).  The steeper edge angles and higher 

percent of utilized margins per modified flake in the lower component chalcedonies indicate that 

the chalcedony material was being maximized and curated to a greater, though not significant, 

extent than the chalcedony modified flakes in CZ1b, CZ2 and CZ3a.  This suggests that more 

effort was taken to conserve the chalcedony materials in CZ3b and CZ4.  Compare this to chert, 

where there is a higher occurrence of maximization in the lower components with an average of 

42% utilization of each modified flake, though this is not statistically different from an average of 

28% utilized margins in the upper components it still suggests a difference in treatment of grey 

chert.  For edge angle of grey chert modified flakes, there is a difference between the average 

edge angle of 43Û�LQ�WKH�ORZHU�FRPSRQHQWV�DQG������Û�LQ�WKH�XSSHU�FRPSRQHQWV although this is 

not statistically significantly different (t = -0.875, p = 0.388).  This shows that curation of 

maximization of materials was a priority in CZ3b and CZ4 and was practiced to a lesser, but not 

significant degree in the upper cultural zones.  This could be due to a shift in mobility or resource 

availability.  Highly mobile groups are expected to conserve raw materials to a greater extent due 

to unavailability of materials as they travel.  However, as mobility decreases raw materials can be 

cached at sites, this abundance of toolstone leads to a more expedient reduction strategy where 

tools are discarded quickly after use resulting in slight edge angles and less maximization of each 

flake of material (Andrefsky 1994; Bamforth 1986). 

A shift in the treatment of quartz is also apparent between the Cultural Zones. CZ4 shows 

a heavy reliance on quartz through the high frequency of quartz debitage.  However after CZ4, a 

gradual shift towards a reliance on chert occurs.  This can be seen in Figure 5.28.  The inverse 

relationship between the grey chert and quartz assemblage representation suggests the on-site 

quartz material was replaced with the local grey chert.  This could be due to preference for higher 

quality materials, but could also be due to the sediment build up between CZ4 and CZ3b.  By the 

time of occupation in CZ3b, most of the original ventifacted quartz cobbles were buried in the 

grey bedded sands beneath about 20-35 cm of sediment.  The data indicates that the occupants of 
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CZ3b did not reduce any original cobbles of the quartz but instead may have been reducing 

discarded cores from CZ4.  This could be confirmed through a refitting analysis but is suggested 

by a statistically significant difference in the frequency of cortex between CZ3b and CZ4 quartz 

artifacts �Ȥ2 = 9.809, p = 0.020).  The decrease in availability of quartz in CZ3b is also likely a 

factor in the rise of the use of chert.  It can be assumed that the grey chert source, even if local, is 

located farther away than the quartz which is found on-site.  The low frequency of grey chert 

flakes in CZ4 could be because the occupants had quartz readily available and the chart required 

some time to procure.  In CZ3b, when the quartz was buried it is likely that the occupants began 

utilizing the chert as the next most readily available toolstone source.  However, the brown 

quartzite material is also found on-site.  Although this material would have been easily accessible, 

it is possible the occupants were seeking higher quality materials and that the energy spent on 

gathering the chert did not out-weight the gain in material quality. 
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Chapter 6 Spatial Organization of Activities 

6.1 Introduction 

Spatial analysis can be a key method in understanding organization within a site (Binford 

1977b:9; Clarke 1977; Hodder and Orton 1976; Kintigh and Ammerman 1982).  Previous 

research at Mead conducted by Gilbert (2011) has shown that the upper cultural zones have likely 

been affected by cryoturbation and bioturbation resulting in a displacement and mixing of 

materials.  However CZ3b and CZ4 reflect their original deposition suggesting that any results 

from spatial analysis would reflect human activities (Binford and Binford 1966).  Although 

mixing has occurred in CZ1b and CZ2, a spatial analysis will still be conducted on these 

occupations, however results will take into account that patterns may be due to taphonomic 

disturbances rather than the decision-making behavior of past occupants.  For this thesis, the goal 

of spatial analysis is to identify patterns in lithic organization by identifying lithic activity areas.  

This approach of defining activity areas and variants of it have been practically applied towards 

the Dry Creek and Gerstle River sites (Hoffecker 1983; Potter 2005).  To achieve this, analytical 

units are identified as area, subareas, and clusters, analyzed individually, and compared with 

other lithic clusters and features. Areas may include multiple subareas, subareas include multiple 

clusters and are defined by densities of over 8 flakes per 25 square centimeters, and clusters are 

defined by groupings of raw material types within a subarea.  Subarea boundaries are defined by 

point cloud on densities of 8 flakes per 25 cm2 or higher.  Where a subarea boundary includes 

only a portion of a 25 cm2 quad, 3-pointed artifacts were examined closely and only those within 

a boundary were included.  For screened artifacts, flakes were examined for associated raw 

material type and separated or included from there.  Clusters are concentration of flakes within a 

subarea or area that total 5 or more flakes of the same raw material.  Clusters totaling less than 30 

flakes are analyzed for general flake characteristics i.e. Attribute Analysis, aiming at 

understanding reduction stage and strategy.  Clusters totaling 30 flakes or more are analyzed in 

the same manner with the addition of MSRT. 

Patterns can be identified by analyzing lithic clusters and comparing groupings of lithics.  

Variability might be due to multiple causes.  Some variability among lithic clusters may reflect 

differences in lithic reduction.  Variability could also be the result of similar activity sets 

occurring over time.  If this is the case, tool types in the assemblage are expected to be more 
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similar.  Variability could also be the result of differences in activities occurring at the site.  If the 

latter were the case, tool types present should be diverse.  Also included in this spatial analysis is 

an examination of lithic relationships to hearth features.  The numerous hearth features at Mead 

should represent areas around which activities occurred.  By examining lithic activity areas, 

flaking events, and their relationship to each other and hearth features, pattern can be identified 

with each component, however little is known about how the late Pleistocene/early Holocene 

people organized themselves therefore, any interpretation beyond pattern recognition is offered as 

speculative. 

6.2 Radiocarbon Dating and Wood Identification 

In 2011 a total of four new dates were obtained.  All samples were first analyzed for 

wood identification by Dr. Owen K. Davis and then sent to Beta Analytic Labs for radiocarbon 

dating.  All samples underwent standard pretreatment for AMS dating.  Sample 2011-4 was 

unburnt birch bark collected from the bottom perimeter of the cache pit feature in CZ1b.  Sample 

2011-5 was obtained from a hearth feature in Block 102.  The sample was well-preserved 

charcoal (birch).  The sample was dated to 11,770 cal BP to 12,080 cal BP placing it within 

CZ3b.  Sample 2011-9 was a charcoal fragment recovered from a hearth feature in Block 106 of 

the site.  The charcoal was identified to be Poplar and dated to CZ3b at 12,418-12,611 cal BP.  

Sample 2011-10 was charcoal collected from a hearth in Block 106 about 5-10cm below feature 

2011-9 (Figure 4.5). This sample was identified as Birch as was dated 12,753-13,117 cal BP.  

Although Features 2011-9 and 2011-10 are overlapping, the dates better show that these hearths 

belong to separate cultural zones.  
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Table 6.1 Radiocarbon dates 

Lab # 
Wt. 

(g) 
Taxa 

Depth 

(cmBS) 
Context C14 Age 

Cal BP Age* 

��ı� 

Beta-

264526 
0.4 charcoal 95-100 

Hearth, Feature 

2011-8, CZ3b 

10140 ± 

50 
12,035-11,411 

Beta-

264527 
0.2 charcoal 90-95 

Upper Paleosol, 

bottom, CZ3b 

10160 ± 

50 
12,045-11,614 

Beta-

337171 
0.11 Betula spp. 85-95 

Hearth, Feature 

2011-5, CZ3b 

10220 ± 

40 
12,079-11,768 

Beta-

342449 
0.04 Populus spp. 90-95 

Feature 2011-9, 

CZ3b 

10560 ± 

40 
12,418-12,611 

Beta-

337174 
0.06 Betula spp. 115-120 

Hearth, Feature 

2011-10, CZ4 

11080 ± 

50 
13,117-12,753 

Beta-

337172 
0.01 Populu/Salix 110-115 

Hearth, Feature 

2011-6a, CZ4 

11100 ± 

50 
13,130-12,766 

Beta-

264530 
0.2 charcoal 110-115 

Lower Paleosol, 

bottom, CZ4 

11210 ± 

60 
13,274-12,905 

Beta-

264522 
13.8 bone 150-160 lower sands 

11460 ± 

50 
13,440-13,196 

Beta-

312937 
0.1 Betula spp. 85-90 

Feature 2011-4, 

CZ1b 
3780 ± 30 4224-4008 

Beta-

264525 
0.1 bone 40-45 

Middle of C1 

horizon, CZ2 
4580 ± 40 5448-5053 

Beta-

264529 
0.2 charcoal 30-35 

Bottom of lowest 

B horizon 
4940 ± 40 5743-5596 

Beta-

264524 
0.4 charcoal 50-55 

Middle of C1 

horizon, CZ2 
6050 ± 40 7004-6786 

Beta-

264528 
0.1 charcoal 80-85 

Upper Paleosol, 

top 
7790 ± 50 8695-8428 

*All dates calibrated using Calib software with Intcal09 calibration curve (Reimer et al. 2009) 
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6.3 Features 

A total of seven features were identified in the 2009 and 2011 excavations at Mead 

(Figure 6.1).  One cache pit (2011-4) and six hearths (2011-5, 2011-6, 2011-7, 2011-8, 2011-9, 

2011-10) have been uncovered at the East Block of the site.  Features in CZ2 and CZ3a were not 

found until the 2012 excavation season therefore they will not be discussed in this analysis.  The 

presence and absence of fauna as well as frequencies of flakes and the variable sizes of the 

hearths shows that the hearths and the associated activities at Mead are not uniform (Potter et al. 

2011).  This variability will be explored in more detail in this chapter.  The description and 

analysis of hearths in the following section are meant to aid in activity area analysis and are 

discussed in order of cultural zone. 
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Figure 6.1 All features from 2009 and 2011 excavations 
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6.3.1 CZ1b 

This cultural occupation contains a single feature.  Feature 2011-4 is a pit feature 

interpreted to be a cache pit.  The feature was only partially excavated in 2011, and the remaining 

portion was excavated in 2012.  Descriptions here will include information from the 2012 

excavation in order to give the full known dimensions of the feature.  The feature is circular, 

measuring roughly 1.8 m in diameter.  It was first found at around 35 cm BS but not confirmed as 

a pit feature until 50 cm BS.  The feature extends to 95 cm BS.  The inner fill is charcoal rich and 

the outer ring is reddened silt.  A total of 85 flakes and three bone fragments are directly 

associated with this feature.  Subareas B1, B3 and B4 in nearby blocks (see below) are associated 

with this feature as well.  Unburned birch bark was found at the bottom of this pit in 2011, in 

2012, 76 gastroliths were also found at the bottom of the feature in a 2 cm2 area, suggesting bird 

were possible stored here. 

 

 
Figure 6.2 Feature 2011-4 with birch bark 
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6.3.2 CZ3b 

A total of four hearth features were found in CZ3b.  Feature 2011-5 is a hearth feature 

with well-defined edges and some evidence of smearing of the stain.  It was located 85-90 cm BS. 

A total of 135 lithic artifacts and over 30 bone fragments as well as scattered gastroliths are 

associated with Feature 2011-5.  This feature is associated with Area G in block 102, E46 and 

E52. 

 
Figure 6.3 Feature 2011-5 

 

Feature 2011-7 (Figure 6.4) was found in Block 106 at 95 cm BS. Although there is a 

small number of bone fragments associated with this feature no flakes were found in related 

context.  The placement of this hearth in CZ3b is problematic.  The hearth is about 20cm below 

the CZ3a flakes found in the same Block, but is also well above any flakes and the hearth feature 

in the same Block associated with CZ3b (see Figure 6.5).  Excavations in 2012 revealed that there 

are likely two different occupations in CZ3b, however for the purpose of this project feature 

2011-7 is being labeled as part of CZ3b. 
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Figure 6.4 Feature 2011-7 

 

 
Figure 6.5 Back plot of Feature 2011-7 showing relationship to CZ3a and CZ4 
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Feature 2011-9 was located 100-110 cm BS.  In total there were 34 bones, 19 flakes and 

11 FCR found directly associated with this feature.  The feature is a dark stain with clearly 

defined edges and intact pieces of charcoal found within the matrix.  It measures 95cm at its 

maximum spread in the north-south direction and 70 cm at its maximum spread in the east-west 

direction. 

 

 
Figure 6.6 Feature 2011-9, north towards bottom left corner 

 

Feature 2011-8 is a large hearth feature measuring 100cm in the North-South direction 

and 70cm in the East-West direction.  Unlike Feature 2011-9 found in the same cultural 

occupations, Feature 2011-8 is diffuse, with unclear boundaries and contains much more cultural 

material.  This hearth was first identified in 2009, however the largest portion was excavated in 

2011.  There was a microfault running through the feature from the southwest corner of the Block 

to the northeast corner.  A total of 204 lithic artifacts, 341 bone fragments, as well as 87 fire 

cracked rocks were found directly associated with this feature. 



108 
 

 
Figure 6.7 Feature 2011-8 

 

6.3.3 CZ4 

A total of two hearth features were found in this cultural occupation.  Feature 2011-6 was 

110-115 cm below surface in Block 101 (Figure 6.8).  It is located 10-15 cm below Feature 2011-

5 in a nearby Block (Figure 6.9). It was found in two separate lenses with clear boundaries 

marking the separation.  2011-6a (north lens) is a circular stain that measures about 45cm in 

diameter.  2011-6b (south lens) is an amorphous stain measuring 70 cm in the north-south 

direction and 80 cm in the east-west direction.  Both 2011-6a and 2011-6b have clear boundaries 

but are also associated with diffuse charcoal smears, making the overall stain over a meter in 

maximum dimension.  A total of 245 lithic artifacts and 13 bone fragmnets are directly associated 

with this feature. 
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Figure 6.8 Feature 2011-6a (upper), and 2011-6b (lower) 
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Figure 6.9 Feature 2011-6 (left) showing separation from 2011-5 (right) 

 

Feature 2011-10 is a hearth located in Block 106.  The bulk of this feature was excavated 

in 2011 with the remaining portion excavated in 2012.  Information from 2012 will be included 

here in order to report on the total dimensions of the feature.  2011-10 measures 160 cm in the 

north-south direction, and 125 cm in the east-west direction.  A total of 18 lithics artifacts and 

102 bone fragtments as well as 35 fire cracked rocks were found directly associated with this 

feature. 
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Figure 6.10 Feature 2011-10, north towards right 

6.4 Area Analysis 

6.4.1 CZ1b  

In CZ1b there are a total of 3 areas, 6 subareas and 18 discrete clusters consisting of 

brown quartzite, grey quartzite, grey chert, brown chert, black basalt, and rhyolite.  MSRT and 

Attribute Analysis were used for lithic analysis for each cluster in CZ1b. 

Area A 

No subareas were defined for this area.  Area A is located in Block 107 and represents a 

total of three clusters: brown quartzite (n=11), grey chert (n=1258), rhyolite (n=203).  Not 

contained within these clusters but confined within the boundaries of Area A is one formal tool, a 

grey basalt boulder spall scraper.  Only two other small flakes of grey basalt are found in this area 

suggesting the boulder spall scraper was manufactured elsewhere. 

The majority of flakes from the brown quartzite cluster are ranked as SC4 with three 

flakes as SC2, one flake as SC6 and one flake as SC16.  The large flakes suggest some core 
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reduction occurred with medium and large flakes being removed and further reduced for use as 

tools or blanks.  Other evidence supports core reduction: all present platforms are simple, and all 

flakes have less than 3 dorsal scars.  The lack of cortex in this cluster may suggest prepared cores 

were being reduced rather than original cobbles.  

The grey chert cluster contains a total of 1,258 flakes.  Three flakes have cortex present. 

Out of the 129 complete flakes 109 (85.0%) have less than three dorsal scars and 20 have three or 

more dorsal scars. There are a total of 10 (0.8%) modified grey chert flakes in this cluster. Of the 

399 flakes that have discernible platforms the largest proportion are simple (n=338, 84.7%) there 

are also a total of 47 (11.8%) complex platforms, and interestingly 14 (3.5%) prepared platforms, 

a higher than usual number. With 119 (49.9%) platforms lipped, the evidence here suggests some 

prepared core reduction and tool production occurred with biface reduction occurring as well.  

The MSRT data supports this.  An equal percentage of broken and complete flakes next to a high 

percentage of fragments in the medium size class suggest tool production.  The distribution of 

flakes in the small and very small categories suggests biface reduction.  All together the evidence 

suggests the majority of this cluster was secondary stage reduction focused on the production of 

tools and biface reduction. 

 

Table 6.2 MSRT summery for Area A, grey chert cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 186 (18.7%) 103 (10.4%) 690 (69.3%) 2 (0.2%) 14 (1.4%) 

Small 74 (30.6%) 23 (9.5%) 144 (59.5%) 0 (0.0%) 1 (0.4%) 

Medium 2 (20.0%) 2 (20.0%) 6 (60.0%) 0 (0.0%) 0 (0.0%) 

Large 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 

 

A total of four flakes have cortex present in the rhyolite cluster in CZ1b.  Out of the 21 

complete flakes, 14 (66.7%) have less than three dorsal scars and 7 (33.3%) have three or more 

scars.  Of the 55 flakes with discernible platforms, 97.3% have simple platforms.  The frequency 

of simple platforms and percentage of flakes with low dorsal scar counts suggest core reduction 

occurred.  The MSRT data suggests tool production and biface reduction were also occurring.  

The higher percentage of broken flakes in the medium category indicate a focus on tool 

production while the familiar distribution of high fragments, low broken flakes, and very low 

complete flakes in the small and very small categories suggests biface reduction. 
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Table 6.3 MSRT summery for Area A, rhyolite cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 9 (10.8%) 7 (8.4%) 65 (78.4%) 2 (2.4%) 0 (0.0%) 

Small 14 (13.5%) 12 (11.5%) 77 (74.0%) 0 (0.0%) 1 (1.0%) 

Medium 7 (43.8%) 2 (12.5%) 6 (37.5%) 0 (0.0%) 1 (6.3%) 

 

In summary, Area A is relatively dense when compared to other areas in CZ1b.  Work in 

this area focused on core reduction and flake production of brown quartzite, and tool production 

and maintenance on high quality materials.  The presence of a discarded boulder spall scraper 

also indicates that tool maintenance was a primary goal in this area. 

 

 
Figure 6.11 CZ1b Block 107 Area A 
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Area B 

This area contains four subareas, associated with the pit feature in CZ1b.  The subareas 

are dense with well-constrained boundaries.  A total of six raw materials are found in this area: 

black basalt, grey chert, brown chert, brown quartzite, grey quartzite, and rhyolite. 

Subarea B1: This subarea is located primarily in Block 101.  B1 contains a total of three 

distinct clusters: brown quartzite (n=99), grey quartzite (n=8), grey chert (n=9) 

A total of two flakes in the brown quartzite cluster of CZ1b have <50% cortex coverage, 

one flakes has >50%cortex, and two have complete 100% cortex on their dorsal surface.  Of the 

18 complete flakes 88.9% have less than two dorsal scars. Of the 46 flakes with discernible 

platforms 43 (93.5%) have simple platforms, two (4.3%) have cortical platforms and one (2.2%) 

has a complex platform.  The frequency of these attributes suggests core reduction occurred.  The 

MSRT data supports this.  The high percent of complete flake in the large size class suggests core 

reduction.  The distribution of flakes in the medium categories along with the presence if split 

flakes is consistent with expectations for large core reduction as well.   

 

Table 6.4 MSRT summary for subarea B1, brown quartzite cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 1 (11.1%) 2 (22.2%) 6 (66.7%) 0 (0.0%) 0 (0.0%) 

Small 15 (28.8%) 9 (17.3%) 28 (53.8%) 0 (0.0%) 0 (0.0%) 

Medium 8 (25.8%) 3 (9.7%) 16 (51.6%) 1 (3.2%) 3 (9.7%) 

Large 2 (28.6%) 4 (57.1%) 1 (14.3%) 0 (0.0%) 0 (0.0%) 

 

Two flakes of grey quartzite are SC2, 2 flakes are SC4, and one flake each belong to 

SC5, SC7, SC8, and SC13.  One flake has less than 50% cortex coverage on its dorsal surface and 

the two complete flakes found in this cluster have 3 dorsal scars.  The medium to large size 

classes of half of the flake sin this cluster suggest core reduction.  This is supported by the 

presence of cortex.  Dorsal scars count may indicate tool production however both complete 

flakes where dorsal scars were counted are on medium sized flakes, not small sizes.  The 

signatures of grey quartzite core reduction further implicate this raw material as a local source. 

The grey chert cluster in subarea B1 consists of 9 waste flakes and 1 modified flake.  Of 

the debitage, a single flake is SC1, three flakes are SC2, and four flakes are SC3.  No cortex is 

present on any flakes in this cluster.  Of the three complete flakes 1 flake has a total of 1 flake 
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scar, and two have two flake scars.  The absence of cortex as well as the small sizes of the flakes 

and presence of a modified flake indicates tool reduction occurred here. 

Subarea B2:  This subarea is primarily located in Block 102.  There is a single cluster of 

grey chert with a total count of 24 flakes.  A total of six flakes are classed as SC1, fifteen flakes 

are SC2, and three flakes are SC3.  One flake has a prepared platform while all six other 

platform-bearing flakes have simple platforms.  No cortex is present on any flakes.  The absence 

of cortex and small size of flakes suggests that tool reduction occurred however the high 

frequency of simple platforms may indicate tool production. 

Subarea B3:  Located in Block E44, this subarea contains a single cluster of grey chert 

with 199 flakes total.  Out of 66 total platform-bearing flakes seven have complex platforms and 

59 have simple platforms.  There are 21 flakes in SC1, 105 flakes in SC2, 55 flakes in SC3, 11 

flakes in SC4, and five flakes in SC5.  There are a total of two flakes with less than 50% cortex 

coverage on their dorsal surface.  There are also a total of two grey chert modified flakes in this 

cluster.  Out of the 24 complete flakes four flakes have just one scar, 13 have two scars, four 

flakes have three scars, one has four scars, and two flakes have more than 4 scars.  Considering 

the presence of complex platforms with the modified flakes and the small size of the flakes, it is 

likely that some tool or biface maintenance occurred here.  The data also suggest with the low 

counts of dorsal scars, presence of cortex and abundance of simple platforms that there was tool 

production occurring as well. 

 

Table 6.5 MSRT summary for Subarea B3, grey chert cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 21 (17.5%) 12 (10.0%) 87 (72.5%) 0 (0.0%) 0 (0.0%) 

Small 23 (29.9%) 10 (13.0%) 44 (57.1%) 0 (0.0%) 0 (0.0%) 

 

Subarea B4: This subarea is located mainly in Block 105 of the site.  There are a total of 

six clusters within the boundary: black basalt (n=6), brown chert (n=6), brown quartzite (n=6), 

grey chert (n=576), and rhyolite (n=346). 

Four flakes in the black basalt cluster are SC2 and two flakes are SC3.  A single flake has 

100% cortex coverage and the three platform-bearing flakes all have simple platforms.  There are 

a total of two complete flakes whose dorsal scars could be counted, one flake has no scars and the 
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other has 2 scars.  The presence of cortex and the low dorsal scar counts mixed with the small 

size of the flakes indicate secondary reduction, likely starting from small cores or blanks. 

Three flakes in the brown chert cluster are SC2 and three are SC3.  There is no cortex 

found on any flakes in this cluster and no complete flakes.  One flake has a simple platform and 

one flake has a complex platform.  Although the sample size is small, the lack of cortex, complex 

platform, and small size of the flakes suggest tertiary reduction indicating, tool maintenance. 

Three flakes from the brown quartzite cluster are SC2 and one flake each are in SC3, 

SC5, and SC6.  There are a total of three platform-bearing flakes in this cluster, all having simple 

platforms.  The single complete flake has one dorsal scar.  The relatively larger sizes of flakes, 

low dorsal scar count and simple platforms suggest core reduction however the lack of cortex 

may indicate secondary stage core reduction focused on flake production. 

A total of 29 flakes in the grey chert cluster were classes as SC1, 355 flake are SC2, 129 

flakes are SC3, 31 are categorized as SC4, 12 flakes are SC5, six are classes as SC6, two flakes 

are SC7, and one flake each are classed as CS8, SC9, and SC10.  Out of 192 platform bearing 

flakes, 27 have complex platforms, one flake platform is cortical, four are prepared, and 160 

flakes have simple platforms.  A total of two flakes have less than 50% cortex coverage. There 

are a total of 53 complete flakes, 13 with one dorsal scar, and 21 with two scars, 15 with three 

scars, two with four scars, and two with more than four scars. There are also eight modified grey 

chert flakes and one grey chert burin spall.  The presence of modified flakes as well as a 14% 

representation of complex platforms and the majority of flakes being in small size classes 

suggests that tool maintenance occurred here.  This is also suggested by the presence of a burin 

spall, either in the fact that maintenance was the focus or that as sharpening occurred a tool was 

broken and burinated.  However the presence of larger size class flakes, and the majority of 

simple platforms as well as some cortex suggests that core reduction or tool production occurred.  

The MSRT data show similar signals.  The higher percentage of complete flakes in the medium 

size class indicates core reduction.  The presence of split flakes and high number of fragments, 

with the next most represented category being broken flakes and very low percentage of complete 

flakes in both the small and very small categories indicates biface reduction occurred, probably 

using soft hammer percussion. 
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Table 6.6 MSRT summary for Subarea B4, grey chert cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 82 (22.0%) 30 (8.1%) 249 (66.9%) 2 (0.5%) 9 (2.4%) 

Small 48 (26.2%) 18 (9.8%) 114 (62.3%) 1 (0.6%) 2 (1.1%) 

Medium 0 (0.0%) 3 (25.0%) 9 (75.5%) 0 (0.0%) 0 (0.0%) 

 

The rhyolite cluster in this subarea has a total of 346 flakes.  A total of 83 flakes are SC1, 

175 flakes are classed as SC2, 64 flakes are SC3, 18 flakes are SC4, three flakes are classed as 

SC5, two are categorized as SC6, and one flake is SC7. Of the platforms found, 83 are simple, 

two are cortical, and eight are complex.  Of the complete flakes, 13 have one dorsal scar, 10 

flakes have two scars, and three flakes have three dorsal scars.  The attributes analysis suggests 

that both tool production and tool maintenance occurred.  The MSRT data also suggests that tool 

production and biface reduction were both occurring in this cluster (Table 6.7).  This is shown by 

the higher percentages of complete flake sin the medium size category, as well as the familiar 

distribution of a high percent of fragments, reduced percentage of brown flakes, and low 

percentage of complete flakes.  Similar to the grey chert cluster in this subarea both attribute 

analysis and MSRT data indicates that the rhyolite is being reduced both as a core or blank and as 

later stage tools.  This may indicate that the rhyolite in this assemblage is more local than 

originally thought. 

 

Table 6.7 MSRT summary for Subarea B4, rhyolite cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 40 (15.6%) 23 (9.1%) 192 (75.3%) 0 (0.0%) 0 (0.0%) 

Small 27 (31.0%) 2 (2.3%) 58 (66.7%) 0 (0.0%) 0 (0.0%) 

Medium 0 (0.0%) 1 (25.0%) 3 (75.0%) 0 (0.0%) 0 (0.0%) 

 

In summary, Area B has relatively distinct boundaries for subareas when compared to 

other areas in CZ1b.  Work in this area focused on core reduction and flake production of lower 

quality materials such as brown quartzite, grey quartzite, and black basalt.  For higher quality 

materials such as grey chert, rhyolite, and brown chert, tool production and maintenance, 

including the production and maintenance of bifaces, was the focus. 
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Area C 

This area is a diffuse scatter when compared with the very dense concentrations typical of 

CZ1b.  There are two defined subareas with a total of four different raw materials: black chert, 

brown quartzite, grey quartzite, and grey chert. 

Subarea C1:  This subarea is a diffuse scatter located primarily in Blocks E25, 26, 16, 

and 17.  There are a total of four clusters consisting of black chert (n=42), brown quartzite 

(n=337), grey quartzite (n=223), grey chert (n=151).  

The black chert cluster has a total of 42 flakes.  There is no cortex found on any flakes, 

and of the 9 complete flakes one has one dorsal scar, four have two dorsal scars, two have three 

dorsal scars, and one flake each has four and over four dorsal scars.  A total of two flakes have 

complex platform while 21 flakes have simple platforms.  Attributes suggest tool production 

occurred. The MSRT data shows high percentages of broken flakes, especially in the small size 

category, and higher complete flakes in the very small category also indicate tool production was 

most likely the focus.   

 

Table 6.8 MSRT summary for Subarea C1, black chert cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 8 (25.0%) 8 (25.0%) 16 (50.0%) 0 (0.0%) 0 (0.0%) 

Small 6 (60.0%) 1 (10.0%) 3 (30.0%) 0 (0.0%) 0 (0.0%) 

 

The brown quartzite cluster in this subarea contains 337 flakes.  Notably, three brown 

quartzite cores are also found in this subarea indicating that core reduction occurred.  A total of 

two flakes with have less than 50% cortex coverage and 1 flake has 100% cortex.  Of the 36 

complete flakes 18 have one dorsal scar, nine have two scars, eight have three scars, and one 

flake has over four dorsal scars.  All 83 flakes with their proximal end intact have simple 

platforms.  The MSRT data shows that there is a high percentage of complete flakes and presence 

of shatter in the very large and large categories, with the medium, small and very small size 

categories having higher representation by fragments and broken flakes.  Both the attribute 

analysis and the MSRT data suggest that core reduction occurred, with the focus on producing 

medium sized flakes.  
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Table 6.9 MSRT summary for Subarea C1, brown quartzite cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 9 (5.7%) 14 (8.8%) 135 (84.9%) 1 (0.6%) 0 (0.0%) 

Small 21 (19.9%) 7 (6.4%) 80 (72.7%) 2 (1.8%) 0 (0.0%) 

Medium 7 (18.9%) 4 (10.8%) 24 (64.9%) 2 (5.4%) 0 (0.0%) 

Large 5 (18.5%) 10 (37.1%) 8 (29.6%) 1 (3.7%) 3 (11.1%) 

Very large 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 

 

The grey quartzite cluster has a total of 223 flakes.  One flake have less than 50% cortex. 

Of the 15 complete flakes, six have one dorsal scar, six flakes have two scars, and three flakes 

have a count of three dorsal scars.  All 34 of platform-bearing flakes have simple platforms.  The 

MSRT data shows a higher percentage of complete flakes in the large size category and the 

presence of shatter in the medium category.  The small and very small categories have a very high 

percentage of fragmented flakes typically seen throughout the site.  The data suggest that core 

reduction occurred on this grey quartzite. 

 

Table 6.10 MSRT summary for Subarea C1, grey quartzite cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 5 (4.9%) 6 (5.9%) 89 (87.2%) 1 (1.0%) 1 (1.0%) 

Small 6 (7.9%) 2 (2.6%) 66 (86.9%) 1 (1.3%) 1 (1.3%) 

Medium 3 (8.8%) 4 (11.8%) 24 (70.6%) 2 (5.9%) 1 (2.9%) 

Large 2 (18.2%) 3 (27.3%) 5 (45.5%) 1 (9.1%) 0 (0.0%) 

 

The grey chert cluster counts 151 flakes.  No flakes have any cortex.  Of the 30 complete 

flakes, five flakes have a count of one dorsal scar, 12 flakes have two scars, 11 flakes count three 

scars, and one flake each have four and more than four dorsal scars.  Three platforms are 

categorized as complex, with two platforms typed as crushed.  The remaining 65 platforms are 

simple.  Attributes indicate secondary reduction.  The MSRT data furthers this outcome by 

suggesting tool production occurred seen by the higher percentages of broken flakes in the small 

and very small categories. 
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Table 6.11 MSRT summary for Subarea C1, grey chert cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 25 (26.0%) 15 (15.6%) 56 (58.3%) 0 (0.0%) 0 (0.0%) 

Small 17 (32.1%) 15 (28.3%) 20 (37.7%) 0 (0.0%) 1 (1.9%) 

Medium 0 (0.0%) 0 (0.0%) 2 (100.0%) 0 (0.0%) 0 (0.0%) 

 

Subarea C2: This subarea is located primarily in Block 104 and most likely continues 

into the unexcavated unit to the west.  There is a single cluster of grey chert totaling 20 flakes in 

this subarea.  One flake is classes as SC1, 14 flakes are SC2, four flakes are SC3, and a single 

flake is classes as SC4.  No flakes contain any cortex.  There are a total of two complex platforms 

and eight simple platforms found on flakes with their proximal segments intact.  Of the 3 

complete flakes, one flake each has two flake scars, three flakes scars and four flake scars.  The 

heavy representation of small size flake in addition to the absence of cortex, presence of complex 

platforms and the high dorsal scar counts suggests tool reduction and most likely some biface 

maintenance occurred. 

In summary Area C follow typical patterns seen for CZ1b, although spatially is less 

dense.  Core reduction occurred on the lower quality quartzite materials while tool/biface 

production and maintenance occurred on high quality chert materials. 
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Figure 6.12 CZ1b isopleth map with area borders and feature 2011-4 
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6.4.2 CZ2 

Cultural Zone 2 has a total of 2 areas, containing one subarea each with a total of 8 

discrete clusters. Compared to CZ1b, the overall spread of lithics in CZ2 is more spatially 

discreet with well-defined area boundaries, and a abundance of space that is completely lacking 

lithic artifacts. 

Area D 

Area D contains a single subarea.  Subarea D1 is located primarily in Blocks 104, and 

E26.  There are a total of 6 clusters including banded chalcedony (n=8), black chert (n=6), brown 

quartzite (n=27), grey quartzite (n=6), grey chert (n=1014), and rhyolite (n=5).   

The banded chalcedony cluster has a total of eight flakes.  There is no cortex found and 

of the two complete flakes, one flake each have a count of 3 and 4 dorsal scars.  Two flakes are 

classes as SC1 and the remaining six are SC2.  All five platform-bearing flakes have simple 

platforms.  The data suggests that tool reduction occurred, however the absence of complex 

platforms suggests this was early stage maintenance. 

The black chert cluster has a total of 6 flakes.  No flakes have any cortex and no flakes 

are complete.  Three flakes each have been classed as SC1 and SC2 and only one platform was 

identified as simple. Although there is a limited sample size, the lack of cortex, and small size of 

the flakes, as well as the singular simple platform suggest the formation of tools was the focus for 

black chert. 

There are a total of 27 flakes in the brown quartzite cluster.  A single flake has 100% of 

its dorsal surface covered in cortex.  Out of the seven complete flakes, one flake has 1 dorsal scar, 

five have 2 dorsal scars, and one has 3 scars. There are a total of 12 simple platforms present in 

this cluster.  Size classes count eight flakes in SC2, three flakes in SC3, seven flakes in SC4, four 

flakes in SC5, two flakes in SC9, and one flakes each in SC6, 7, and 8.  Given the larger flake 

sizes in this cluster as well as the presence of a completely cortex covered flake, the high number 

of simple platforms, and low number of dorsal scars, this brown quartzite cluster is representative 

of core reduction.   

In the grey quartzite cluster there a total of six flakes.  No flakes have any cortex and the 

single complete flake has 2 flakes scars.  There is one simple platform in this cluster and size 

classes are distributed with three flakes in SC2, and one flake each in SC3, 7, and 10.  The larger 

flakes sizes, simple platform, and low dorsal scar count, along with the absence of cortex suggest 

secondary core reduction from a worked core or blank. 
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There are a total of 1014 flakes made from grey chert in this subarea.  A single flake has 

less than 50% cortex and one flake has over 50% cortex coverage on its dorsal surface.  Of the 

128 complete flakes, 57 flakes have a count of 1 dorsal scar, 37 have 2 scars, 20 have 3 scars, 11 

have 4 scars, and three have over 4 scars. There are also three grey chert modified flakes and 1 

grey chert microblade.  The MSRT data shows that there one flake in the large category and the 

distribution of flakes in the medium category, a large percentage of complete flakes, suggests soft 

hammer core reduction occurred.  However, signals for the small and very small categories 

represent biface reduction.  The culmination of both the attribute analysis and MSRT data 

suggests that there was a broad spectrum of reduction occurring on this grey chert, from core 

reduction to tool production and biface maintenance. 

 

Table 6.12 MSRT summary for Area D, grey chert cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 146 (19.2%) 85 (11.2%) 552 (68.7%) 3 (0.4%) 4 (0.5%) 

Small 62 (27.0%) 38 (16.5%) 129 (56.1%) 0 (0.0%) 1 (0.4%) 

Medium 2 (10.5%) 5 (26.3%) 12 (63.2%) 0 (0.0%) 0 (0.0%) 

Large 0 (0.0%) 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 

 

 There are five rhyolite flakes in this cluster.  There is no cortex found in any flake and the 

single complete flake has 4 dorsal scars.  There is one flake each in SC1, 2 and 3, and two flakes 

in SC6.  The single platform found in this cluster is simple.  The absence of cortex, but presence 

of medium sized flakes and simple platforms suggest tool production occurred. 

Area E 

Area E contains a single subarea.  Subarea E1 is located in Block 106 of the site.  It 

contains a total of two clusters including brown quartzite (n=17), grey chert (n=838). 

The brown quartzite cluster contains a total of 17 flakes. A single flake has less than 50% 

cortex coverage.  Of the three complete flakes one each has 2, 3, and 4 dorsal flake scars.  A 

single flake is classes as SC1, five flakes are SC2, one flake is SC3, three flakes are classed as 

SC4, two flakes are SC5, and one flake each is classes as SC6, 7, 8, 11, and 21.  Of the seven 

flakes with platforms present, six have simple platforms and one has a cortical platform.  The 

presence of a cortical platform, as well as large sized flakes indicates large core reduction of 

brown quartzite occurred in this area. 



124 
 

There are a total of 838 grey chert flakes in this subarea.  There is no cortex present on 

any flakes.  Of the 164 complete flakes, 79 have 1 dorsal flake scar, 44 have  2 scars, 26 have 3 

scars, 7 have 4 scars, 8 have >4 scars. Notably there are three 3 grey chert bifaces discarded in 

early stage of use found in this cluster.  The MSRT data shows a high percentage of complete 

flakes in the medium size category indicating hard hammer core reduction.  However the small 

and very small size categories have an increase in the representation of broken flakes suggesting 

biface manufacture.  The attribute analysis as well as the MSRT data shows that both grey chert 

core reduction and biface manufacture and reduction occurred in this area.  This conclusion is 

greatly supported by evidence found in 2012 were numerous preforms and primary reduction of 

original chert cobbles was excavated in nearby association. 

 

Table 6.13 MSRT summary for Area E, grey chert cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 146 (22.0%) 113 (17.0%) 401 (60.5%) 0 (0.0%) 3 (0.5%) 

Small 43 (27.7%) 42 (27.1%) 69 (44.5%) 0 (0.0%) 1 (0.6%) 

Medium 3 (17.6%) 9 (52.9%) 5 (29.4%) 0 (0.0%) 0 (0.0%) 
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Figure 6.13 CZ2 isopleth map with cluster borders 
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6.4.3 CZ3a 

Since subarea boarders are defined by densities of eight or higher, CZ3a had no technical 

subarea definition.  All flakes (n=13) are in the northern and eastern portions of Block 106. There 

are a total of four complete flakes, one broken, and eight fragmented flakes.  No cortex is present 

on any flakes. Of the complete flakes, two had two flake scars, one had three flakes scars and one 

had over four flake scars. 

6.4.4 CZ3b 

This cultural zone contains a total of three lithic areas each with one subarea.  All 

together there are a total of 12 discrete clusters.   Two out of the three subareas are closely 

associated with hearth features.  

Area F 

There is a single subarea defines for Area F.  Subarea F1 is located in Block 107.  It 

contains a total of 3 clusters including banded chalcedony (n=29), grey chalcedony (n-9), and 

grey chert (n=74). 

There are a total of 29 banded chalcedony flakes in this cluster.  There is no cortex found 

on any flake.  Of the five complete flakes, four have 2 flake scars, and one has 4 flake scars.  Size 

classes are distributed with five flakes in SSC1, 22 flakes in SC2, and one flake in SC3.  There 

are 3 complex platforms and 14 simple platforms found.  There is also one modified flake found 

in this cluster.  With the representation of complex platforms and small flake sizes, as well as the 

presence of modification, it is likely that the banded chalcedony in this cluster resulted from tool 

and biface maintenance. 

There are 9 grey chalcedony flakes in this cluster.  No cortex is found on any flake.  

There is a single complete flake with 2 flake scars.  Size classes are assigned with two flakes in 

SC1, six flakes in SC2, and one flake in SC3.  There are 5 simple platforms and 1 crushed 

platforms.  The absence of complex platforms, suggests biface maintenance was not occurring, 

however this could be due to small sample size.  The presence of a crushed platform suggests 

hard hammer reduction occurred, which indicates tool production, however it was most likely late 

stage production based on the distribution of flake sizes. 

This grey chert cluster consists of 74 flakes.  No cortex is found on any flake.  Of the 16 

complete flakes seven have 1 flake scar, and nine have 2 flake scars.  There are a total of four 

complex platforms and 31 simple platforms.  The attributes suggest biface and tool maintenance 

may be occurring.  The MSRT data shows a nearly even distribution of broken flakes and 
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fragmented flakes in the small size category.  Given the high percent of fragments through the 

site assemblage, the high percent of broken flakes here suggests tool production.  However the 

very small category suggests biface reduction, with some pressure flaking occurring to boost the 

numbers of complete flakes.   

 

Table 6.14 MSRT summary for Area F, grey chert cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 15 (24.2%) 15 (24.2%) 31 (50.0%) 1 (1.6%) 0 (0.0%) 

Small 5 (41.7%) 1 (8.3%) 6 (50.0%) 0 (0.0%) 0 (0.0%) 

 

Area G 

A single subarea was defined for Area G.  Subarea G1 is located in Blocks 102, E46, and 

E52.  There are a total of two clusters including grey chert (n=7), and quartz (n=84).  This subarea 

is also associated with hearth feature 2011-5.  Artifacts in this subarea are mostly (73%) flakes 

from ventifacted quartz cobbles, but there is also a large number of bone fragments occurring in 

this area. 

The grey chert cluster consists of seven flakes.  No cortex is found on any flake and size 

classes included two flakes in SC1, three flakes in SC2, and two flakes in SC3.  There are no 

complete flakes and a total of three simple platforms.  The distribution of platform types in 

addition to the small size classes suggests tool maintenance was the focus for grey chert reduction 

in this area. 

  The quartz cluster has a total of 84 flakes.  No cortex, either as a ventifacted or 

weathered surface, was found on any flake and of the 20 platforms identified, all are simple.  Of 

the seven complete flakes found, three flakes have 1 flake scar, two have 2 scars, and 2 have three 

scars.  Additionally, there is one multidirectional quartz core found in this area.  The data 

suggests that core reduction occurred however due to the lack of cortex on the flakes, it is most 

likely secondary reduction occurring on a prepared or previously worked core.  The MSRT data 

shows only medium, small and very small size categories suggesting primary reduction, where 

the expectation is a higher representation of larger flakes, did not occur.  The distribution of 

flakes in MSRT categories actually matches signatures for tool maintenance with a high number 

of fragments, a decreased number of broken flakes, and a low percentage of complete flakes.  
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Together, the data suggests both secondary and tertiary reduction occurred here, with some core 

reduction, as well as some tool production and maintenance. 

 

Table 6.15 MSRT summary for Area G, quartz cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 8 (12.1%) 5 (7.6%) 52 (78.8%) 0 (0.0%) 1 (1.5%) 

Small 4(26.7%) 2 (13.3%) 9 (60.0%) 0 (0.0%) 0 (0.0%) 

Medium 0 (0.0%) 0 (0.0%) 1 (50.0%) 1 (50.0%) 0 (0.0%) 

 

Area H 

A single subarea was defined for Area H.  Subarea H1 is located primarily in Blocks 105, 

and E32.  It contains a total of seven discrete clusters including andesite (n=37), banded 

chalcedony (n=10), brown quartzite (n=6), grey quartzite (n=7), grey basalt (n=19), grey 

chalcedony (n=18), and grey chert (n=68).  This subarea is also associated with a large hearth 

feature 2011-8, in addition to numerous bone artifacts. 

The andesite cluster consists of 37 flakes.  Two flakes were found to have less than 50% 

cortex coverage each.  Two cortical platforms, in additional to 10 simple platforms were also 

identified.  No complete flakes were found.  The attributes suggest secondary stage core reduction 

occurred, which is partially supported by the MSRT data.  Distribution of the flakes into the 

MSRT categories shows a high percentage of broken flakes in the large and medium categories.  

This suggests tool production was the focus of andesite reduction.  Additionally, the small and 

very small size categories, suggest tool maintenance occurred.  Together, it appears as if tool 

were being produced from a worked core and then sharpened.   

 

Table 6.16 MSRT summary for Area H, andesite cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 4 (23.5%) 0 (0.0%) 11 (64.7%) 2 (11.8%) 0 (0.0%) 

Small 2 (13.3%) 0 (0.0%) 12 (80.0%) 0 (0.0%) 1 (6.7%) 

Medium 3 (75.0%) 0 (0.0%) 1 (25.0%) 0 (0.0%) 0 (0.0%) 

Large 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
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The banded chalcedony cluster has a total of 10 flakes.  No cortex is found on any flake 

and there are a total of two complex platforms.  Size classes include one flake in SC1, seven 

flakes in SC2, and one flake in SC3.  One modified flake was also identified within this cluster.  

With the representation of complex platforms, the small size of flakes, and the presence of 

modification, it is likely biface maintenance occurred here. 

There are a total of six brown quartzite flakes in this cluster.  No cortex is found on any 

flake and the single complete flake found has 2 flake scars.  There are a total of 2 simple 

platforms, and size classes include three flakes in SC2, one flake in SC4, one flake in SC6, and 

one flake in SC7.  With the presence of medium and large flake sizes as well as simple platforms, 

it is likely flake production on medium sized cores was the focus of the flaking episode of brown 

quartzite.   

The grey quartzite cluster has a low sample size of seven flakes and looks similar to the 

treatment of brown quartzite in this subarea.  No flakes have cortex and size classes range from 

one flake each in SC2 and 3, two flakes in SC4, and three flakes in SC5.  The single platform 

identified is simple.  The absence of cortex and the presence of medium sized flakes and simple 

platforms suggests tool production from small to medium sized cores. 

The grey basalt cluster has a total of 19 flakes.  No flakes have any cortex and all 11 

platforms identified are simple.  Of the three complete flakes found, two flakes have 2 dorsal 

scars and one flake has 3 scars.  Size classes include one flake in SC1, six flakes in SC2, four 

flakes in SC3, three flakes in SC4, one flake in SC5, two flakes in SC6, one flake in SC7, and one 

flake in SC10.  The domination of simple platforms and representation of medium and large flake 

size classes suggest core reduction occurred however the absence of cortex indicates the cores 

were previously worked. 

The grey chalcedony cluster contains 18 flakes.  No cortex is found on any flake and the 

single complete flake has 1 dorsal flake scar.  There are a total of two complex platforms and six 

simple platforms identified in this cluster.  Size classes range from two flakes in SC1, 13 flakes in 

SC2, and two flakes in SC5.  The addition of a medium flake size class as well as strong 

representation of simple platforms suggests there is both biface and tool maintenance occurring 

on this material type in this subarea. 

This cluster contains a total of 68 grey chert flakes.  A single flake was found to have 

more than 50% cortex coverage on its dorsal surface.  Of the 14 complete flakes three have 1 

dorsal scar, nine have 2 scars, one has 3 scars, and one has 4 scars.  There are a total of four 
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complex platforms, and 32 simple platforms identified.  With the presence of some cortex and 

domination of simple platforms, the attributes suggest some secondary core reduction occurred.  

The MSRT data shows a high percentage of complete flake sin the medium size category 

supporting the conclusion that small core reduction occurred.  Both the small and very small 

categories have flake distribution that suggest tool production was the focus of this grey chert 

reduction.  Together both the attribute analysis and the MSRT data show that small core reduction 

occurred with the purpose of producing tools.   

 

Table 6.17 MSRT summary for Area H, grey chert cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 16 (33.3%) 9 (18.8%) 23 (47.9%) 0 (0.0%) 0 (0.0%) 

Small 7 (36.8%) 4 (21.1%) 8 (42.1%) 0 (0.0%) 0 (0.0%) 

Medium 0 (0.0%) 1 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 
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Figure 6.14 CZ3b isopleth map with cluster boundaries and Features 2011-5,7,8,9 
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6.4.5 CZ4 

This cultural occupation has a total of three areas, five subareas, and 13 discrete clusters.  

A total of two hearths are also associated with CZ4. 

Area I 

 A single subarea was defined for Area I.  Subarea I1 is located in Block 106 and is 

associated with hearth feature 2011-10.  This subarea is mostly dominated by bone artifacts and 

fire-cracked rocks however there is a single cluster consisting of 14 grey chert flakes.  There are a 

total of three complete flakes, two of which have a total of 2 dorsal flake scars, and one that has 3 

flake scars.  No cortex was found on any flake.  Platforms identified total two complex and nine 

simple platforms.  Size classes range from two flakes as SC1, nine flakes in SC2, and three flakes 

in SC3.  The small flake sizes, lack of cortex, as well as the presence of a few complex platforms, 

suggests tool and biface maintenance occurred. 

Area J 

Area J contains a total of three subareas.  Raw materials in this area include quartz, grey 

chalcedony, obsidian, grey basalt, red/grey siltstone, and andesite.  This area contains a large 

amount of variability considering it has the only obsidian cluster in the entire site as well as 

primary reduction of quartz.  The implications are discussed below. 

Subarea J1: This subarea is located in Block 101.  There are total of six clusters 

including andesite (n=18), grey basalt (n=7), grey chalcedony (n=24), obsidian (n=5), red/grey 

siltstone (n=8), and quartz (n=136). 

The andesite cluster consists of 18 flakes.  A single artifact in this cluster is identified as 

shatter.  There was no cortex and no complete flakes found in this cluster however four simple 

platforms were identified.  Size classes range from one flake in SC1, 14 flake sin SC2, two flakes 

in SC3, and one flake in SC5.  The small to medium size classes as well as simple platforms and 

presence of shatter suggest secondary core reduction occurred in this cluster of andesite.   

The grey basalt cluster has a total of seven flakes.  No cortex and no complete flakes 

were found in this cluster however three simple platforms were identified.  Size classes range 

from four flakes in SC2, and one flake each in SC3, 6, and 8.   The presence of medium and large 

flake sizes as well as simple platforms and the absence of cortex suggests secondary stage core 

reduction occurred on this grey basalt in this subarea. 

There are a total of 24 grey chalcedony flakes in this cluster.  No cortex was found on 

any flakes.  Of the 13 complete flakes, a single flakes has 1 dorsal scar, four flakes have 2 scars, 
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five flakes have 3 scars, two flakes have 4 scars, and one flake has over 4 flake scars.  There are a 

total of two complex platforms and 14 simple platforms.  Size class distribution ranges from three 

flakes in SC1, 15 flakes in SC2, four flakes in SC3, and one flake in SC4.  There is also a single 

modified flake in this assemblage.  The distribution of size classes and platform types as well as 

the lack of cortex and presence of modification suggests tool and biface maintenance were the 

focus of this reduction episode.   

There is a single cluster consisting of five obsidian flakes in this subarea which represent 

the only obsidian cluster in the entire site.  There is no cortex present and the single complete 

flake identified has over 4 dorsal flake scars.  Size classes include one flake in SC1, 1 flake in 

SC2, and three flakes in SC3.  There are a total of two simple platforms. The lack of 

modification, as well as the size classes of the flakes, and dorsal scar count suggests that this 

obsidian flaking episode may have been on an early stage biface or obsidian blank. 

There are a total of eight artifacts in the red/grey siltstone cluster. Only one piece of this 

material in this cluster was found to be a flake, with a simple platform.  The remaining seven 

artifacts are categorized as shatter.  Size classes are limited to SC1 and SC2.  The high percent of 

shatter in this case does not indicate core reduction but most likely indicate poor fracture 

mechanics of the material.  It is likely that the single flake was broken off a tool and in doing so, 

several attempts resulting in shatter occurred during the reduction episode. 

The largest cluster in this subarea consists of 136 quartz flakes.  Four flakes have less 

than 50% cortex, five have more than 50% and three have 100% cortex coverage.  Of the 24 

complete flakes 14 have 1 dorsal flake scar, eight have 2 flake scars, and two flakes have 3 scars.  

All 43 of the platforms identified are simple.  The attributes indicate core reduction occurred.  

This is also indicated by the MSRT data.  The distribution of flakes in the MSRT categories 

shows an absence of large flake sizes indicating medium sized cores were being reduced.  The 

high percent of broken and complete flakes in both the medium and small size categories suggests 

tool production was the focus of the core reduction occurring in this reduction episode. 

 

Table 6.18 MSRT summary for Subarea J1, quartz cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 9 (8.6%) 16 (15.2%) 80 (76.2%) 0 (0.0%) 0 (0.0%) 

Small 7 (30.4%) 6 (26.1%) 9 (39.1%) 1 (4.3%) 0 (0.0%) 

Medium 4 (50.0%) 2 (25.0%) 1 (12.5%) 1 (12.5%) 0 (0.0%) 
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Subarea J2: This subarea is located in Block E52 and 102.  It consists of a single large 

cluster of 601 quartz flakes and four quartz cores.  A total of 18 flakes have less than 50% cortex, 

13 flakes have more than 50% cortex and 57 flakes have 100% cortex coverage.  Of the 47 

complete flakes three have no dorsal scars, 18 have 1 scar, 23 have 2 scars, and three flakes have 

3 dorsal scars.  Of the 114 platforms identified, 90 platforms are simple, while 24 platforms were 

categorized as cortical.  MSRT data shows an even distribution of broken flakes and complete 

flakes and a high number of fragments as well as representations of shatter.  All together both the 

attribute analysis and MSRT data show that primary core reduction of quartz was the main focus 

in this subarea. 

 

Table 6.19 MSRT summary for Subarea J2, quartz cluster 

MSRT size Broken Complete Frag Shatter Split 

Very small 20 (6.3%) 25 (7.9%) 253 (80.3%) 17 (5.4%) 0 (0.0%) 

Small 30 (13.8%) 10 (4.6%) 162 (74.3%) 15 (6.9%) 1 (0.5%) 

Medium 10 (18.9%) 10 (18.9%) 29 (54.7%) 3 (5.7%) 1 (1.9%) 

Large 1 (12.5%) 1 (12.5%) 5 (62.5%) 1 (12.5%) 0 (0.0%) 
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Figure 6.15 Block E52 CZ4 quartzite scatter 

 

Subarea J3: is located in Block E38 and has a single cluster of andesite consisting of 

eight flakes total.  No cortex and no complete flakes were found.  A total of three platforms were 

identified as simple.  Size classes range from three flakes in SC2, three flakes in SC3, one flake in 

SC4, and one flake in SC5.  The range of small to medium size classes as well as the lack of 

cortex and simple platforms suggests secondary core reduction of the andesite in this subarea.  

In summary, Area J contains three distinct lithic subareas one directly associated with 

Feature 2011-6.  Both grey basalt and andesite were reduced as secondary cores for the purpose 

of producing flakes.  Red/grey siltstone artifacts represent a single flake being detached from a 

core.  Grey chalcedony was exclusively utilized for tool maintenance, while obsidian flake were 

reduced during an earlier stage of the tool maintenance process.  The most central activity of this 

area though is the primary reduction of quartz with some secondary reduction occurring as well. 
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Area K:  This area is a diffuse scatter of materials encompassing blocks 105, 104, E40, 

E32, E26, E17, E16, and E13.  There are no individual subareas in Area K however there are a 

total of three clusters consisting of grey chalcedony (n=6), grey chert (n=16), and quartz (n=10). 

The grey chalcedony cluster has a total of six flakes.  No cortex is found and the single 

complete flake has 2 dorsal flake scars.  There are a total of three simple platforms.  Size classes 

range from one flake in SC1, two flakes in SC2, 2 flakes in SC3, and 1 flake in SC4.  Lack of 

cortex and flake size as well as simple platforms suggests tool maintenance occurred. 

The grey chert cluster contains 16 flakes.  No cortex is found and there are a total of five 

simple platforms.  Of the two complete flakes found one flake has 3 dorsal scars and one flake 

has 4 scars.  Size classes range from three flakes in SC1, 12 flakes in SC2, and 1 flake in SC3.  

The dorsal scar count and flake size indicate biface maintenance occurred . 

There are a total of 10 quartz flakes in this cluster.  No cortex was found on any flake 

however, one platform was categorized as cortical with the other four platforms identified as 

simple.  Of the three complete flakes two have 1 dorsal scar and one has 3 flake scars.  Size 

classes range from five flakes in SC2, one flake in SC3, one flake in SC7, one flake in SC13, one 

flake in SC15, and one flake in SC25.  The large and medium size classes as well as distribution 

of simple and cortical platforms suggest both primary and secondary core reduction occurred on 

quartz in this area.  
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Figure 6.16 CZ4 isopleth map with cluster borders and features 2011-6, 10 
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6.4.6 Comparisons 

At the component-level analysis a notable difference in spatial patterning stands out, 

CZ1b has a much more even distribution of materials throughout the site.  CZ2, CZ3b, and CZ4 

all have clearly-defined boundaries for lithic areas in the site.  While this is not represented well 

through artifact density (see Table 6.20), it can visually be seen in the isopleth maps of each 

component (Figure 6.12, Figure 6.13, Figure 6.14, Figure 6.16). 

For the subareas at the site, overall there is little to no diversity and subareas are 

generally uneven when calculating the Simpson and Shannon-Weaver indices for flakes, tools, 

and cores.  This is expected given the low frequency of tools throughout the site.  Area K (or 

subaraea K1), a large area with no dense concentration of artifacts, has the highest diversity for 

this index and is the most even out of all the subareas however it only represents medium 

diversity and medium evenness when compared to limits for the indices (see Table 6.21). 

 

Table 6.20 Artifact densities by CZ 

CZ 

Analytical 

Area (m2) N flakes 

Total 

weight (g) 

Flake 

Density (n 

flakes/m2) 

Weight density 

(g/m2) 

CZ1b 72 3968 4396.80 55.11 61.07 

CZ2 22 1942 55.16 88.27 2.51 

CZ3a 2 13 3.07 6.50 1.54 

CZ4 29 941 3178.48 32.45 109.60 

 

Out of the 16 different raw materials identified at the site, a total of 10 raw materials 

types were frequent enough to show up in multiple subareas: andesite, banded chalcedony, black 

chert, brown quartzite, grey basalt, grey quartzite, grey chalcedony, grey chert, rhyolite, and 

quartz.  Because of the low frequency of raw material types, Simpson and Shannon-Weaver 

indices tend to show only medium diversity in each subarea, however subareas C1, H1, and K1, 

all have Simpson indices over 0.6, indicating diversity and evenness on a higher scale than the 

rest of the subareas (see Table 6.22). 
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Table 6.21 Shannon-Weaver and Simpson index for flakes, tools, and cores by subarea 

Subarea 

Total Debitage Tools Cores 

Shannon-Weaver 

Diversity  Index 

(H') 

Simpson Index of 

Evenness(1-D) 

A1 1479 1468 11 0 0.0439 0.0148 

B1 118 117 1 0 0.0489 0.0169 

B2 27 27 0 0 0.0000 0.0000 

B3 203 201 2 0 0.0553 0.0196 

B4 954 945 9 0 0.0534 0.0187 

C1 760 757 0 3 0.0258 0.0079 

C2 23 23 0 0 0.0000 0.0000 

D1 1074 1070 4 0 0.0245 0.0074 

E1 864 861 3 0 0.0231 0.0069 

F1 122 120 2 0 0.0836 0.0325 

G1 100 97 2 1 0.1538 0.0592 

H1 167 165 2 0 0.0649 0.0238 

I1 18 18 0 0 0.0000 0.0000 

K1 40 34 6 0 0.4227 0.2615 

J1 202 201 1 0 0.0312 0.0099 

J2 605 598 3 4 0.0710 0.0230 

J3 13 13 0 0 0.0000 0.0000 

 

The high indices in Area K are likely due to the fact that it is a diffuse scatter of material 

in CZ4.  The high diversity of raw material types and low density (Table 6.23) of artifacts 

indicates that this area most likely does not represent a single activity area.  This suggests that 

occupants probably did not intentionally stop to reduce material here but rather preferred 

reducing in designated areas, leaving this area relatively clear for other activities such as 

butchering and food processing.  Subarea C1 is also a diffuse scatter, but is located in CZ1b.  

Again, the low density of material and high diversity of material types over a broad area suggests 

that this was not a marked activity area, but was rather an “in-between” area where reduction 

occurring haphazardly rather than deliberately.  While the high diversity of materials is subareas 
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K1 and C1 can be attributed to the size of the scatter, Area H, or subarea H1, is very different.  

Area H is located in CZ3b and is directly associated with a large hearth feature, 2011-8.  The size 

of the hearth, as well as the frequency of both bone and toolstone, and the high diversity of raw 

material types, suggests this was a central hearth in this occupation.  It is reasonable to infer 

multiple people were centered on this hearth during its use and it functioned as a central activity 

area for both cooking and lithic reduction. 

 

Table 6.22 Shannon-Weaver and Simpson index for raw material by CZ and subarea 

CZ Subarea Number of 
lithics 

Number of raw 
materials 

Shannon-Weaver 
Diversity Index (H') 

Simpson Index of 
Evenness(1-D) 

CZ1b B3 203 3 0.108 0.039 
B2 27 4 0.4709 0.2137 
C2 23 4 0.5305 0.249 
A1 1479 6 0.4768 0.2578 
B1 118 5 0.6069 0.288 
B4 954 14 0.8601 0.5043 
C1 760 8 1.2553 0.6756 

CZ2 E1 864 7 0.1709 0.0589 
D1 1074 11 0.314 0.1079 

CZ3b G1 100 7 0.6864 0.2905 
F1 122 8 1.1697 0.5734 
H1 167 8 1.6612 0.7583 

CZ4 J2 605 4 0.0466 0.0132 
I1 18 3 0.6547 0.3856 
J1 202 8 1.1596 0.5236 
J3 13 3 0.8587 0.5641 
K1 40 5 1.3441 0.7247 

 

Besides diversity and density, spatial analysis shows general trends of redundancy 

throughout the occupations as well which can reflect on occupation length and social structure.  

Heterogeneous spatial patterning, seen through multiple types of features specific dedicated 

activities to different areas of the site shows prolonged occupation.  In contrast, short term camps 

show a narrow range of activities (Bamforth 1991).    
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Table 6.23 Artifact densities by CZ and subarea 

CZ Subarea Analytical 
Area (m2) N flakes Total 

weight (g) 
Flake Density 
(n flakes/m2) 

Weight density 
(g/m2) 

CZ1b A1 4 1477 329.79 369.25 82.45 
B1 3 118 454.5 39.33 151.5 
B2 3 27 34.69 9 11.56 
B3 2 203 35.31 101.5 17.66 
B4 8 954 132.36 119.25 16.55 
C1 10 760 2951.82 76 295.18 
C2 1 23 6.12 23 6.12 

CZ2 D1 14 1074 218.1 76.71 15.58 
E1 4 864 336.03 216 84.01 

CZ3b F1 3 122 13.31 40.67 4.44 
G1 4 100 224.29 25 56.07 
H1 6 167 123.8 27.83 20.63 

CZ4 I1 4 18 0.63 4.5 0.16 
K1 13 38 462.94 2.92 35.61 
J1 4 202 79.67 50.5 19.92 
J2 5 605 2578.5 121 515.7 
J3 1 13 3.44 13 3.44 

 

Defining a component as short term or long term has implications concerning mobility, and 

therefore seasonality, site function, and even group size.  CZ1b contains a large cache pit feature, 

and lithic reduction is generally limited to core reduction, biface manufacture and maintenance.  

Subareas are relatively homogeneous in types of activities occurring.  The redundancy seems to 

suggest short term occupation however evidence of food storage, high diversity of tool forms and 

other data suggest CZ1b is long term.  CZ2 is clearly specialized, with biface manufacture and 

core reduction representing the majority of reduction.  While the subarea boundaries are clearly 

defined, activities with each are very similar, indicating short term occupation.  In CZ3b, 

heterogeneous spatial patterning indicates longer term occupation, for this reason, as well as other 

supporting data, CZ3b was determined not to be a short term, hunting camp but rather an 

extractive location where occupant likely remained for an extended stay, but did not utilize the 

site as a base camp.  This is a similar conclusion for CZ4.  The variability seen between hearth 
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locations, as well as between specific reduction occurring in clusters and subareas is not 

redundant implying that CZ4 was long term, however a larger body of lithic evidence, such as 

raw material use, suggests that long term does not mean base camp, but rather an extractive 

location.  Implications of the spatial patterning with reference to broader behavioral patterns are 

discussed further in the following chapters. 

  



143 
 

 

 

Chapter 7  Technological Strategies and Use of the Site 

This chapter includes a discussion of the technological strategies and site type 

characterization for each cultural occupation.  CZ3a is excluded due to small sample size.  In 

order to begin describing a site in this way, certain assumptions about how differences in 

mobility, raw material procurement and occupation lengths should affect the lithic assemblage 

must be stated.   

7.1 CZ1b 

If diversity of tool forms and preference for local material is an accurate way to 

distinguish long term and short term camps, then the lithics in CZ1b indicate a long term 

residential base camp (Table 7.1).   This is based from the idea that as a stay is prolonged, more 

tools will be discarded and replaced, which will not only increase the number of tools, but the 

number of classifications of tools.  Evidence of this is seen in the heavy use of local materials 

both in debitage and modified flakes and the larger variety in formal tool types than any other 

occupation.  Further evidence of CZ1b functioning as a base camp is shown by the cache pit 

feature.  The storage feature is consistent with logistically organized societies where base camps 

were occupied for longer periods of time than expected for foraging base camps.  It is clear that 

some materials are being obtained directly such as obsidian and possibly the chalcedonies, while 

others such as the grey chert are being obtained as part of an embedded system where they are 

collected during other daily activities.  Tools found in this component in general do not show 

substantial damage or maximization with the exception of two heavily curated scrapers.  This 

suggests that curation was not an important strategy when present at the site most likely due to 

the abundance of local chert.  It follows that expedient technology, defined here as a strategy 

where tools are made when they are needed and discarded shortly afterwards, is the central 

strategy for producing tools for the people occupying the site. 

Patterns of flaking do suggest that biface manufacture occurred in this occupation 

however no bifaces are found at the site.  It is reasonable to assume that bifaces were being 

removed off-site possibly for hunting purposes.  The fact that no hunting weapons are found in 

CZ1b further implicates this occupation as a base camp, where hunting activities took place 

elsewhere and large game was brought back to the camp for processing and cooking while small 

game could have been taken from a local foraging zone.  The overall technological strategy 

shows local chert brought in as cobbles or blanks, and reduced for the production of flakes and 

bifaces for immediate use.  Tool forms with longer use-lives, which were not exhausted at the 
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site, were carried to other camps.  The brown quartzite found on-site is likely not being reduced 

for use but rather being tested for toolstone qualities.  This is evident in the total lack of modified 

flakes made from the material as well as the high rate of heat treatment possibly indicating an 

effort to improve the quality of material for potential use.  The mobile toolkit brought into the site 

consists of obsidian and chalcedony tools, with some basalt and black chert early stage tools or 

blanks.  Lithic patterns in CZ1b do not indicate that there was any resource stress when present at 

the site however it is possible, due to the two heavily curated scarpers, that lithic material is 

scarce at other seasonal camps utilized by the occupants of CZ1b. 

 

Table 7.1 Shannon-Weaver and Simpson index for tool classes by CZ 

CZ 

Number of 

Formal Tools 
Tool Classes 

Shannon-Weaver 

Diversity  Index 

(H') 

Simpson Index of 

Evenness(1-D) 

1b 6 4 1.3297 0.8667 

2 4 2 0.3466 0.5000 

3a 0 0 0.0000 1.0000 

3b 1 1 0.0000 1.0000 

4 3 2 0.6365 0.6667 

 

7.2 CZ2 

CZ2 has very different patterns of technological and spatial organization than all other 

components.  The majority of reduction occurring in CZ2 is focused on biface manufacture, in 

general very few modified flakes are found resulting in the tool assemblage having a high 

percentage of bifaces, especially when data from 2012 is taken into account.   Like CZ1b, CZ2 is 

dominated by local materials however the low diversity of tool forms indicates specialization.  

The formal tools that are found, namely the three grey chert bifaces, are not heavily curated and 

there is no evidence of maximization.  Together with the debitage flaking patterns indicating grey 

chert core reduction, evidence suggests that the bifaces were manufactured on-site using local 

materials.  The absence of bifaces discarded due to impact fractures shows that bifaces were not 

used as hunting weapons at the site.  This suggests that large game hunting did not occur in this 

occupation in this location.  It is reasonable to assume that some manufactured bifaces were taken 
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off site to be used elsewhere as hunting implements, although the biface could have been 

implemented as knifes and deposited in an unexcavated area of the site.  Spike camps meant for 

hunting in a logistically organized system would likely have had preforms made en masse to 

prepare for the hunting activities.  The evidence in CZ2 is consistent with this pattern and is 

therefore interpreted as a logistic spike camp. 

These patterns that support the use of the site as a logistic spike camp become even more 

apparent with the addition of 2012 data where several preforms broken during manufacture are 

included in the CZ2 assemblage.  This specialization in biface manufacture not only indicates site 

type, but also suggests an increase in risk for the people who occupied the site at this time 

following the assumption that as the risk of failure increases, a toolkit will become more 

specialized (Torrence 1989).  This is also supported by Nelson (1996:111) who states that 

“specialization and diversification” are strategies employed to cope with risk.  “Risk” here is 

probably referring to food resource risk rather than risk associated with toolstone given the 

discard of lightly used bifaces and the reduction of local chert cobbles.    Following  Esdale’s 

(2009:380) modified seasonal tool production and use model CZ2 would likely be a summer 

occupation where biface production was the focus, microblade production was absent, and 

toolstone was abundant.  CZ2 probably does not represent “gearing up” because a necessary 

element of this process of the replacement of used tools.  The complete lack of late stage tools of 

any kind in CZ2 indicates that the biface manufacture occurring was not gearing up, but rather 

part of a system of raw material collection. 

7.3 CZ3b 

This cultural component marks a noted shift in patterns from the upper Cultural Zones, 

CZ1b and CZ22.  CZ3b lithics indicate this occupation was part of a residentially mobile system 

where groups moved more frequently than in the mid Holocene.  The complete lack of diversity 

in tools types found in this component suggests short term occupation.  Following normal 

convention, a short term occupation would reflect low frequency of local materials.  However in 

CZ3b this is not the case.  The debitage is dominated by local material, namely the grey chert 

found abundantly throughout the site.  However the modified flakes are almost entirely nonlocal 

material, in this case, the grey and banded chalcedonies.  This would suggest that while local 

materials are being reduced, tools and blanks that were carried to the site are being maintained.  

However the lack of discarded formal tools implies that the local chert was not being reduced 

with the intention of replacing formal tools, and the lack of grey chert modified flakes suggests 
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the material was not being used to produce expedient tools.  Instead, this would seem to indicate 

that the grey chert is being reduced into blanks or prepared cores to maximize efficiency for 

addition into the mobile toolkit of the occupants. 

While the lithic reduction occurring in CZ3b seems to represent a short term occupation 

the spatial patterning seems to represent a longer term occupation.  Diverse spatial patterning 

including multiple types of features and areas with specific uses within a site shows extended 

occupation.  Short term camps generally exhibit very little variation in the activities performed at 

a site (Bamforth 1991).  In CZ3b a stark contrast exists between the features present, most 

importantly the lack of lithics near 2011-9 and the abundance of flakes near 2011-5 and 2011-8.  

This dissimilarity, or low redundancy, suggests different uses or activities associated with the 

features indicating diverse spatial patterning.  This is also seen through detailed analysis of lithic 

clusters in CZ3b with the overall pattern being that area and subareas are varied.  The spatial 

patterning then seems to suggest that CZ3b is a long term occupation.  This is supported by a high 

diversity of raw materials, also seen as an indication occupation length was longer.  The 

contrasting data, formal tool forms for short occupation, and spatial variation and raw materials 

for long term occupation, could be due to a number of reasons.  Sample size may account for the 

lack of formal tool forms so it could be that the formal tools simply have not yet been excavated 

at the site.   Another possible reason is that CZ3b is a palimpsest of material not identified in 

cultural component delineation.  Evidence for this is seen in non-contemporaneous hearth dates in 

2012, as well as through new stratigraphic information form 2012 that suggests CZ3b reflects two 

occupations, CZ3b1 and CZ3b2.  A palimpsest of occupations could account for the conflicting 

signals found in CZ3b.  Tentatively, this occupation represent a “location” within a residentially 

mobile foraging system (Binford 1980), although this could differ dramatically if and when the 

assemblage is properly split into two cultural zones. 

7.4 CZ4 

The lowest and earliest cultural zone at Mead is somewhat similar to CZ3b.  CZ4 also 

contains two hearths that have very different signatures from each other indicating that this 

component may also represent an extended occupation.  Hearth Feature 2011-6 is associated with 

a mixture of both bones and multiple clusters of lithic reduction while hearth Feature 2011-10 is 

almost entirely lacks lithic reduction but is associated with many bone fragments as well as fire-

cracked rocks.  The lack of lithics near feature 2011-10 indicates the activities surrounding this 

hearth were different than the activities surrounding 2011-6, mostly likely a difference between a 
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specialized cooking hearth and a more generic hearth meant for warmth and light.  The different 

signals represent specialized areas of the site that had assigned activities prescribed to them, 

which is a pattern expected of occupants who are staying on a longer time frame than if at an 

ephemeral hunting camp. 

For the lithics, CZ4 has a medium diversity of tool form but a low diversity index of raw 

materials.  If a high number of tool forms and a high variety of raw materials are expected when 

site occupation is long, then the CZ4 lithics suggest a shorter occupation.  This is supported by a 

high rate of curation found on chalcedony tools, a signal that indicates the occupants were 

conserving valued material at the site rather than replacing them.  A high frequency of nonlocal 

material is also expected for short term sites, while this pattern is seen in the modified flakes and 

tools of CZ4, the debitage assemblage is dominated by local material.  This is due to the primary 

reduction of quartz occurring on-site.  The idea that a long term site is dominated by local 

material is based on the idea that as people stay in one place, embedded procurement of local 

sources within a 20km round trip should increase.  At Mead, the quartz was immediately 

available and therefore even a single occupation spanning a week could create a massive amount 

of local debitage without the need for gathering of other local sources.  In this case, the quartz 

reduction at the site represents opportunistic reduction rather than patterns expected with long 

term sites.  It should be noted that the ideas of long term and short term could be the difference of 

a few weeks or even days in this context.  CZ4 is therefore still generally showing patterns of 

short term site leaning towards a longer occupation length on the short term spectrum.  In sum, 

evidence shows that according to the lithic information, CZ4 functioned as an extractive location 

within a residentially mobile system, where occupants set up camp in order to take advantage of 

the quartz material found at the site.  Chalcedony tools and at least one obsidian blank were 

brought to site as part of a mobile toolkit and were maintained during their stay.  Tools were not 

replaced with the quartz, likely due to the difference in the quality of the material. 
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Chapter 8 Discussion 

The analysis at Mead is part of a large body of existing and current research about 

archaeological sites in Alaska (Goebel and Buvit 2011; West 1996).  While excavations and 

analysis at nearby sites have been conducted, comparable analysis involving debitage analysis 

and behavioral inferences is scarce.  Notably, Swan Point and Broken Mammoth are both well-

known sites located near the Mead site.  However analysis of these sites has typically focused on 

techno-typological assignments and tool forms rather than debitage and behavioral patterns 

(Holmes 1996, 1998, 2011; Holmes et al. 1996; Yesner et al. 1992). Some comparisons can be 

made, such as at Broken Mammoth.  The faunal assemblage from the earliest cultural zone at 

Broken Mammoth  is indicative of broad spectrum foraging (Yesner 1996).  Preliminary 

understanding of the Mead faunal assemblage from the time also shows signs of broad spectrum 

foraging, indicating both Broken Mammoth and Mead occupants were taking advantage of a 

variety of animals as a part of their subsistence system.  Additionally a large workshop area for 

the purpose of reducing ventifacted quartz cobbles was found both at Mead as well as Broken 

Mammoth in the earliest cultural components. Detailed debitage analysis of the Broken 

Mammoth and Swan Point assemblages focused on identifying behavior is necessary to make 

relevant comparisons between the sites. 

The Gerstle River site is located in the Tanana Valley and extensive lithic and spatial 

analysis has been carried out, allowing for a direct comparison with the findings from Mead.  

Component 3 at Gerstle River, comparable with CZ3b at Mead, contains evidence of biface 

reduction with patterns expected of logistically organized hunting behavior including presence of 

weapons repair kits.  This component is associated with expedient faunal processing and 

demonstrates a narrow range of behaviors, further indicating the site was used as a hunting camp.  

At Mead, the late Pleistocene and early Holocene components show signs of residentially mobile 

groups, where occupation is longer than seen at Gerstle.  There is a total absence of hunting tools, 

and spatial analysis indicates behaviors were varied, providing evidence that Mead did not 

function as a hunting camp at this time.  Additionally, the Gerstle faunal data shows focused 

intent on large game resources, while the faunal data at Mead suggests broad spectrum hunting 

with the inclusion of small mammals and birds, in addition to large game.  This again highlights 

the different purposes of the site, and the patterns that can be seen from them.  Some behavioral 

similarities do occur between the sites, patterns at both Gerstle and Mead show that the occupants 
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were not under any stress for lithic resources.   This may suggest that late Pleistocene/early 

Holocene groups were knowledgeable about the location of lithic material sources in the Tanana 

Valley, although this requires further testing before stated with confidence.   Other comparable 

analysis in the Tanana Valley includes the research conducted on the Dry Creek site.  Most 

notably, Component 2 at Dry Creek, comparable with Mead CZ3b, contains 1,772 microblades, 

and like Gerstle, shows evidence of focus on large game hunting (Powers 1983).  Based on heavy 

frequencies of hunting technology and spatial patterns, Dry Creek components 1 and 2 have been 

labeled as spike camps (Guthrie 1983).  The earlier components at Mead have been labeled as 

extractive locations based on the lithic evidence, in comparison with Dry creek occupants at 

Mead were focused on a utilizing a broader range of  resources, possibly indicating differences in 

seasonal occupation. 

Other than site-to-site comparisons, some work has been conducted on characterizing 

broad behavioral patterns.  Two of these groups that are temporally comparable with occupations 

at Mead are the Paleoindian period (late Pleistocene/early Holocene) and the Northern Archaic 

(middle Holocene). Paleoindian behaviors can be expected to occur in the time frames of CZ3b 

and CZ4 at Mead.  Overarching observed behaviors include mobility, Paleoindian people likely 

employed a residentially  mobile system where groups moved from “kill to kill” and there would 

have been an “immediate search for further resources” following a kill (Kelly and Todd 

1988:236, 238).  The high frequency of residential moves would have left little time for intensive 

processing and patterns associated with this behavior are not expected at terminal Pleistocene 

sites.  Because  Paleoindians used their landscape in a short term fashion, sites should be 

“relatively undifferentiated  within a region” leading to inter-site redundancy.  Other measurable 

effects of the high mobility would be the need for highly transportable technology, mostly likely 

good toolstone quality bifaces and a marked lack of storage(Kelly and Todd 1988).  Sites are 

expected to be diverse with a wide range of activities evident at one site.  This is consistent with 

patterns at the Mead site, although CZ3b and CZ4 have been deemed extractive locations this 

does not mean that resources extraction was the only activity to have occurred there, this is shown 

in the variety of uses of hearths, variability in lithic clusters, and wide range of game present at 

the site.  Yesner (1996) suggests that bluff top sites in the late Pleistocene were part of a seasonal 

round focused on the exploitation of both large game and waterfowl.  Although more faunal 

analysis needs to be conducted at Mead, the data support this conclusion (Potter et al. 2013).  

Broader behavioral expectations include the notion that multiple household units were present at 
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each site.  Considering the distance between hearths in the earlier components at Mead, this likely 

applies.  Mead does differ from some expectations however.  Bever (2012:30) suggests that the 

early Holcocene would have been a time of resource stress where material conserving activities 

such as microblade production and bipolar reduction would have been employed, however these  

patterns of lithic resource stress are not present at Mead.  Faunal analysis from Gerstle River also 

shows that early Holocene populations were not under stress for large game (Potter 2005), 

indicating that the expectation of resource stress may be incorrect for the people in the Tanana 

Valley.  

While CZ3b and CZ4 are encompassed in patterns expected for Paleoindian behaviors, 

CZ1b and possibly CZ2 are temporally associated with the Northern Archaic tradition.  Expected 

patterns for the Northern Archaic lithic technology include a diverse toolkit where core and blade, 

bifacial and unifacial technology should all be present as a part of a weapons system designed to 

reduce risk (Esdale 2009).  Embedded procurement was mostly likely the main strategy for raw 

material collection (Esdale 2009:373).  When bifaces were found in site in the Brooks Range 

dating to the middle Holocene, more often than not they showed signs of heavy retouched and 

were impact fractured (Esdale 2009:374).  This observed pattern for bifaces in the Northern 

Archaic is different than patterns seen in CZ1b and CZ2 at Mead, where there are discarded 

preforms and bifaces that show usewear, have been lightly worked, and show association with 

manufacture rather than hunting use.  The differences here could be due to a number of things and 

do not necessarily mean that Mead CZ1b and CZ2 do not fit in with Northern Archaic behavioral 

patterns.  The expected patterns for bifaces stated here comes from observations in sites in the 

Brooks Range, largely upland sites.  Mead is a lowland site. It is possible that Mead is part of a 

seasonal round where no organized, large-game hunting occurred, but rather where bifaces were 

manufactured prior to the movement to upland sites where hunting was the focus of occupation.  

This would also explain the specialized toolkit seen at Mead rather than the diverse toolkit 

expected for the Northern Archaic.  Economic patterns in the Northern Archaic show a contrast 

from late Pleistocene patterns. There is a notable transition to logistic mobility, and increase in 

cultural complexity and an increase in group size (Huckell 1996). The shift from Paleoindian to 

the Northern Archaic is clearly represented at Mead.  There is a clear shift from foraging to 

collecting after the late Pleistocene/early Holocene.  The components associated with 

Paleoindians, CZ3b and CZ4, look remarkably similar in spatial patterning and in their mobile 

toolkit design, indicating highly mobile people with diverse activities (low redundancy of activity 
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areas) occurring at the site.  CZ1b and CZ2, associated with the Northern Archaic, stand apart as 

cultural occupations by the specialization of biface manufacture and increase in formal tools 

diversity at the site indicating a shift in resource handling strategies as well as site-type 

complexity.  This shift could be due to a widely observed change in the environment in the 

Tanana Valley between the early Holocene and the middle Holocene.  Changes in frequency of 

game, as well as the variety and spread of vegetation shifted dramatically, which no doubt called 

for new adaptive strategies from the people who lived on the landscape (Bever 2012; Bigelow 

and Edwards 2001; Yesner 1996). 

 The Mead site provides significant information into the interpretation of the behaviors of 

past people within the region.  With multiple occupations spread over a broad range of time, these 

analyses addressed many questions concerning adaptive strategies in the past.  The research 

conducted in this thesis provides valuable information on the lithic strategies of past site 

occupants.  Using a variety of analytical methods, the inferences made here can be stated with 

more confidence than through typological analysis of tools alone.  While conclusions concerning 

the technological organization at the site have been made, as with any research, more questions 

have been raised.  To what extent can changes in technological strategies be attributed 

environmental changes?  Does the faunal record at Mead show any indication of the site being 

used as a hunting site that the lithic data does not represent?  A refitting analysis at the site could 

identify the relationship between the quartz artifacts in CZ3b and 4.  Further research including a 

detailed faunal analysis and closer inspection of spatial elements in CZ4 is underway.  Although 

new information from ongoing excavations will add to the inferences made here, any behavioral 

conclusions drawn about the occupants of Mead are considered to be robust based on multiple 

methods of analysis and a strong theoretical background. 
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Appendix A Statistical Tests for Significance Summaries 

 

Table A-1 Chi-square statistics results  

Data Test Value df Asymp. Sig. 
(2-sided) 

Exact Sig. 
(2-sided) 

Exact Sig. 
(1-sided) 

Cortex for Rhyolite 
and Obsidian Fisher's Exact Test 2.189 1 .139 .173 .173 

Cortex for Rhyolite 
and Quartz Pearson Chi-Square 48.180 1 .000   

Cortex for CZ3b and 
CZ4 flake Pearson Chi-Square 9.809 3 .200   

Size class for Rhyolite 
and Obsidian Pearson Chi-Square 5.725 7 .572   

Size class for Rhyolite 
and Quartz Pearson Chi-Square 42.778 15 .000   

Modification for 
Rhyolite and Quartz Fisher's Exact Test .364 1 .546 1.000 .480 

Modification% for 
Rhyolite and Quartz Pearson Chi-Square 3.496 2 .174   

Modification for 
Obsidian and Quartz Fisher's Exact Test 94.527 1 .000 .000 .000 

Modification% for 
Obsidian and Quartz Pearson Chi-Square 102.079 2 .000   

Modification for 
Obsidian and Rhyolite Fisher's Exact Test 81.942 1 .000 .000 .000 

Modification% for 
Obsidian and Rhyolite Pearson Chi-Square 97.495 3 .000   

Shatter for Obsidian 
and Rhyolite Fisher's Exact Test .187 1 .665 1.000 .834 

Shatter for Rhyolite 
and Quartz Fisher's Exact Test 21.886 1 .000 .000 .000 
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Table A-2 Independent samples t-test statistics results 

Data F Sig. t df Sig. (2-tailed) 

Core size value for CZ3b and CZ4 3.451 .137 -1.208 4 .294 

Edge angle for Chalcedony in 

Upper and Lower components 
.000 .990 -.631 14 .538 

Edge angle for Grey chert in 

Upper and Lower components 
3.453 .072 -.875 33 .388 

Width for modified and 

unmodified flakes, CZ1b 
21.337 .000 4.714 3970 .000 

Length for modified and 

unmodified flakes, CZ1b 
16.582 .000 5.068 3970 .000 

Thickness for modified and 

unmodified flakes, CZ1b 
1.180 .277 1.569 3970 .117 

Weight for modified and 

unmodified flakes, CZ1b 
20.301 .000 2.969 3970 .003 

Width for modified and 

unmodified flakes, CZ4 
.372 .542 1.760 933 .079 

Length for modified and 

unmodified flakes, CZ4 
24.544 .000 5.413 933 .000 

Thickness for modified and 

unmodified flakes, CZ4 
.565 .452 1.257 933 .209 

Weight for modified and 

unmodified flakes, CZ4 
.312 .577 .640 933 .523 

 

 



171 
 

 

 

Table A-3 ANOVA statistics results for dorsal scar counts 

Dorsal Scar Data Sum of Squares df Mean Square F Sig. 

Rhyolite and Quartz 367.585 1 367.585 492.832 .000 

Rhyolite and Obsidian 1087.273 2 543.636 1236.960 .000 

Obsidian and Quartz 124.159 1 124.159 242.344 .000 

 



 
 

 

 



173 
 

 

 

Appendix B Measured Attributes 

 

Debitage Attributes 

Completeness - This attribute contains objective descriptions as set by Sullivan and 

Rozen (1985) that describe the intactness of the flake.  This includes a complete flake, broken 

flake, flake fragment and shatter (referred to as debris in their original study).  The term split 

flake was added to account for flakes broken longitudinally. 

Type - The type attribute is a subjective category that aims to categorize flakes by 

commonly used terms similar to a technological typology approach (Andrefsky 2005:120-127). 

This attribute was recorded mainly for the purpose of relating to other researchers and not for 

heavy use in the analysis of the data.  A simple flake is the basic flake type and has no special 

characteristics other than that it is a flake.  A bifacial thinning flake for the purpose of this study 

must have the following attributes: a lipped platform, a complex platform, 2 or more dorsal scars, 

diffuse bulb, and no cortex (Andrefsky 2005; Crabtree 1972:96; Andrefsky 1986:49) A unifacial 

thinning flake has the same characteristics of bifacial thinning flake except for a simple instead of 

complex platform.   Microblade debris can consists of modified or unmodified microblades.  

Microblades are blades that are generally twice as long as they are wide with a single or double 

arris on the dorsal surface oriented proximal to distal ends.   A decortication flake has at least 

50% of its dorsal surface covered in cortex and is generally large in size when compared to 

specimens of the same material (Odell 1989). An unknown type generally is not used for flakes 

but for pieces of shatter. 

Raw Material options for the Mead site assemblage includes, chert, basalt, obsidian, 

quartzite, rhyolite, siltstone, chalcedony, siltstone, quartz, and jasper.  In order better describe the 

characteristics of each type of raw material, color, luster, texture, homogeneity, and quality were 

recorded for each artifact.  Color was determined using Munsell.  Luster is described as waxy, 

glassy, vitreous, or dull. Texture subjectively describes the grain size of the material and divides 

them into four options: fine, medium, coarse, very coarse.  Homogeneity accounts for any 

inclusion visible in the material other than color variability and divides them into three options of 

homogeneous, somewhat homogeneous, and heterogeneous.  Quality is a subjective category 

designed to roughly describe the overall characteristics of the material for use in manufacture.  

Quality can be excellent, fair, or poor. 
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Cortex - The recording of the amount of cortex has been shown to be useful in 

determining in what stage of reduction a flake may have been manufactured (Andrefsky 2005: 

115) although there are many problems with consistency of application between researchers 

(Rozen and Sullivan 1989:757).  For this project cortex was categorized into 5 levels, 0%, 

1<49%, >50<99%, and 100%.  Although no separate category was created there are both primary 

source and secondary source cortex in this assemblage.  Secondary source cortex occurs only on 

the quartz in the form of a ventifacted surface.  When present it was noted, all other cortex 

recorded in this assemblage refers to primary source cortex. 

Platform - The striking platform type can be useful in determining at what stage of 

reduction the flake was produced and the percussion type used to remove the flake.  A platform 

may be absent if the flake is incomplete and has been broken.  Other types include simple, 

complex, cortical, prepared, and abraided.  For this project simple platform are defines as having 

a single facet while complex platforms have two or more facets. 

Dorsal Scar Count - Dorsal scars are counted and recorded from 0, 1, 2, 3, 4 and >4.  

Zero is only used in the case of flakes that have 100% cortex.  Scars were counted only if they 

were clearly visible on the dorsal surface rather than the edge of the flake in order to remove the 

presence of use wear flake scars from the total count. 

Termination – Flake termination records the type of distal margin on a flake and is a 

useful variable in determining amount of force.  Types include feathered, plunging or overshot, 

hinge, or step.  A feathered termination is recognized by a smooth tapered distal end.  A plunging 

termination, also referred to as an overshot termination, is a result of the applied force rolling into 

the objective piece the flake was detached from. This type of termination will often have a large 

portion of the objective piece intact on the flake near the distal end. A hinge termination can be 

recognized by a smooth, rolled distal end where the force applied to the flake rolled away from 

the objective piece.  A step termination is recognized by a sharp angle at the distal end of the 

flake resulting from an abrupt change in the direction of the applied force during the 

manufacturing process. 

 Thermal Alteration was recorded in two categories that document evidence of heat 

treatment.  Thermal alteration 1 simply records the presence or absence of such evidence while 

thermal alteration 2 records the type of evidence including pot lidding, crazing, color change, or 

fracturing. 
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 Edge Damage, eraillure scar, lipping, and bulb of force are all attributes where only the 

presence or absence was recorded.  All debris should have absent edge damage. Eraillure scar 

records the presence or absence of the small flake often chipped away during manufacture and 

can inform on how much pressure was applied to the removal of the flake.  Lipping refers to a 

lipped or non-lipped platform that can help determine what kind of percussion was used.   For the 

case of recorded the bulb of force, instead of 0 for absent and 1 for present, the terms diffuse and 

salient were used to better describe the kind of protrusion from the ventral surface. 

 Weight was measured in grams with an Ohaus Adventurer Pro AV812 digital scale. 

 Length, width, and thickness were all measure in millimeters using a Mitutoyo digital 

caliper.  Length was measured as a maximum dimension perpendicular to the striking platform of 

the flake.  Width was measured as a maximum dimension parallel to the striking platform.  

Thickness was measured as a maximum dimension, measurement were made using a similar 

linear point on both ventral and dorsal surfaces  

 

Modified Flake Attributes 

All attributes for debris were also measured and recorded for modified flakes.  This 

includes : completeness, type, raw material, cortex, platform, dorsal scar count, termination, 

thermal alteration, edge damage, eraillure scar, lipping, bulb of force, weight, Length, width, and 

thickness. 

 Number of utilized margins records the total number of edges with evidence of use-wear 

or modification. 

 Number of flake margins records the total number of edges the flake contains. 

 Percent utilized margins are calculated by dividing the number of utilized margins over 

the number of flake margins. This records the percent of edged on the flake that have been used. 

 Edge Shape – this attribute describes the type of contour of the flake edge.  Types can 

include notched, convex, concave, straight, or pointed. 

 Position – This attribute records the location of the worked edge that all following 

attributes were recorded for.  A single specimen may have different attributes depending on 

which working edge is being recorded.  By recording this attribute the following attributes are 

assigned to a specific edge on the same flake.  Positions include left and right lateral edges and 

proximal and distal edges. Left and right is determined by holding the flake with the proximal end 

down and the dorsal surface facing the researcher. 
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 Modification type includes burin-like wear such as crushing and striations parallel to the 

working edge, crushing, polish, microflaking, chipping, and retouch, while Modification Type2 

records the type of termination of use wear flake scars.  Categories include stepped or feathered.  

Additionally smoothed was added as a category to describe the arises between flake scars.  

Smoothed modification records that the sharp ridges usually observed between flake scars have 

been worn down and dulled.  Modification Type3 includes two categories: continuous and 

clustered.  These describe the spacing of the use wear along a flake edge. 

Modification Intensity was subjectively recorded as either light or heavy based on 

characteristics including invasiveness, percent coverage, and edge angle. 

 Face Position describes the location of the use wear pattern on a flake edge.  Categories 

include dorsal, ventral, both, edge. 

 Modification length was measured using a string to conform to the shape of the edge and 

then measuring the length of the string using a digital caliper.  Once all modification lengths were 

measured for each edge on a single artifact the amounts would be totaled for a new attribute Sum 

of Modification Length. 

 Edge Angle was measured using a hand-held digital Baseline goniometer.  This attribute 

is useful in measuring the extent of curation and stage life of an artifact. 

 

Biface Attributes 

 The attributes raw material, color, luster, texture, homogeneity, quality, cortex, and edge 

angle were recorded for bifaces in the same manner as previously mentioned. 

 Completeness includes six different types to describes the state of the artifact.  Complete 

is a perfectly or mostly intact artifact.  Distal and proximal types describe an artifact where only 

the distal or proximal portions of the biface remains.  Lateral refers to a biface segments 

exhibiting only a single lateral edge.  A Medial biface section refers to a segment with both lateral 

edges bug neither a proximal nor distal end.  Indeterminate pieces are biface segments where no 

discernible edge or end is present. 

 Stage – this attribute refers the stage of reduction sequence the biface or biface segment 

may have been in.  The stages used in this project are based on Rasic’s sequence presented in his 

master’s thesis (2000: 69).  The types include blank, edged blank, early stage bifacial blank, late 

stage bifacial blank, preform, and utilized or modified projectile point. 
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 Haft Type includes seven types.  Side notched, basal notched, corner notched, lanceolate, 

lateral, stemmed, and n/a. 

 Base Type includes flat, convex, concave, bipoint, or n/a. 

 Fracture type describes the character of a break in the biface.  This attribute can be useful 

in determining in which stage of reduction an artifact might have been manufactures.  A Bending 

fracture is defined as a break with a lipped profile moving away from the point of applied force; 

these are often seen as a straight break between lateral margins (Rasic 2000). Bending fractures 

account for most of the biface fracture types found in this assemblage.  Perverse fractures are 

outlined by Crabtree (1972).  They are found when an artifact is broken because the impact force 

twists perpendicular to the biface surface when moving from one margin to another.  A reverse 

hinge fracture occurs when the impact force rolls into the objective piece, breaking it, rather than 

away, when a flake is created.  Raw material flaws account for the only other type of fracture 

found in this assemblage other than bending.  These kinds of breaks are due to the natural fracture 

patterns of the material or inconsistencies in the material such as quartz inclusions.  Thermal 

fractures can also occur, these breaks lack points of applied force and may have evidence of 

thermal alteration such as pot lidding or crazing.  Impact fractures can be used to determine if the 

tool was used as a projectile.  Three types are included: Longitudinal, lateral and spin-off, 

although none were found in this assemblage. 

 Because there were so few bifaces in this assemblage and all demonstrated considerable 

variation from one-another, a short text description was included to describe other attributes such 

as type, size, and location of modification, if any. 

 

Uniface Attributes 

 The attributes completeness, platform, termination, thermal categories 1 and 2, dorsal 

scar count, raw material, color, luster, texture, homogeneity, quality, cortex, eraillure scar, 

lipping, bulb of force, width, length, thickness, weight, Position, Modification Type, Modification 

Intensity, modification type 2, modification type 3, edge shape, face position, modification length, 

sum of modification length, and edge angle were recorded for unifaces in the same manner as 

mentioned in the debris or modified flake attributes. 

The type attribute includes two categories: Short-axis beveled and long-axis beveled 

following Morlan (1976), Potter (2005), and Mobely (1991).  Short axis beveled unifaces are 

typically refered to as end scrapers, in literature and describe the primary margin utilized as being 
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on the proximal or distal edges.  Long-axis beveled flakes are commonly referred to as side 

scrapers and describe the utilized edge as being on a lateral margin.  The advantage of short-axis 

of long-axis beveled types is that, unlike side or endscraper, they do not imply a function. 

 Blank type consists of two categories: flake or blade.  Blank type described the original 

shape of the uniface before manufacture and use. 

The Cross Section attribute includes biconvex or planoconvex as categories.   These describe the 

general shape of the uniface in profile.   

Edge thickness is a measurement that measures the maximum dimension for the utilized edge of a 

uniface.  

Edge Diameter is the straight-line measurement of an utilized edge as opposed to the edge length 

were convex and concave dimensions are taken into account 

 

Microblade Attributes 

The attributes completeness, platform, termination, thermal categories 1 and 2, raw 

material, color, luster, texture, homogeneity, quality, cortex, edge damage, eraillure scar, 

lipping, bulb of force, length, weight, number of utilized margins, number of flake margins, 

percent utilized margins, position, modification type, modification intensity, modification type 2, 

modification type 3, face position, modification length, sum of modification length, and edge 

angle were recorded for microblades in the same manner as mentioned in the debris or modified 

flake attributes. 

Proximal width and thickness are measured in the same spot following Cook (1969:87).  

Both measurements were taken from the proximal end of the artifact or in cases were the 

proximal end is absent, from the widest end.  This is in order to reduce error from the bulb of 

force. 

Number of arrises is recorded instead of dorsal scar count to give a better description of 

the cross-section shape of the microblade.  The differences can be seen in  

Burin Attributes 

The attributes raw material, color, luster, texture, homogeneity, quality, cortex, thermal 

categories 1 and 2, modification type, position, width, length, thickness, weight and edge angle 

were recorded for burins in the same manner as mentioned in the debris or modified flake 

attributes. 
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The attribute type encompasses a wide variability of forms.  Following a number of 

researchers (Cook 1969; Powers 1983:114-119) the following types were included: transverse, 

dihedral, donnelly, notched, spalled, projectile point, burinated flakes, burin, burin on snap, angle, 

and core-burin.  Transverse and burin on spa types are the only two types found in the Mead site 

assemblage therefore they will be the only types discussed.  As defined by Powers (1983) 

transverse burin types are based on the lateral position of the burin facet and often edge damage 

will be indicated transversely along the distal end.  The burin on snap type is indicated by burin 

damage located on the snapped edge of an artifact (Powers 1983).  

Number of burin scars was also recorded along with the location of burin scars.  

Location includes right lateral, left lateral, proximal, distal.  Additionally, the direction of 

removal was also recorded to indicate where the piece was struck to remove the spall. 

 

Burin Spall Attributes 

The attributes raw material, color, luster, texture, homogeneity, quality, cortex, platform, 

termination, edge damage, thermal categories 1 and 2, modification type, position, modification 

intensity, modification type 2, modification type 3, edge shape, face position, modification length, 

sum of modification length, edge angle, width, length, thickness, and weight were recorded for 

burin spalls in the same manner as mentioned in the debris or modified flake attributes. 

 For burin spalls, depth of damage was also recorded; this measures the invasiveness of 

any modification on the face of the burin spall.  

 

Flake Core Attributes 

The attributes raw material, color, luster, texture, homogeneity, quality, and cortex were 

recorded for flake cores in the same manner as mentioned in the debris or modified flake 

attributes. 

Number of flake scars records the quantity of flake scars on a single core 

Scar max width measures the maximum dimension for width for any flake scar on a core. 

Scar max length measures the maximum dimension for length for any flake scar on a 

core. 

Maximum linear dimension measures the largest measurement for the flake scar 

disregarding orientation of the piece. 

Width, thickness, and length were all measured as maximum dimensions on a flake core. 
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Weight was measured in kilograms on an AE Adam CWP Plus-75 scale. 

Size value was calculated by multiplying weight with the maximum linear dimension 

measurement in order to rank cores against each other by size. 



 

Appendix C Raw Material Summary 

 

Table C-1 Raw material summaries by subarea 

CZ 1b             2   3b     4         

Subarea A1 B1 B2 B3 B4 C1 C2 D1 E1 F1 G1 H1 I1 K1 J1 J2 J3 
andesite 0 0 0 0 0 0 0 0 0 0 0 37 0 0 18 0 8 
banded chalcedony 0 0 0 0 1 1 1 8 2 29 0 10 3 3 0 0 0 
black basalt 0 0 1 0 6 0 1 0 0 0 0 0 0 0 0 0 0 
black chert 1 0 1 0 2 42 0 6 1 2 1 0 0 1 0 0 0 
brown chert 3 1 0 3 6 1 0 1 2 0 0 0 0 0 1 0 0 
brown quartzite 11 99 0 0 6 337 1 27 17 1 3 6 0 0 0 0 0 
grey quartzite 0 8 1 1 1 223 0 6 2 2 2 7 0 0 0 0 0 
grey basalt 3 0 0 0 2 0 0 0 0 2 1 19 0 0 7 0 0 
grey chalcedony 0 0 0 0 4 1 0 3 2 9 2 18 0 9 24 2 0 
grey chert 1258 10 24 199 577 151 20 1014 838 74 7 68 14 16 3 1 1 
jasper 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 
obsidian 0 0 0 0 1 0 0 1 0 0 0 0 0 0 5 1 0 
red/grey siltstone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 
rhyolite 203 0 0 0 346 4 0 5 0 0 0 0 0 0 0 0 0 
quartz 0 0 0 0 1 0 0 2 0 3 84 2 1 10 136 601 4 
total 1479 118 27 203 954 760 23 1074 864 122 100 167 18 39 202 605 13 
clusters >n=3 3 3 1 1 6 5 1 6 2 3 2 7 1 3 6 1 2 
clusters >n=30 2 1 0 1 2 4 0 1 1 0 1 2 0 0 1 1 0 181 





 
 

 

 

 

Appendix D Raw Material Descriptions 

Table D-1 Raw Material Variations 

Raw 
Material Color variation Luster variation Texture 

variation 
Homo-
geneity Quality Variation Notes 

andesite 5Y 4/1, Gley 1 4/N, Gley 1 5N dull medium 1-2 
 fair   

banded 
chalcedony 

Gley 1 7/10Y, Gley 1 7/N, Gley 1 6/10Y, Gley 1 6/N, 5Y 7/1, 
Gley 1 2/N, Gley 1 2/N, Gley 1 4/N, Gley 1 5/N, 2.5Y 7/1, 
2.5Y 7/2, 10YR 5/3, 10YR 6/1, 10YR 6/2, 2.5Y 4/1, 2.5Y 6/1, 
2.5Y 6/2 

waxy, vitreous fine 1 excellent 

Black banding does not affect 
fracture mechanics. Color 
variations largely due to 
variable thickness of artifacts. 

black basalt 10YR 2/1, 10YR 3/1, 10YR 3/2, Gley 1 2.5/N dull medium, fine 1 excellent 

  

black chert 2.5Y 2.5/1, Gley 1 1/N, Gley 1 2.5/N, Gley 1 2/N, Gley 1 3/N, 
Gley 2 2.5/10B dull, vitreous, glassy fine 1-2 excellent, fair 

brown chert 10YR 4/6, 10YR5/3, 10YR 6/3, 2.5Y 7/3, 2.5Y 8/2, 2.5Y 3/3, 
2.5Y 5/3, 7.5YR 3/2, 7.5YR 4/3, 7.5YR 5/3 dull, vitreous fine, medium 1-3 excellent, fair, poor 

grey 
quartzite 

10YR 3/1, 10YR 4/1, 10YR 4/2, 10YR 5/1, 10YR 5/2, 2.5Y 
4/1, 2.5Y 5/2, 2.5YR 4/1, 5Y 4/1, 7.5YR 4/1, 7.5YR 5/1, Gley 
1 1/N, Gley 1 3/N, Gley 1 4/N 

dull fine, medium 1-2 fair, poor 

grey basalt 10YR 4/1, 2.5Y 4/1, 5Y 3/1, 5Y 4/1, 5Y 5/1, 5Y 6/1, Gley 1 
3/N, Gley 1 4/N, Gley 1 5/N dull, vitreous fine, medium 1-2 excellent, fair 183 



 
 

 

 

 

Table D-1 continued 

grey 
chalcedony 

10YR 4/1, 10YR 5/2, 10YR 6/1, 10YR 7/1, 10YR 7/2, 2.5Y 
4/2, 2.5Y 5/1, 2.5Y 6/1, 2.5Y 7/1, 2.5Y 7/2, 2.5Y 7/3, 2.5Y 8/1, 
5Y 4/1, 5Y 5/1, 5Y 6/1, 5Y 7/1, 5Y 8/1, Gley 1 4/N, Gley 1 
5/10Y, Gley 1 7/10Y, Gley 1 7/N, Gley 1 8/10Y, Gley 1 8/N 

waxy, vitreous fine 1-2 excellent, fair 

Two different types of grey 
chalcedony: milky grey 
chalcedony and brownish grey 
chalcedony.  Materials were 
lumped together for analysis 
purposes. 

grey chert 

10YR 3/1, 10YR 3/2, 10YR 4/1, 10YR 4/2, 10YR 5/1, 10YR 
5/2, 10YR 6/1, 10YR 6/2, 10YR 7/2, 2.5Y 3/1, 2.5Y 4/1, 2.5Y 
5/2, 2.5Y 6/1, 2.5Y 6/2, 2.5Y 7/1, 2.5Y 8/4, 2.5YR 3/1, 2.5YR 
6/1, 5Y 3/1, 5Y 4/1, 5Y 4/1, 5Y 5/1, 5Y 5/2, 5Y 6/1, 5Y 6/2, 
5Y 7/1, 5YR 4/3, Gley 1 3/10Y, Gley 1 3/N, Gley 1 4/10Y, 
Gley 1 4/N, Gley 1 5/10Y, Gley 1 5/N, Gley 1 6/10Y, Gley 1 
6/5GY, Gley 1 6/N, Gley 1 7/10Y 

vitreous, dull fine, medium 1-2 excellent, fair 

  

jasper 2.5YR 2.5/2, 2.5YR 2.5/3, 2.5YR 3/3, 2.5YR 3/4, 2.5YR 4/2 vitreous fine 1 excellent, fair 

obsidian 5Y 3/1, Gley 1 1/N, Gley 1 2/N, Gley 1 3/N, Gley 1 4/N, Gley 
1 5/N, Gley 1 6/N, Gley 1 6/N, Gley 1 8/N glassy fine 1 excellent 

petrified 
wood 2.5Y 5/2 vitreous fine 1 excellent 

18
4 



 
 

 

 

 

Table D-1 continued 

rhyolite 

10YR 3/2, 10YR 4/1, 10YR 5/3, 10YR 5/4, 10YR 6/1, 10YR 
6/2, 10YR 6/3, 10YR 6/4, 10YR 7/1, 10YR 7/2, 10YR 7/3, 
10YR 7/4, 2.5Y 3/1, 2.5Y 5/2, 2.5Y 5/3, 2.5Y 6/2, 2.5Y 6/3, 
2.5Y 7/4, 5Y 4/1, 5Y 5/2 

vitreous, dull fine 1-2 excellent, fair 

This rhyolite is extremely 
brittle and many flakes were 
broken during recovery.  
Sourced to Type X rhyolite 
also found at Gerstle River 
using cortex similarities. 

quartz 

5Y 8/1, 10YR 5/1, 10YR 6/3, 10YR 7/1, 10YR 7/2, 10YR 7/3, 
10YR 7/4, 10YR 8/1, 2.5Y 4/1, 2.5Y 4/2, 2.5Y 7/1, 2.5Y 7/2, 
2.5Y 7/3, 2.5Y 8/1, 2.5Y 8/2, 5Y 5/1, 5Y 7/1, 5Y 8/1, 5YR 4/4, 
Gley 1 3/N, Gley 1 4/N, Gley 1 4/N, Gley 1 5/N, Gley 1 7/10Y 

glassy, vitreous fine, medium 1-2 poor, fair 

  red/grey 
siltstone 5YR 4/2  dull  fine  1  fair 

brown 
quartzite 

10YR 3/2, 10YR 4/2, 10YR 4/3, 10YR 5/2, 10YR 5/3, 10YR 
5/4, 10YR 6/1, 10YR 6/2, 10YR 6/3, 10YR 6/4, 10YR 7/2, 
10YR 7/3, 10YR 7/4, 10YR 8/3, 2.5Y 5/2, 2.5Y 5/3, 2.5Y 7/3, 
2.5Y 7/4, 2.5Y 8/2, 2.5YR 4/4, 2.5YR 5/3, 5YR 4/2, 5YR 5/3, 
7.5YR 4/2, 7.5YR 4/3, 7.5YR 4/4, 7.5YR 5/2, 7.5YR 5/3, 
7.5YR 5/4, 7.5YR 6/3, 7.5YR 6/4 

dull medium 1-2 poor, fair 

185 
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Appendix E Block Backplots 

 

 
Figure E-1 Block 101 backplots
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Figure E-2 Block 102 backplots 
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Figure E-3 Block 103 backplots 
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Figure E-4 Block 104 backplots 
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Figure E-5 Block 105 backplots 
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Figure E-6 Block 106 backplots 
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Figure E-7 Block 107 backplots 
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Figure E-8 Block E13 backplots 
 

303.5

304.0

304.5

305.0

305.5

486.0 486.5 487.0 487.5 488.0

D
ep

th
 

North 

Block E13 

bone

flake

303.5

304.0

304.5

305.0

305.5

502.0 502.5 503.0 503.5 504.0

D
ep

th
 

East 

Block E13 

bone

flake



195 
 

 

 

 
Figure E-9 Block E16 backplots 
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Figure E-10 Block E17 backplots 
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Figure E-11 Block E25 backplots 
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Figure E-12 Block E26 backplots 
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Figure E-13 Block E32 backplots 
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Figure E-14 Block E33 backplots 
 

304.0

304.5

305.0

305.5

306.0

492.0 492.5 493.0 493.5 494.0

D
ep

th
 

North 

Block E33 

bone

flake

tool

304.0

304.5

305.0

305.5

306.0

508.0 508.5 509.0 509.5 510.0

D
ep

th
 

East 

Block E33 

bone

flake

tool



201 
 

 

 

 
Figure E-15 Block E38 backplots 
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Figure E-16 Block E40 backplots 
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Figure E-17 Block E44 backplots 
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Figure E-18 Block E46 backplots 
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Figure E-19  Block E52 backplots 
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