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Abstract

Obsidian is known to have been used for tool making in Kenya since the Early Stone
Age, appearing as early as 974 thousand years ago (Durkee and Brown, in press).
Past research has shown that the study of obsidian artifacts, and the determination
of their provenance, can be very useful in reconstructing past civilizations and
analyzing the spread of technology and trade. A number of different analytical
techniques have previously been utilized to characterize obsidian sources for such
studies, including magnetic analysis. This thesis reports the results of a preliminary
study to explore the potential of utilizing magnetic analysis for the characterization
of obsidian sources in Kenya. A total of 192 samples from 23 localities, belonging to
6 broadly defined petrologically distinct source groups, were analyzed using a
vibrating sample magnetometer to test saturation magnetization (Ms), remanence
magnetization (Mr), and coercivity (Hc). Comparing the ratio of Mr/Ms with Hc
allowed clear differentiation among three of the analyzed obsidian sources (Groups
14,19, and 29 from Merrick and Brown 1984a). The magnetic signatures reveal
clues about the microscopic Fe mineral grains present in the samples, suggesting
that magnetic characterization also has the potential to provide additional value as a
supplementary technique to chemical analysis. Based on these preliminary results,
it is proposed that future studies could examine the temperature dependence of the
magnetic properties of obsidian to provide more complete characterization of the
obsidian sources.
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Introduction

The goal of this thesis project was to explore the possibility of using magnetic
properties as a characterization metric for the study of obsidian provenance in
Kenya. This research will add to the available database of general knowledge about
magnetic obsidian sourcing in various regions worldwide. No previous magnetic
obsidian provenance studies have been conducted in eastern Africa (Coleman,
2008). Three major magnetic properties, discussed in more detail later, were
analyzed here to determine whether any combination of them showed enough
patterning to provide useful characterization metrics for sourcing Kenyan

archaeological obsidian artifacts.

Archaeological Provenance

Provenance studies, also known as sourcing studies, are a type of archaeological
research where various material sources (stone, metal ores, clays, etc.) in a region
are characterized using one or more testing metrics to create a sort of “fingerprint”
(Cann and Renfrew, 1964) allowing archaeologists to locate the original material
sources of archaeological artifacts. Such studies have been shown to be extremely

useful in the study of the human past (Glascock et al., 1998).

Tracing artifacts back to the locations where the material itself originated can
provide useful information about how ancient societies functioned. Tracing
materials found at artifact production sites can give us a look at production

methods, whether people were shaping the material at the source or transporting



the raw material long distances back to the production site. Artifacts found in other
contexts can have important implications regarding early human movement and
material exchange patterns, as well as potentially hinting at the material’s cultural

significance (Glascock et al., 1998).

The provenance postulate states that in order to successfully source an artifact,
there must be “a demonstrable set of physical, chemical, or mineral characteristics
in the raw material source deposits that is retained in the final artifact” (Rapp and
Hill, 2006; 222). This condition allows the comparison of the properties of the
artifact with those of various source samples so that the artifact can be matched to
its source. There are a number of methods that archaeologists have at their disposal
with which to do this. The most common methods in use today for the analysis of
obsidians involve the testing of their physical and geochemical properties, either
alone or in combination, and comparing them to those of the various obsidian

sources in the surrounding area (Rapp and Hill, 2006).

Obsidian

Obsidian is a volcanic silicate glass, which occurs in several forms within pyroclastic
deposits (flows, welded layers, and lapilli). It exhibits a strong pattern of conchoidal
fracture, which makes it an ideal material for the manufacture of sharp-bladed
objects such as cutting tools and spear points. Obsidian is often known for its shiny
black color, although it also comes in a variety of other color variants (Miller, 2014).
Since the obsidian is liquid before the eruption, thorough mixing usually occurs

within the magma chamber, and an entire eruptive event will produce obsidian with



approximately identical chemical makeup. This homogeneity can lead to obsidians
with such similar chemistry many miles/kilometers apart depending on the size of

the flow.

All obsidians contain trace amounts of various minerals in sub-millimeter sized
crystal grains. The most common mineral found as micro-inclusions in obsidian is
magnetite (Fe304), which causes obsidian’s typical black coloration. Hematite,
ilmenite, feldspars, and other minerals are also common (Frahm and Feinberg,
2013). The concentrations, compositions, morphologies, and the size and spatial
arrangement of these mineral grains can all affect the magnetic properties of
obsidian. Unlike the bulk chemical composition of the obsidian, the magnetic
properties of the mineral grains are affected by the local flow conditions under
which the obsidian cooled, which can vary across a single flow, causing intra-flow
spatial patterning of the magnetic properties of obsidian (Frahm and Feinberg,

2013).

Obsidian has been the frequent subject of provenance studies in many areas of the
world -- including the Near East (Binder et al,, 2011), the Mediterranean (Stewart et
al.,, 2003), western North America (Frahm and Feinberg, 2013), Japan (Hall and
Kimura, 2002), New Zealand (Sheppard et al., 2011), Mexico (Urrutia-Fucugauchi,
1999), the Andean region of South America (Vasquez et al.,, 2001), and Kenya
(Brown et al,, 2013) -- for a number of reasons. First, it was frequently used in

artifact manufacture in ancient times around the world practically everywhere it



was available as a natural resource to ancient peoples (Merrick and Brown, 1984a).
Second, obsidian-containing localities tend to be very discretized due to the geologic
processes that form them (Carmichael, 2014). Obsidian often gets buried under
other layers of rock over time, so it is available on the surface only where it has
either been freshly laid down by volcanic activity, or where geologic processes such
as erosion have brought older layers to the surface (Miller, 2014). The reemergence
of old obsidian layers can lead to the existence of a number of discrete obsidian
collection localities within a single obsidian flow. Another reason that obsidian is
more conducive to provenance studies than some other materials is that the artifact
forming processes -- e.g. knapping or flaking -- do not affect obsidian in ways that
would affect the properties that are generally used for sourcing materials (Rapp and
Hill, 2006). For example: unlike metal ores, which are refined by melting to separate
the metal from the unwanted parts of the ore, obsidian artifacts are formed by
processes which do not affect the chemistry or magnetic properties of the original

material.

One challenging bit of terminology encountered in archaeological provenance
studies is the term “obsidian source”. Over the history of obsidian provenance
studies, different researchers have used varying definitions of an obsidian “source”.
It seems that each author’s definition has generally been defined by the scale of
resolution on which the characterization techniques they used can effectively
differentiate various obsidians. Many previous authors have used the term “source”

to mean one chemically “identical” set of localities, presumed to be from the same



eruptive event or flow due to their chemical similarity (e.g. McDougall et al., 1983;
Urrutia-Fucugauchi, 1999; Duttine et al.,, 2008; etc.). This definition is adopted here,
as this is the scale of characterization that is mainly being considered here, and
different usages of the term “sources” will be identified by alternative descriptive
names to differentiate them. One particular example of a usage of “source” in a more
geographically restrictive sense occurs in the recent Frahm and Feinberg paper
(2013), where the term “source” refers to the individual quarry localities rather
than clusters of quarries showing similar material properties. In this study the term
“locality” will be used to discuss the particular quarry from which an artifact
originated. In addition, what is referred to in this study as a “source” has been
referred to as a “source group” or “petrological group” in previous published
research done on these samples (Merrick and Brown, 1984a; Merrick and Brown,

1984b; Merrick, Brown and Nash, 1994; Brown et al., 2013). In this study, “source

”n

group” “group” and “source” are used approximately interchangeably.

Evolution of Obsidian Provenance Studies

The development and use of obsidian provenance studies has been a major
archaeological success story. Over the roughly fifty years or so that obsidian
sourcing has been developing, hundreds of such studies have been conducted
(Frahm and Feinberg, 2013). Of the methods that have been tested for sourcing
obsidian, chemical analysis techniques - such as spectrometry based methods
including optical emission spectrometry (OES) (e.g. Cann and Renfrew, 1964) and
more refined inductively coupled plasma mass spectrometry (ICP-MS) (Binder et al.,

2011), x-ray fluorescence (XRF) (e.g. Ndiema et al.,, 2011), electron microprobe



analysis (EMP) (Brown et al,, 2013), and neutron activation analysis (NAA) (Hallam
etal, 1976) - have come to be widely used and are considered the most successful,
although a number of other metrics have also been used at various times to
characterize obsidian sources (e.g. Binder et al., 2011; Duttine et al., 2008; Game in
Leakey, 1945). In the case of eastern Africa, alternate sourcing metrics that have
been used include refractive index and specific gravity (Game in Leakey, 1945;
Walsh and Powys, 1970). Because of its success, chemical composition analysis is

the most common obsidian characterization method in use today.

The success of chemical analysis as the leading method of obsidian characterization
is in part due to the chemical homogeneity of obsidian within a single flow. Since the
obsidian produced from a single eruptive event originated from a single source or
chamber of liquid magma, an entire flow will have a homogenous chemical
composition. A single volcano can produce multiple eruptive events over its lifetime,
each of which will have similar but not identical chemistries because lighter
elements tend to become depleted in successive eruptions. In theory, chemical

- analysis could be used to differentiate among flows from the same volcano if enough
elements were analyzed. However, it would be impractical to perform such tests for
cost reasons and because at some point the chemical variations may be less than the
analytical precision of the measurements. In cases of chemically similar flows from
successive eruptions of a single volcano, it is often possible to characterize the
individual flows using obsidian dating methods (e.g. Bigazzi et al., 1997) or other

supplementary techniques.
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In the earlier days of obsidian sourcing, chemical analysis methods - typically OES
(Cann and Renfrew, 1964), XRF or NAA -- were costly and more time-consuming
than other non-chemical methods that were available at the time. These drawbacks
made chemical analysis impractical for sourcing large collections of artifacts. These
earlier chemical analytical techniques were generally also destructive of the
samples, which is obviously undesirable when it comes to working with scarce
archaeological materials. These disadvantages led researchers to search for
alternative and perhaps better methods for sourcing obsidian. One of the more
commonly studied alternatives to chemical analysis was magnetic testing

(McDougall et al., 1983).

The first major magnetic obsidian provenance study was conducted by McDougall
(McDougall, 1978; McDougall et al,, 1983). The purpose of the study was to examine
whether magnetic analysis could be used as an effective alternative to slower and
more expensive chemical analysis methods. McDougall and others (1983) analyzed
a collection of Mediterranean obsidians consisting of both geological and
archaeological samples. Their archaeological samples had already been chemically
analyzed by NAA, and they used this previous chemical sourcing data for
comparison to test the reliability of their magnetic data (McDougall, 1978). They
tested a number of magnetic parameters including natural remanent magnetization,
saturation magnetization, and mass susceptibility -- another magnetic property that

has been used for previous magnetic studies (e.g. Schmidbauer et al., 1986) but is
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not further discussed here. Using a combination of these parameters, they were able
to partially characterize the obsidian sources in the Mediterranean. However,
McDougall and others’ magnetic data showed high intra-source variability, making
the precise characterization of sources more difficult (McDougall et al. 1983). Most
of the obsidian sources that had been previously identified through chemical
analysis were distinguishable with minimal overlap, but there were a few sources

that had too much overlap to be easily distinguishable. This can be seen in Figure 1.
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Figure 1. Initial and Saturation magnetization of Sardinian obsidians, from McDougall et al.,,
1983. Circles represent source samples, and triangles represent archaeological artifacts. SA,
SB, SC, and SD are chemically distinct obsidian sub-types. SC and SD can be clearly
distinguished, but SA and SB are close enough together that distinguishing between the two
using this method would not be feasible.
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Since McDougall and others’ initial study, several other magnetic obsidian
provenance studies have been conducted in various regions, including Mexico
(Urrutia-Fucugauchi, 1999}, and the Near East (Hillis et al., 2010; Frahm and
Feinberg, 2013). These studies have generally yielded mixed results, with most
finding that magnetic analysis could work in specific cases, but that it is still less
reliable than chemical sourcing techniques, and thus not a good substitute. Prior to
the current research, no such magnetic studies had been conducted on Kenyan or

other eastern African samples.

Magnetic properties, unlike chemical composition, are dependent on the
microstructure and molecular organization of the material (Carmichael, 2014).
Since these both depend on the conditions in which the obsidian cooled, the
magnetic properties of obsidian are not always constant across a single flow (Frahm
and Feinberg, 2013). This variation can make it difficult to differentiate between
obsidian flows using magnetic properties in regions with chemically similar
obsidian sources, like those observed in the studies reference above. Since there is
higher intra-source variation in magnetic properties, it is easier for different
sources’ magnetic signatures to overlap than for their chemical compositions to do

SO.

Despite the mixed success of previous magnetic obsidian provenance studies,
certain characteristics of eastern African obsidians make them a potential target for

better results from magnetic study. The obsidian flows in Kenya are known for
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having a much higher range of iron contents than obsidians in most other regions,
and given the highly magnetic nature of iron minerals, this wider range may
possibly translate to wider inter-source variation, potentially making magnetic
sourcing more effective in this region than previous research in other regions has
found it to be. Despite improvements in chemical analysis methods, magnetic
analysis is still fairly easy and cheap, so if it were useful in discriminating between

sources, it might still provide a reasonable alternative to chemical analysis.

Kenyan Obsidian

Obsidian provenance study in Kenya began in the 1940s with P.M. Game’s study of
the refractive index and specific gravity of obsidian artifacts from the Hyrax Hill
archaeological site being studied by Mary D. Leakey (1945). The refractive index is a
measure of how light bends across the boundary between different materials, and
specific gravity compares the density of a sample to the density of a reference
substance, usually water, under the same conditions. Game compared the data from
these archaeological samples to data from samples from the Njorowa Gorge and Mt.
Eburru obsidian sources. From this comparison, he was able to determine that
ancient people had been using obsidian from both of these sources (Game in Leakey,

M.D. 1945).

Chemical analysis as a method for obsidian provenance was not used in Kenya until
the 1970’s and 1980’s. The first of such studies in the region (Michels et al., 1983;
Merrick and Brown, 1984a; Merrick and Brown, 1984b) utilized atomic absorption

spectroscopy (AAS), XRF and electron microprobe analysis (EMP) techniques to
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characterize obsidian samples. These techniques proved successful, and they
continue to be used to this day. NAA has also been used recently in this region.
Coleman and others (2008) showed NAA to have better resolved data clusters than
XRF. As of today, more than 80 chemically distinct Kenyan obsidian sources have
been characterized, although only about 20 of these are known to have been used

archaeologically, and even fewer saw regular use (Brown et al. 2013).

Obsidian artifacts are known to have been in use in Kenya as early as 974,000 years
ago (Durkee and Brown, in press). Thereafter, obsidian continued to be used, though
uncommonly, throughout the Acheulean period, or the latter half of the Early Stone
Age until about 200,000 years ago. Obsidian use in the region picks up in the Middle
Stone Age beginning within the last 150,000 years, with the majority of
archaeological sites within a radius of about 50 km from a source of obsidian
showing use of it. The first appreciable quantities of obsidian (20% or greater) at
sites more distant than 50 km from any obsidian sources also start to appear during
this period. By the Late Stone Age, almost all sites in the central Rift Valley in Kenya
display considerable percentages of dbsidian artifacts, suggesting pervasive

adoption of obsidian as a tool-making material (Merrick, Brown and Nash, 1994).

The Pastoral Neolithic period began in eastern Africa around 2000 BC. In this
period, obsidian starts to appear as the dominant material (>90%) in nearly all
archaeological sites within 50 km of an obsidian source. Obsidian also begins to be

used very frequently further away from sources during this period, with a number
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of sites as far as 100-200 km away showing high frequencies of obsidian (Merrick

and Brown, 1984a).

Materials and Methods

Types of Magnetism

The magnetic properties of materials are derived from the atomic magnetic

moments of their constituent atoms. Although most people only think of “magnetic”

materials as materials that can be permanently magnetized, many materials

generate some kind of response to being placed in a magnetic field (Borradaile et al.,

1998). Some of the common types of magnetic response are shown in Figure 2,

along with relevant examples of materials that produce each kind of response.
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Figure 2. Generic hysteresis loops and diagrams of the atomic basis for various types of
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Paramagnetic

Paramagnetic materials have unpaired electrons, each of which has a fluctuating
magnetic dipole moment, but there is no interaction between the electrons of
adjacent atoms. The lack of interaction means that the moments are randomly
directed, causing a lack of macroscopic magnetization when not under the influence
of an external magnetic field. However, when a magnetic field is applied, the
moments will rotate to line up with the direction of the applied field. The strength of
this response increases linearly with the strength of the field applied, but quickly

dissipates when the field is removed (Carmichael, 2014).

Ferromagnetic

Ferromagnetic materials are the type of material that most people associate with
the concept of magnetism because ferromagnets can hold a strong permanent
magnetic charge. When there is no magnetic field being applied, the exchange
interactions between the individual magnetic dipole moments cause them to line up.
The combination of all of the atomic moments is strong enough to cause the bulk

material to have a macroscopic magnetization (Carmichael, 2014).

Antiferromagnetic

Antiferromagnetic materials are similar to ferromagnetic materials in that all of
their atomic magnetic moments want to align when there is no applied magnetic
field. However, the structure of the material is such that it is favorable for every

other atom in the structure to be aligned in the opposite direction, causing the net
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magnetic moment of the bulk material to vanish. Thus, although the atomic
moments in an antiferromagnet are aligned, and hence the material is magnetically
ordered, it exhibits zero macroscopic magnetization in zero applied field. When an
external magnetic field is applied, antiferromagnetic materials act similarly to
paramagnetic materials, with the dipole moments rotating towards the same

orientation (Carmichael, 2014).

Ferrimagnetic

Ferrimagnetic materials, like antiferromagnetic materials, have adjacent atoms that
align in opposite directions. However, the strength of the magnetic moment on
adjacent atoms is not equal, so ferrimagnets can still have a non-zero net magnetic

moment in the absence of an applied magnetic field (Carmichael, 2014).

The bulk magnetic properties of rocks come from the magnetic properties of the
constituent mineral grains (Carmichael, 2014). In general, only a small fraction of
these mineral grains are magnetic materials. In obsidian, various iron oxides make
up the majority of the magnetic mineral grains. Examples of the most relevant Fe
oxide variants are listed in Figure 2, and are typically either antiferromagnetic (FeO,

a-Fez03) or ferrimagnetic (y-Fez03, and Fez04).

The graph in Figure 3 shows a generic example of a hysteresis loop. A hysteresis
loop measures the reaction of a material to being put in a magnetic field, plotting the
material’s induced magnetization (M) in response to an applied field of varying

strength (H). The applied field is cycled, first increasing in strength in one direction
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——y

Figure 3. Generic hysteresis loop diagram, measuring applied field (H) against induced
magnetic response (M). The points at which saturation magnetization (Ms), remanence
magnetization (Mr), and coercivity (Hc) are measured are labeled.

until the sample’s magnetization is saturated and the induced magnetization no
longer increases, and then returning to zero and increasing in the opposite direction
until the sample has reached its saturation magnetization in the other direction
before returning to a state of no applied field (Nave, 2014). This cycling yields a
somewhat S-shaped loop, although the exact shape of the curve can vary depending

on what type of magnetic response the material produces (see Figure 2).

Several magnetic properties can be determined from a hysteresis loop test. The

parameters studied here are saturation magnetization (Ms), remanent
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magnetization (Mr), and coercivity (Hc). Figure 3 shows where each of these
properties appears on a hysteresis loop diagram. Saturation magnetization is the
maximum induced magnetization that can be achieved. Remanent magnetization is
the strength of the induced magnetization when the applied field drops to zero,
showing how strong the magnetization on the sample is when it is no longer in a
magnetic field. Coercivity is the strength of the applied magnetic field required to
reduce the sample’s induced magnetization to zero, measuring how strong a

magnetic field is required to demagnetize the sample (Nave, 2014).

Magnetic analysis measures properties of the sub-millimeter-scale magnetic mineral
grains in the obsidian. In the process of cooling, obsidian undergoes a range of
temperatures and viscosities, as well as deformation and oxidation, all of which
affect the size and composition of the mineral grains present in the obsidian (Miller,
2014). These variables can differ widely within a single obsidian flow, causing
variation in magnetic properties across the flow. This interpretation sees support in
previous studies that show large variability in magnetic properties across a given

flow (Urrutia-Fucugauchi, 1999; Frahm and Feinberg, 2013).

Since the magnetic properties of obsidian depend on the chemical phase and
microstructure of the Fe oxide grains, these properties can potentially be used to
discriminate between obsidians formed under different conditions. Determining the
forms of Fe present could provide an additional discriminant for magnetic

characterization, whether used as an alternate or supplementary method to
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chemical analysis. Such methods can provide information that even very precise
chemical analysis cannot. For example, the two main forms of Fez03 that are present
in obsidian (a-Fe203 and y-Fe203) would be indistinguishable from chemical tests
due to the fact that both forms have identical chemical composition. However, a-
Fe;03 is antiferromagnetic, while y-Fe203 is ferrimagnetic, so the two should show
very different magnetic responses, allowing discrimination between them
(Carmichael, 2014). While the tests performed here cannot completely determine
the forms of Fe oxides present in the samples, comparing the weight-normalized Ms
to the weight percent of Fe in the obsidian sample can give some information on the

fraction of Fe in various forms, discussed further in the Results section.

Samples and Sample Preparation

This study analyzed specimens from the obsidian collection from Harry Merrick and
Francis Brown’s chemical composition sourcing work in eastern Africa (Merrick and
Brown, 1984a; Brown et al., 2013). A map of the localities from which the specimens
were originally collected is shown in Figure 4. Figure 5 gives a closer view of the
central area of the previous map to more clearly show the closely clustered localities
in that area. Detailed chemical composition information for all of the samples
analyzed here is available in Brown et al., 2013. This data set was compared with
the magnetic data acquired in this study to determine whether magnetic testing
could be used as an alternative or accessory technique to supplement

archaeologists’ current ability to distinguish among Kenyan obsidian sources.
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The available Merrick and Brown sample collection included specimens from 23 of
the geochemically distinct source groups in Kenya recognized in Merrick and
Brown, 1984a. Sixteen of these groups are known to have been used
archaeologically, with only 5-6 of these seeing frequent usage. Of this collection, a
total of 192 samples from 26 different pieces of obsidian were analyzed. These
pieces were collected from 23 different localities assigned to 6 different petrological
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Figure 4. Map of all source localities. Symbol color indicates the petrological group of the
locality (Merrick and Brown, 1984a). Pink: Group 20, Red: 14, Yellow: 29, Green: 32, Blue: 8,
Purple: 19.
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groups (Groups 8, 14, 19, 20, 29, and 32) as recognized by Merrick and Brown
(1984a). Only obsidian source groups that have been observed to have been used
for artifact manufacture in the past were selected for analysis in this study. The first
four groups analyzed (8, 14, 19, and 29) were selected to represent a wide range of
Fe contents, as measured by Brown and others (2013). The other analyzed groups

(20, and 32) were chosen for their known use as common obsidian sources in
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Figure 5. Closer view of source localities map showing group 29 and 32 localities (Merrick and
Brown, 1984a), which were too close together for easy differentiation on the larger map.
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prehistoric times. A list of samples, their petrological groups and locations, Fe

contents, and all collected analytical data are given in Appendix A: Table 1.

To prepare the samples for testing, small chips were flaked off of the specimens with

a small copper rod. The chips were then further ground down by hand with the

Piece/Block

Sample

Previously Sampled Fragments

Figure 6. Photograph of an obsidian specimen, shows examples of how large pieces/blocks
and samples are. The photographed material makes up a single specimen, although some
specimens contain multiple pieces/blocks. Ruler for scale.
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same copper rod to the point where they were approximately the same size (see
Figure 6 for scale). Some variation was to be expected considering the fact that the
samples were sized by hand and the similarity between sample sizes was
determined by a rough visual estimate. All samples’ sizes were compared to the first
sample created to establish a consistent approximate size. Although this method
does not provide a perfectly consistent sample size, this technique is similar to that
used for sample preparation in the recent magnetic obsidian sourcing study by
Frahm and Feinberg (2013; sample preparation discussed in Frahm, 2010), one of
only two papers located that went into detail about their sample preparation
methods. The other paper was the McDougall et al. (1983) paper, which used a
different enough magnetometer setup that their sample preparation procedure is
not relevant here. Despite the slight sample size variation, initial tests of several
samples from the same obsidian specimen suggest that size does not noticeably
affect the relevant magnetic parameters once they have been weight-normalized, as

was expected.

Most of the specimens available for sampling were single pieces of obsidian, albng
with some small fragments that had resulted from previous sampling of the pieces
(see Figure 6). A few of the potential samples consisted of multiple main pieces,
which were collected at the same location and thus considered part of the same
petrological group for sampling purposes. In such cases, this study considered each
of the larger pieces as a separate “block” to avoid the possibility of unexplained

bimodality in the case that the two blocks had significantly different properties.

25



Analysis Methods

Hysteresis loop data can be collected on a vibrating sample magnetometer (VSM).
As shown in Figure 7, a VSM consists of several magnetic coils and a sample holder
that is vibrated between them. The field coils create a magnetic field around the
sample, which induces a magnetic moment in the sample. The sample is vibrated up
and down, which rapidly changes the magnetic flux felt by the pickup coils. The
changing magnetic flux causes a voltage difference across the pickup coils which is
directly related to the strength of the induced magnetic moment on the sample. The
voltage difference can thus be measured and from that the induced magnetic

moment can be calculated.

sample Fi‘?}d
driver Colls
Vibrating sample
magnetometer pole
(VSM) pieces
S—
Pickup coils | sample

Electromagnet

Figure 7. Vibrating sample magnetometer schematic diagram. From MIT 3.014 lab handout
“Work Derived from Magnetic Hysteresis Curves”, Fall 2008.

The samples in this study were analyzed using a Digital Measurement Systems VSM
maintained by the MIT Department of Material Science and Engineering in the
undergraduate teaching lab. The applied and induced magnetic fields were
measured to create a hysteresis loop, from which the Ms, Mr, and Hc were

calculated. These parameters were measured on both sides of the hysteresis loop
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and then averaged to minimize possible orientation effects or machine calibration

errors. All of the tests were performed at room temperature.

Data analysis was performed using a combination of Microsoft Excel and
Mathematica. The final plots were generated using Excel. The magnetic properties
mentioned above were analyzed to determine whether any of them, alone or in
combination, could be used as an alternate or supplementary method for
differentiating between Kenyan obsidian sources. The potential for characterization
was analyzed both between sources and, for the few sources with samples from

multiple localities, between localities within the same source.

In addition to the above data comparison, an approximation of the forms of Fe
present in the samples was also calculated. For the purposes of these calculations, it
was assumed that the magnetic moment from non-Fe sources is negligible. This
allowed the use the Ms measurements to gain some insight into the mineral forms of
Fe present in the obsidian, something that cannot be obtained from chemical
analysis alone. By adjusting the chemical analysis data from Brown et al.’s (2013)
work -- which lists the Fe content of the samples in weight percent Fe;0j3 -- such that
itis in weight percent Fe, the ratio of measured Ms to weight percent Fe can be
compared to literature values for the Ms per weight percent Fe of solid samples of
various mineral forms of Fe (O’'Handley, 2000). This comparison provides an
approximation of what forms of Fe are present in the samples. The results from all

of these calculations are shown in the Results section.
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Results

The magnetic analyses yielded hysteresis loop data both as a series of data points

and as visual output. Two representative examples of the hysteresis loop behavior

observed are shown in Figure 8 and Figure 9. Figure 8 shows the visual output from

one of the samples from the Baixia Estate locality, while Figure 9 shows one from

the Sonanchi Crater locality. The Baixia Estate sample shows what is likely either

paramagnetic or antiferromagnetic behavior. In this case, it is more likely that the

behavior is due to an antiferromagnetic response because none of the relevant Fe
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Figure 8. Sample of visual VSM output from a Baixia Estate sample.
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oxides that are likely creating the observed magnetic response exhibit paramagnetic
behavior. The Sonanchi Crater sample shows a combination of linear and S-curve
characteristics, suggesting that there are likely multiple forms of Fe oxides present
in the sample. There is discussion later in this section of the likely Fe oxide form

compositions of the analyzed samples.

emu Sonanchi Sample
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Figure 9. Sample of visual VSM output from a Sonanchi Crater sample.
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Characterization by Squareness and Coercivity

A combination of the main magnetic properties observed in this study provided
accurate characterization for three of the major obsidian sources surveyed, although
the other analyzed sources were not easily distinguishable. Figure 10 shows the
hysteretic squareness (Sq), which is a ratio of Mr and Ms, plotted against Hc for all
analyzed samples. Several of the major obsidian sources tested (Groups 29, 14, and
19) show distinctive differences in both their average values for Sq and Hc, and also

the slope that the sample clusters create.
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Figure 10. Plot of the coercivity (Hc) versus the hysteretic squareness (Sq).
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Figure 11. Plot of saturation moment (Ms) per gram of Fe in the sample, ordered by source
group and locality. Weight percent Fe;0; for all samples (except Masai Gorge, WN 2 and WN 3)
found in Brown et al. 2013. Previously unpublished Fe,0; values for these three (Appendix A:
Table 1) were provided by Merrick (pers. com. 2014).

Saturation Moment and Fe Percentage Calculations

For the purposes of analysis, the magnetic responses of the samples were assumed
to be completely caused by various forms of Fe in the samples, since Fe is the only
magnetic mineral found in noticeable concentrations in the analyzed samples
(Brown et al. 2013). The saturation moments obtained in this study and the Fe
concentrations given for the samples in Brown et al.’s (2013) paper were used to

determine the saturation moment per gram of Fe in each sample (see Figure 11).

The calculated Ms/gFe values for the samples were then compared to literature

values from pure samples of various Fe oxides to give an approximation of the forms
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Figure 12. Plot of calculated approximate percentage of Fe in a-Fe;03 form in the sample,
ordered by source group and locality. Calculations were performed assuming only a-Fe:03
and Fe304 forms existed in the obsidian.

of Fe present in the samples. Based on these calculations, the Fe in most of the
analyzed sources was almost entirely in a-Fe203 form (see Figure 12). The only
source that had a noticeably distinct percentage of a-Fe203 was Group 14, which had

an average of about 20% less a-Fe203 than the rest of the sources tested.

Only the three most common iron oxides (a-Fe203, y-Fe203, and Fe3z04) were
included in the above analysis. For the purpose of analyzing the percentages shown
in Figure 12, the percentages were calculated as if there were only a-Fe203 and y-
Fe203in the samples. This calculation was also performed assuming only a-Fez03
and Fe30s4, and there was 1% or less difference between the two calculated values

for all the samples except for those in Group 14. These samples showed a maximum
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difference of 4%, but the percentages of Fe oxides were still distinct enough to

differentiate Group 14 from the other sources.

Precision Calculations

Machine precision for the VSM used in this study was analyzed by re-measuring the
same sample several times. In addition, several samples from the same specimen
(same block of obsidian, but separately flaked off samples) were analyzed to assess

the variance within a specimen. The results of these precision analyses are shown in

Table 1.

Table 1. Precision calculations

Single Sample (machine precision analysis)

N=4 Ms [emu/g] Mr[emu/g] Hc [Oe] Sq/Hc [1/0e]
Max 0.6102 0.1081 89.8478 0.0022
Min 0.5765 0.1035 83.6454 0.0020
(Max-Min)/2 0.0169 0.0023 3.1012 0.0001
Avg. 0.5896 0.1061 86.8748 0.0021
St. Dev. 0.0149 0.0020 3.0541 0.0001
% St. Dev 2.5206 1.9078 35156 4.0889

Separate samples from same specimen (testing variance within a single specimen)

N=8 Ms [emu/g] Mr [emu/g] Hc [Oe] Sq/Hc [1/0e]
Max 0.6696 0.1085 88.9444 0.0025
Min 0.5277 0.1020 71.5908 0.0020
(Max-Min)/2 0.0709 0.0032 8.6768 0.0002
Avg. 0.5975 0.1060 80.5700 0.0022
St. Dev. 0.0469 0.0026 5.5941 0.0001
% St. Dev 7.8552 2.4114 6.9431 6.1620
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Discussion and Conclusions

Conclusions

Based on these magnetic analyses, it is possible to differentiate between three of the
main obsidian source groups known to have been used archaeologically, source
groups 14 (Kedong), 19 (Sonanchi), and 29 (Upper Eburru) using the classification
from Merrick and Brown’s work (Merrick and Brown 1984a). Each of the three
groups has a distinctive slope when the hysteretic squareness is plotted against the
coercivity of the samples. The differentiation between these three sources is
stronger than the differentiation seen in previous magnetic provenance studies in
other regions (e.g. McDougall et al,, 1983; Hillis et al., 2010; Vasquez et al., 2001;
etc.), suggesting that such methods could have the potential to still be a useful
metric for the characterization of Kenyan obsidians. The remaining three source
groups sampled that could not be characterized all had very weak magnetic
responses, making it difficult to tell whether any pattern in the ratio of Sq to Hc was
due to actual magnetic differences or background noise. This uncertainty could
potentially be resolved by analyzing the temperature dependence of the properties
measured here. The approximate percentage of Fe in various forms in the samples
was also calculated. For almost all sources, the Fe in the samples was almost entirely
a-Fez03. In the samples from source group 14, approximately 20-25% of the Fe is
likely to be in either y-Fe203 or Fe304 forms. Both y-Fez03 and Fe304have high Ms
values, while a-Fe203 has a comparatively very small Ms value, so the percentage of

a-Fe203 was able to be determined to within 1% (or within 4% for the group 14
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samples), but how much of the remainder is y-Fe203 versus Fe304is difficult to

determine without further analysis.

Limitations

The samples analyzed here were not an ideal sample set for magnetic provenance
analysis. They were not originally collected with magnetic studies in mind, but
instead were gathered for a chemical analysis study (Merrick and Brown, 1984a;
Brown et al., 2013), so most of the sampled localities only have one or maybe two
samples each. Chemical analysis usually requires only a few specimens per source to
obtain a useful characterization. Due to the chemical homogeneity of most obsidian
flows, this approach is generally reasonable. However, since the magnetic
properties of obsidian are more varied across a flow -- and even within a single
locality -- than chemical properties, it is necessary to collect many samples from
each locality to acquire a complete picture of the magnetic properties of the
obsidian (Frahm and Feinberg, 2013). If a more thorough magnetic provenance
study were to be done in this region, more comprehensive sampling would likely be

needed to fully characterize the sources.

Potential Future Work

There are several directions that future researchers could take this work. All of the
tests in this study were performed at room temperature, which could be
supplemented with data on the temperature dependence of the samples’ magnetic
properties (as in Schmidbauer et al., 1986) to get a more in-depth understanding of

the magnetic properties and material structure of the obsidian. In particular, the
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temperature dependence of coercivity can be used to compare the average particle
size of the iron oxide grains in the samples, which would provide comparative data
about the cooling rates of the various obsidians in the region. These cooling rates
could in turn be utilized as part of a more thorough characterization database for
the region. In addition, temperature dependence tests would also give better
information about the forms of Fe oxides present in the obsidians, which could

provide an additional discriminant for characterization purposes.

Not only could this additional research help provide a more complete
characterization signature for inter-flow sourcing, this type of analysis also has
more potential than any previous work that has been done in Kenya to provide
locality-level characterization, as the Fe oxides present and the grain size of the
mineral inclusions in obsidian are closely related to its cooling rate. Cooling rates
varies across a given flow, possibly enough to make locality-level characterization
possible. Such a study using the same samples that were available for this study
could look at such intra-flow sourcing within only a handful of sources, as most of
the sources with samples available for this study have specimens from only one or
two different localities. Only recently was it acknowledged that the magnetic
variability within a flow might provide a useful tool for intra-flow obsidian sourcing
rather than just being noise, but the first few studies that have looked into this
possibility have shown promising initial results (Zanella et al. 2012; Frahm and

Feinberg 2013).
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