UC Santa Barbara

UC Santa Barbara Electronic Theses and Dissertations

Title

Obsidian Networks and Imperial Processes: Sourcing Obsidian from the Capital of the Wari Empire, Peru (AD 600 – 1000)

Permalink https://escholarship.org/uc/item/3g5248v8

Author Kaplan, Jessica

Publication Date 2018

Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA

Santa Barbara

Obsidian Networks and Imperial Processes: Sourcing Obsidian from

the Capital of the Wari Empire, Peru (AD 600 – 1000)

A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Anthropology

by

Jessica Doyle Kaplan

Committee in charge:

Professor Emerita Katharina Schreiber, Chair

Professor Gregory D. Wilson

Professor Stuart Tyson Smith

June 2018

The dissertation of Jessica Doyle Kaplan is approved.

Stuart Tyson Smith

Gregory D. Wilson

Katharina Schreiber, Committee Chair

June 2018

Obsidian Networks and Imperial Processes: Sourcing Obsidian from

the Capital of the Wari Empire, Peru (AD 600 – 1000)

Copyright © 2018

By Jessica Doyle Kaplan

ACKNOWLEDGEMENTS

This dissertation owes its existence to many inspiring and thoughtful people. To begin I want to thank my committee for being there through all of the project designs, research, and drafts of this dissertation. I especially want to thank my advisor Katharina Schreiber, whose foundational work was an inspiration to me and countless others. I am beyond grateful that she pushed me to discover my own research questions and develop my own project, even when that seemed formidable. The result was this dissertation and a genuine passion for the work that lies herein. I also want to thank Greg Wilson for his unending support in matters of all things research, data, and grad school. I'm thankful to have had him as a mentor, and our time playing bluegrass with Casey is something that I'll always look back on fondly. I also want to thank Stuart Smith. Throughout my eight years at UCSB, Stuart's courses always captivated my attention, and his keen focus on theory inspired much of the way that I question and interpret the archaeological record. I also want to thank Jose Ochatoma Paravicino and Martha Cabrera, and the Universidad Nacional de San Cristobal de Huamanga, who so generously worked with me in Peru and allowed me access to their obsidian collections for this analysis. I look forward to many more years of collaboration!

To belong to an archaeological community of current and previous graduate students of Katharina Schreiber is humbling. I first had the opportunity to do fieldwork in Nasca, Peru with Kevin Vaughn and Hendrik VanGijseghem. And although I didn't continue my research in Nasca, I was fundamentally shaped by my time with them in the field, and much of my love for Peruvian archaeology was based on that summer of fieldwork. I also want to thank the rest of the fieldcrew from those two summers: Verity Whalen, Stefanie Bautista, Patty

iv

Chirinos, Corina Kellner, Luis Manuel González LaRosa, Cassandra Koontz Scaffidi, Craig Smith and Sarah Kerchusky. I will always cherish my memories of those field seasons, and the colleagues and friends that I found there.

I have been so fortunate to have had some of the most amazing experiences on fieldcrews in Peru. Following my summers in Nasca, I was invited to participate in excavation and survey at the Quispisisa source and nearby areas. Nicholas Tripcevich and Daniel Contreras have my utmost thanks and no words will convey the ways in which that field season altered the course of my research and set me on my current path. It set this dissertation in motion, and my work has benefitted along the way from their guidance, mentorship and support. The generosity with which they both allowed me to participate in, and learn from, their research, and the guidance with which they helped me to develop and focus my own goals, is something that I will never forget. I also need to thank the fieldcrew from the Quispisisa project as well: Tom Kimber, Nathaniel Kitchel, Vincenzo Poppiti, Wyatt Lienhard, Michelle Jane, Di Hu, Audry Pallete Espinoza, Karina Aranda, Yegor Isaichev, Saul Morales, Jhon Rene Huamani Diaz, Auria Carina Paullo Mendoza, Jhon Escobar, Rous Lopez de la Cruz, Sonia Soili Laurente Palomino, and Anays Amorín. I know camping at Quispisisa that season wasn't always easy—but I'd do it again in a heartbeat.

And of course this dissertation was not written in a vacuum, but alongside some of the brightest and most supportive colleagues and friends. To my cohort at UCSB – Jenna Santy, Elizabeth Weigler, and Grayson Maas – thank you from the bottom of my heart for your friendship. I'm not sure that this would have been possible without them in the trenches beside me. I also need to give an overwhelming thank you to all of the graduate students and friends from near and far along the way: Madeleine Smith, Erin Bornemann, Angela Garcia,

v

Shelley LaMon, Ann Laffey, Tyler Goldhammer, Matt Biwer, Weston McCool, Alicia Gorman, Jessika Smith, Rudy Dinarte, Deborah Spivak, Katie Brown, Eric Fuerstenberg, Geoff Taylor, Brian Barbier, Laurel Walker and Kaitlyn Evans. I also want to thank my colleagues and friends in Peru, Bernardino Segovia, Cirilo Vivanco, Jorge Soto, Alcides Berrocal Gonzales, Julio Miguel Saldaña Campos, Jesús Ccollana Pariona and Carlina Macizo Cervantes for their help during my many seasons in Peru. In addition to friends, colleagues, and my committee, I also had the privilege of taking courses with, and learning from, a number of scholars at UCSB: Michael Jochim, Amber VanDerwarker, Jeffrey Hoelle, Lynn Gamble, Matt Whittle, Danielle Kurin and Casey Walsh. And finally, thank you to the Anthropology Office at UCSB, especially Karen Schultz and Robin Roe—this dissertation got off its feet and onto ProQuest with their patience and support.

And finally, a huge thank you to my family who encouraged me every step of the way. To my parents, Linda Doyle and Robert Kaplan, who gave me a love for travel at an early age and put a field notebook in my hands before I could walk or talk. And to Phyllis Kaplan, Jean Doyle, Matilde Zegarra, Louis Zegarra, Andy Zegarra, Mary Tucker and Shawn Tucker, I feel so lucky to call them family. And perhaps not surprisingly, this dissertation led me to my partner Edward Zegarra, who I happened to meet while in the field conducting my first season of this dissertation research. Edward has been by my side every step of the way, quite literally, writing his own dissertation, and I could not have asked for a more supportive partner, scholar, and friend. He inspires me everyday, and for that I am forever thankful. And finally, to Jet and Sheba, the creatures that kept me from staying in my house writing this all day, every day—thank you for allowing me to go into the field every year, and I promise that when this dissertation is over we will go on all the hikes.

VITA OF JESSICA DOYLE KAPLAN

June 2018

EDUCATION

- 2018 Ph.D., Anthropology, University of California, Santa Barbara
- 2012 M.A., Anthropology, University of California, Santa Barbara
- 2009 B.A., Anthropology, Vassar College

RESEARCH INTERESTS

Imperialism and Imperial Processes, Political Economy, Craft Production Resources and Strategies of Control, Obsidian Sourcing, X-Ray Fluorescence Analyses Andean Archaeology, The Wari Empire

RESEARCH GRANTS AND FELLOWSHIPS

2010-2017	Tuition Fellowship/Fee Fellowship, UCSB Anthropology
2015	Archaeology Graduate Student Research Grant, UCSB Anthropology
2015	Humanities and Social Sciences Research Grant, UCSB

2008 Undergraduate Research Symposium Institute Fellow, Vassar College

AWARDS AND HONORS

- 2014 Outstanding Teaching Award (nominated), UCSB Academic Senate
- 2013 Excellence in Teaching Award (nominated), UCSB Graduate Student Association
- 2012 High Pass on M.A. Comprehensive Exams, UCSB Anthropology
- 2009 Nomination to Sigma Xi, Vassar College

PRESENTATIONS, LECTURES, PUBLICATIONS

- 2017 The Origins of Food Production, Social Complexity and Settled Life. Guest Lecture, Introduction to Archaeology, Department of Anthropology, UCSB
- 2017 Animal and Plant Domestication. Guest Lecture, Introduction to Archaeology, Department of Anthropology, UCSB
- 2017 Obsidian in the Wari Empire: Sourcing Material from the Capital Using PXRF. Paper Presentation, Society for American Archaeology 82nd Annual Meeting, Vancouver, BC.

- 2016 Análisis elemental de obsidiana: usando fluorescencia de rayos-x portátil. Lecture, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Peru.
- 2016 The Use of Quispisisa Obsidian in the Wari Empire. Paper Presentation, Society for American Archaeology 81st Annual Meeting, Orlando, Florida.
- 2016 Visible Identities: An Archaeological Approach to Sacred Landscapes on the South Coast of Peru. Paper Presentation, Second Graduate Conference on Religion: Sacred Sites and Sacred Landscapes, UCLA Center for the Study of Religion.
- 2015 Imperial Strategies and Resource Control: Tracing the Production, Distribution and Consumption of Quispisisa obsidian in the Middle Horizon, Peru. Dissertation Proposal Defense, Department of Anthropology, UCSB.
- 2013 The Ski Minne Rockshelter, Shawangunk Ridge, New York. Published Paper, *The Bulletin: Journal of the New York State Archaeological Association*: 2013.
- 2012 Seeing the Sacred: Investigating Early Andean Ritual Practice Using Visibility Analysis. Paper Presentation, Society for American Archaeology 77th Annual Meeting, Memphis, Tennessee.
- 2012 Entanglement and Ideologies of Landscape: Responses to a Wari Presence in Nasca, Peru. Paper Presentation, Constructing Worlds: Making and Breaking Order, Department of Visual Studies, UC Irvine.
- 2010 Cusco: An Inca City. Guest Lecture, Andean Art History, Department of Art History, UCSB.
- 2009 Analysis of the Ski Minne Rockshelter, Shawangunk Ridge. Paper Presentation, New York State Archaeological Association, Rochester, New York.

TEACHING EXPERIENCE

- Introduction to Archaeology, Teaching Assistant, Department of Anthropology, UCSB: Spring 2011, Spring 2013, Spring 2014, Spring 2015, Spring 2016, Spring 2017
- Introduction to Cultural Anthropology, Teaching Assistant, Department of Anthropology, UCSB; Fall 2010, Winter 2012, Fall 2014, Winter 2014, Fall 2015, Winter 2015, Winter 2016, Fall 2017

The Inca Empire, Teaching Assistant, Department of Anthropology, UCSB: Winter 2014

North American Indians, Teaching Assistant, Department of Anthropology, UCSB: Fall 2012, Winter 2014 Introduction to Sociology, Teaching Assistant, Department of Sociology, UCSB: Fall 2013

FIELD AND LABORATORY APPOINTMENTS

- Primary Investigator, Quispisisa Obsidian and the Wari Empire Project, Ayacucho, Peru 2013–2016
- Field Archaeologist, Quispisisa Obsidian Source Project, Directors Nicholas Tripcevich and Daniel Contreras, Department of Ayacucho, Peru, 2012
- Laboratory Assistant, Central Coast Information Center, Director Lynn Gamble, UCSB, 2012
- Field Archaeologist, Mina Primavera Project, Directors Kevin Vaughn and Hendrik VanGijseghem, Department of Ica, Peru, 2011
- Field Archaeologist, Santa Cruz Island Project, Director Lynn Gamble, Channel Islands, California, 2011
- Field Archaeologist, Proyecto Arqueológico Nasca *Tardio*, Directors Kevin Vaughn and Verity Whalen, Department of Ica, Peru 2010
- Curatorial Assistant, Hispanic Society of America, Director Daniel Silva, New York, 2009–2010
- Laboratory Assistant, Vassar College Archaeology Laboratory, Director Lucille Lewis Johnson, New York, 2007–2009
- Field Archaeologist, Shawangunk Mountains Project, Director Lucille Lewis Johnson, New York, 2008
- Exhibition Intern, Museo Pumapungo, Banco Central del Ecuador, Cuenca, Ecuador, Director Andres Abad, 2008
- Undergraduate Supervisor, Undergraduate Research Symposium Institute, Vassar College, New York, 2008
- Collections Intern, American Museum of Natural History, Director Paul Beelitz, New York, 2007

SERVICE

Faculty and Staff Representative, Anthropology Graduate Student Association, UCSB, 2014–2015

Co-Chair, Anthropology Graduate Student Association, UCSB, 2013-2014

Brown Bag Lecture Chair, Anthropology Graduate Student Association, UCSB 2012-2013

Undergraduate Liaison, Vassar College Anthropology Department, New York, 2008–2009

PROFESSIONAL MEMBERSHIPS AND AFFILIATIONS

Society for American Archaeology (SAA) Sigma Xi

REFERENCES

Dr. Katharina Schreiber Department of Anthropology University of California Santa Barbara, CA 93016 kschreiber@umail.ucsb.edu

Dr. Stuart Tyson Smith Department of Anthropology University of California Santa Barbara, CA 93106 stsmith@umail.ucsb.edu Dr. Gregory D. Wilson Department of Anthropology University of California Santa Barbara, CA 93016 gdwilson@anth.ucsb.edu

ABSTRACT

Obsidian Networks and Imperial Processes: Sourcing Obsidian from the Capital of the Wari Empire, Peru (AD 600 – 1000)

by

Jessica Doyle Kaplan

This dissertation explores results from portable x-ray fluorescence and lithic analyses of obsidian artifacts from the sector of Vegachayuq Moqo, site of Huari, in the Ayacucho highlands of Peru. The site of Huari is the capital of the eponymous Wari Empire, whose territory extended over the central Andes during the Middle Horizon, AD 600–1000. Throughout prehistory, obsidian in the Andes was generally obtained from three primary obsidian source locations (Quispisisa, Alca and Chivay) as well as six additional smaller, local, sources (Puzolana, Jampatilla, Potreropampa, Lisahuacho, Macusani and Aconcagua). Previous obsidian sourcing studies conducted throughout the central Andes, primarily focused on elemental and geographical identification of the sources themselves, suggest that during the Middle Horizon the Wari Empire became invested in the distribution of obsidian from the Quispisisa obsidian source in the Ayacucho highlands (Burger et al. 2000). During the Middle Horizon, the distribution of Quispisisa obsidian reaches its greatest extent, often coinciding with the presence of other Wari imperial media in the region (e.g., ceramic iconography, architecture). While it has been assumed that Wari may have controlled the distribution of obsidian during the Middle Horizon, little work has been done to explore this hypothesis. This dissertation tests the assumption that the Wari Empire played a fundamental role in the distribution of obsidian from the Quispisisa obsidian source to hinterland territories within the empire, consequently ushering in new obsidian production and consumption practices during the Middle Horizon.

The data for this dissertation derive from the 2012 excavation season at the site of Huari, conducted by Dr. Jose Ochatoma Paravicino, Licenciada Martha Cabrera and Licenciado Carlos Mancilla Rojas from the Universidad Nacional de San Cristóbal de Huamanga (UNSCH) in Ayacucho. X-ray fluorescence analyses were conducted using a Bruker Tracer III from the Anthropology Department at the University of California Santa Barbara. Lithic analysis was conducted at the UNSCH archaeology lab during the summer field season, 2016. The results presented in this dissertation confirm previous assumptions regarding the presence of Quispisisa obsidian in hinterland territories, while uniquely focusing on the consumption of obsidian in the Wari capital. This dissertation suggests that Wari imperial control of obsidian was not based upon a radical new program, but instead upon a co-option, or formalization, of pre-existing obsidian production, distribution and consumption networks built upon thousands of years of obsidian exploitation in the Andes. At the site of Huari, obsidian production and consumption patterns were established during the Early Intermediate Period, Huarpa occupation (AD 1-500), and continue through the Middle Horizon, Wari occupation. This continuation of obsidian exploitation and use confirms the Wari Empire's flexible political, economic and social strategies in co-opting, or adapting upon, pre-existing infrastructure, and local social, political and economic organization, to administer control over a territorially dispersed empire.

xii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iv
VITA OF JESSICA DOYLE KAPLAN	vii
ABSTRACT	xi
LIST OF FIGURES	xx
LIST OF TABLES	xxii
CHAPTER 1 INTRODUCTION	1
Outline of the Dissertation	3
CHAPTER 2 IMPERIAL STUDIES: HISTORY AND APPLICATION	9
Defining Empire	
Early Systems Models of Empire (1970s – 1990s)	
World Systems Theory	
Metrocentric-Pericentric-Systemic Model	
Territorial-Hegemonic Model	14
Current Approaches (1990s – present)	15
Imperial Strategies of Control	
Types of Social Power	19
Ideological Power	
Economic Power	
Coercive Power	
Political Power	
Critical Approaches to Empire (2000s – present)	

	Interregional Interaction	25
	Entanglement	26
Conclu	ıding Remarks	27
CHAPTER 3	THE WARI EMPIRE (AD 600 – 1000)	29
Geogra	aphical Context: The Ayacucho Valley	31
Cultur	al and Temporal Context	34
	The Ayacucho Valley	34
	Huarpa Ancestry	35
	Influence from Nasca	38
	Middle Horizon Contemporaries: Tiwanaku	40
The W	ari Capital and Imperial Power	42
	Capitals vs. Cities	42
	Huari, the Capital of the Wari Empire	43
Wari H	linterlands	45
	Ayacucho Valley	46
	Central Highlands	47
	Southern Nasca Region	51
	Cusco	53
Conclu	iding Remarks	56
CHAPTER 4	POLITICAL ECONOMY AND CRAFT PRODUCTION	57
Politic	al Economy, Political Complexity and Social Evolution	58
Politic	al Economy and Power	60
	Staple Finance	62

Wealth Finance	
Staple and Wealth Finance in the Inca Empire	65
Recent Approaches to Political Economy	67
Craft Production	69
Production Systems	70
Recent Approaches to Craft Production	
Political Economies of the Wari Empire	
Textiles	74
Ceramics	
Other Products	82
Concluding Remarks	83
CHAPTER 5 OBSIDIAN IN THE CENTRAL ANDES	85
Obsidian	
Function of Obsidian in the Andes	
Obsidian in the Middle Horizon	
Obsidian Sources	
Quispisisa	
Alca	
Chivay	100
Potreropampa and Lisahuacho	101
Jampatilla and Puzolana	102
Middle Horizon Obsidian in the Ayacucho Valley	103
Conchopata	103

	Huari	. 106
Region	nal Distribution of Obsidian in the Middle Horizon	. 108
	Central Highlands	. 109
	Southern Nasca Region	. 112
	Cusco	114
	Moquegua	. 115
Conclu	uding Remarks	117
CHAPTER 6	METHODS	. 119
X-Ray	Fluorescence	119
	Physics of XRF	. 121
PXRF	in Archaeology: Obsidian Source Analysis	. 122
	Why Study Obsidian?	. 123
	How to Source Obsidian	. 124
Data C	Collection	. 126
	Context	126
	Lithic Attributes	. 127
	Sampling for PXRF	129
	Conducting PXRF	. 130
Data A	nalysis	. 131
	PXRF Data and Calibration	131
	Sourcing the Data	. 134
	Lithic Analysis	136
CHAPTER 7	ATTRIBUTE RESULTS	137

Excava	ation Context	138
	Vegachayuq Moqo, Huari	138
	Sectors, Sub-sectors, and Capas	141
	Sector I	145
	Sector II	146
	Sector III	152
	Chronology	155
Results	s: Attributes	160
	Artifact Type	161
	Artifact Type and Sector	162
	Artifact Type and Sub-sector	163
	Artifact Type and Time Period	164
	Flake Size-grade	166
	Flake Size-grade and Sector	167
	Flake Size-grade and Sub-sector	168
	Flake Size-grade and Time period	169
	Cortex	170
	Cortex and Size-grade	171
	Cortex and Sector, Sub-sector, and Time Period	172
	Terminations, Striking Platforms, and Flake Scars	173
	Flake Terminations, Sector, Sub-sector, and Time Period	175
	Flake Striking Platform	177
	Striking Platform Sector, Sub-sector, and Time Period	178

	Flake Scars	180
	Flake Scars, Sector, Sub-sector, and Time Period	181
	Projectile Points	183
Summ	ary	189
CHAPTER 8	OBSIDIAN SOURCING RESULTS	192
Portab	le X-Ray Fluorescence	193
	Sourcing Results	195
PXRF	Results: Context	198
	Sector	198
	Sub-sector	199
	Time Period	201
PXRF	Results: Attributes	203
	Artifact Type	203
	Flake Size-grade	206
	Cortex	207
	Flake Termination	208
	Flake Striking Platform	209
	Flake Scars	210
	Projectile Points	212
Summ	ary	213
CHAPTER 9	OBSIDIAN NETWORKS AND IMPERIAL PROCESSES	218
Obsidi	an Exchange Networks Prior to, and During, the Middle Horizon	219
	Central Highlands Obsidian Network	222

Southern Obsidian N	etwork	
Imperial Processes		
Obsidian at Huari		
Sourcing Results: Qu	iispisisa vs. Alca	
The Imperial Heartla	nd: Huari vs. Conchopata	
Differential Source u	se at Conchopata and Huari	
Concluding Remarks		
CHAPTER 10 FINAL THOUGHTS	S, FUTURE RESEARCH	
REFERENCES CITED		253
APPENDIX I PXRF DATA: ELE	EMENT CONCENTRATIONS (PPM)	
APPENDIX II ATTRIBUTE RES	SULTS	
APPENDIX III PXRF RESULTS .		

LIST OF FIGURES

FIGURE 3.1	Map of the Wari Empire, map courtesy of Matthew Edwards (2010)	32
FIGURE 3.2	Map of the Ayacucho Valley	44
FIGURE 3.3	Map of Sites and Regions Discussed in Chapter 3	46
FIGURE 5.1.	Burger et al.'s (2000) Typology of Middle Horizon Obsidian, figure	
	courtesy of Burger et al. (2000)	91
FIGURE 5.2	Vining's (2005) Typology of Middle Horizon Obsidian, figure	
	courtesy of Benjamin Vining (2005)	92
FIGURE 5.3	Map of Obsidian Sources in the Central Andes	95
FIGURE 6.1	The Physics of X-Ray Fluorescence, figure adapted from Kaiser (2015)	. 122
FIGURE 6.2	Graph of Elemental Regions of Interest (ROI), S1PXRF	. 132
FIGURE 6.3	Graph of Obsidian Sources (rubidium vs. strontium)	. 135
FIGURE 6.4	Graph of Total Sample (rubidium vs. strontium)	. 135
FIGURE 7.1	Map of Huari, map courtesy of Katharina Schreiber (2013)	. 139
FIGURE 7.2	Photo of Intentional Red, Sandy Fill Overlying Huarpa Occupations	
	photo courtesy of Ochatoma et al. (2012)	. 140
FIGURE 7.3	Map of Vegachayuq Moqo and 2012 Excavations, map adapted	
	from Ochatoma et al. (2015)	. 142
FIGURE 7.4	Graph of Obsidian by Time Period	. 159
FIGURE 7.5	Graph of Obsidian by Time Period (Grouped)	. 160
FIGURE 7.6	Graph of Artifact Type	. 162
FIGURE 7.7	Graph of Flake Termination	. 175

FIGURE 7.8	Graph of Flake Striking Platform	178
FIGURE 7.9	Projectile Points	188
FIGURE 8.1	Sourcing Results, Concentrations (ppm) of Rubidium and Strontium	196
FIGURE 8.2	Sourcing Results, Concentrations (ppm) of Rubidium and Zirconium	196
FIGURE 8.3	Souring Results, Concentrations (ppm) of Rubidium and Niobium	197
FIGURE 8.4	Graph of Obsidian Source Results and Time Period	203
FIGURE 8.5	Graph of Artifact Type and Obsidian Source Results	205
FIGURE 9.1	Map of Central Highlands Obsidian Network	224
FIGURE 9.2	Map of Southern Obsidian Network	228
FIGURE 9.3	Use of Quispisisa Obsidian and Distance from Huari	232

LIST OF TABLES

TABLE 6.1	Example Inventory for Collected Data	127
TABLE 6.2	Example Inventory for Lithic Data	128
TABLE 6.3	Definitions of Lithic Attributes, adapted from Andrefsky (2005)	129
TABLE 7.1	Obsidian Count by Sector	143
TABLE 7.2	Obsidian Count by Sub-sector	144
TABLE 7.3	Obsidian Count by capa, Sub-sectors A4-B4, Sector I	146
TABLE 7.4	Obsidian Count by capa, Sub-sector A5, Sector II	148
TABLE 7.5	Obsidian Count by <i>capa</i> , Sub-Sector A6, Sector II	149
TABLE 7.6	Obsidian Count by capa, Sub-sector B4, Sector II	150
TABLE 7.7	Obsidian Count by <i>capa</i> , Sub-sectors B5-B6, Sector II	150
TABLE 7.8	Obsidian Count by capa, Sub-sector C5, Sector II	150
TABLE 7.9	Obsidian Count by capa, Sub-sector C6, Sector II	151
TABLE 7.10	Obsidian Count by capa, Sub-sectors A8-B8-A9, Sector III	153
TABLE 7.11	Obsidian Count by <i>capa</i> , Sub-sector C9, Sector III	153
TABLE 7.12	Obsidian Count by <i>capa</i> , Sub-sector D9, Sector III	154
TABLE 7.13	Obsidian Count by <i>capa</i> , Sub-sectors D7-D8, Sector III	154
TABLE 7.14	Obsidian Count by capa, Sub-sector E10, Sector III	155
TABLE 7.15	Obsidian Count by Temporal Context and <i>capa</i>	158
TABLE 7.16	Obsidian Count by Temporal Context	159
TABLE 7.17	Obsidian Count by Temporal Context, Grouped	159
TABLE 7.18	Artifact Count by Type	161

TABLE 7.19	Artifact Type by Sector Assemblage	163
TABLE 7.20	Artifact Type by Sub-sector Assemblage	164
TABLE 7.21	Artifact Type by Time Period Assemblage	165
TABLE 7.22	Time Period by Artifact Type Assemblage	166
TABLE 7.23	Flakes by Size-Grade	167
TABLE 7.24	Basic Statistics for Flakes	167
TABLE 7.25	Flake Size-grade by Sector	168
TABLE 7.26	Flake Size-grade by Sub-Sector	169
TABLE 7.27	Flake Size Grade by Time Period	170
TABLE 7.28	Cortex Present on Flake Artifacts	171
TABLE 7.29	Cortex Present on Flake Artifacts by Size Grade	171
TABLE 7.30	Cortex by Sector	172
TABLE 7.31	Cortex by Sub-Sector	172
TABLE 7.32	Cortex by Time Period	173
TABLE 7.33	Flake Terminations	174
TABLE 7.34	Flake Termination by Sector	176
TABLE 7.35	Flake Termination by Sub-Sector	176
TABLE 7.36	Flake Termination by Time Period	177
TABLE 7.37	Flake Striking Platform	178
TABLE 7.38	Flake Striking Platform by Sector	179
TABLE 7.39	Flake Platform by Sub-Sector	180
TABLE 7.40	Flake Platform by Time Period	180
TABLE 7.41	Flake Scars	181

TABLE 7.42	Flake Scars by Size-Grade	. 182
TABLE 7.43	Flake Scars by Sector	. 182
TABLE 7.44	Flake Scars by Sub-Sector	183
TABLE 7.45	Flake Scars by Time Period	. 183
TABLE 7.46	Projectile Points	. 184
TABLE 8.1	PXRF Sample by Sector	. 194
TABLE 8.2	PXRF Sample by Sub-sector	. 194
TABLE 8.3	PXRF Sample by Time Period	. 194
TABLE 8.4	PXRF Sample by Artifact Type	. 194
TABLE 8.5	Source-type by Sector	. 199
TABLE 8.6	Source-type by Sector Assemblage	. 199
TABLE 8.7	Source-type by Sub-sector	. 200
TABLE 8.8	Source-type by Sub-sector Assemblage	. 201
TABLE 8.9	Source-type by Time Period	. 202
TABLE 8.10	Source-type by Time Period Assemblage	. 202
TABLE 8.11	Source-type by Artifact Type	. 205
TABLE 8.12	Source-type by Artifact Type Assemblage	. 205
TABLE 8.13	Source-type by Flake Size-grade	. 206
TABLE 8.14	Flake Size-grade by Source-type Assemblage	. 207
TABLE 8.15	Source-type by Cortex	. 208
TABLE 8.16	Cortex by Source-type Assemblage	. 208
TABLE 8.17	Source-type by Flake Termination	. 209
TABLE 8.18	Flake Termination by Source-type Assemblage	. 209

TABLE 8.19	Source-type by Striking Platform	210
TABLE 8.20	Striking Platform by Source-type Assemblage	210
TABLE 8.21	Source-type by Flake Scars	211
TABLE 8.22	Flake Scars by Source-type Assemblage	211
TABLE 8.23	Projectile Points	213

CHAPTER 1

INTRODUCTION

This dissertation explores the role of obsidian as a resource within the political economy of the first known empire in the Andes, the Wari Empire (AD 600–1000), Peru. The Wari expanded, through a flexible strategy of imperialism that co-opted (when available) pre-existing local sociopolitical and economic organization, to control a territory that covered the extent of present-day Peru. In addition to territorial expansion, the empire relied on and imported resources from hinterland regions into the capital and beyond, such as cotton and coca from the Peruvian coast, spondylus from Ecuador, and feathers from the amazon. Another resource that has been suggested to have operated within a Wari political economy is obsidian. Obsidian is a volcanic glass with one of the sharpest naturally occurring edges, making the material ideal for stone tool production. In addition, obsidian is an easy medium to work due to its conchoidal fracture pattern. Its aesthetic qualities ranging from translucency to varying hues, have made it a popular medium for ritual and/or prestige goods throughout the world. Furthermore, obsidian is limited in its availability. Because obsidian is produced during singular volcanic events, it is only encountered at high-elevations in tectonically active regions, and high-quality obsidian comes from volcanic events younger than 10 million years.

In the central and southern Andes, there are nine commonly used obsidian sources, including three high-quality sources (Quispisisa, Alca and Chivay). This dissertation explores the nature of obsidian use in the Wari Empire through an analysis of 628 obsidian artifacts from the capital of the empire, the site of Huari located in highlands of Ayacucho, Peru.

Lithic and portable X-Ray fluorescence analyses were conducted to explore the nature of obsidian production and consumption at the site of Huari, and to examine distribution networks from varying obsidian sources during the Middle Horizon to explore the nature of Wari control and/or investment in obsidian and obsidian distribution networks. The results of the data suggest that the site of Huari was relying on obsidian from three obsidian sources: Quispisisa, Alca and Puzolana. Prior to the Middle Horizon, the Ayacucho valley relied exclusively on obsidian from Quispisisa and Puzolana, both local sources. The importation of Alca obsidian into the Ayacucho Valley (from over 500km to the south) during the Middle Horizon reveals extended interregional interactions and connections likely facilitated by Wari imperialism. The presence of Alca obsidian at the site of Huari attests to the cosmopolitan nature of the capital, and the site as symbolic of a wider imperial agenda. The data suggest that the use of obsidian at Huari from different sources is a practice that originated in the Early Intermediate Period Huarpa occupation of the site. The Huarpa relied predominantly on obsidian from Quispisisa, as did most of the central highlands obsidian network.

While the Wari Empire appears to have mostly formalized pre-existing obsidian networks, they did manage to extend and manipulate the borders of these networks for imperial purposes. Results from the lithic analyses also suggest that individuals at Huari were not producing their own bifacial or formal tools at the site itself. The material produced insitu was expedient in nature, and produced by individual, non-skilled craftsmen. Formal material that was consumed at the site was likely produced elsewhere and brought into Huari as a completed tool. This production/consumption pattern also pre-dates the Wari occupation of the site, and suggests that Huarpa obsidian use forms the basis for obsidian use by the Wari Empire. Because the Wari were known to have adapted their imperial strategies to

account for local, pre-existing infrastructure and/or social and political systems, it follows that they also would have done so for the use and acquisition of resources. This dissertation reveals this particular imperial process through a focus on obsidian networks and production and consumption processes.

Outline of the Dissertation

Chapter 2 explores the history of imperial studies within the discipline of archaeology and its application in this dissertation. While early theoretical focuses on empires (World Systems Theory, Neo-evolutionary models) sought to develop defining features, or universal traits, of empire, more recent approaches (power dynamics, imperial processes, entanglement) have begun to focus on the fluid and dynamic aspects of the act of "doing" empire. In this dissertation, empire is defined as "a territorially expansive and incorporative kind of state, involving relationships in which one state exercises control over other sociopolitical entities (e.g., states, chiefdoms, non-stratified societies" (Sinopoli 1994: 159)). In addition, this dissertation focuses on the process of empire by exploring relationships of power. And because the Wari Empire has no written history, one of the best ways to study relationships of power is through quantifiable, material "things" (Smith 2003). And while relationships of power within and across empires are difficult to identify, this dissertation follows Stein (1998) in suggesting that one such way to identify power is through a regional analysis of the political economy and variation in the differential/asymmetric movement of resources within the empire. In other words, the movement of obsidian from the source, to the production, consumption and and finally discard location, may reveal one facet of Wari's political economic strategy.

Chapter 3 traces the prehistory of the Wari Empire, from its origins in the Huarpa occupation in the Ayacucho Valley to influences from Nasca and the state of Tiwanaku to the south. The Wari Empire (AD 600–1000) likely developed from the Early Intermediate Period (EIP) Huarpa occupation of the Ayacucho Valley. During the EIP, the Huarpa began to intensify agricultural production and move into more settled, nucleated settlements—one of which was the foundation for the capital of the Wari Empire. By the end of the EIP, influence from the Southern Nasca Region (largely in the form of ceramic polychrome pottery) began to make its way into the Ayacucho highlands and by the beginning of the Middle Horizon, Wari iconography shared many features with Nasca ceramics. Concurrent with the Wari development in central Peru, the Tiwanaku state was arising in the Titicaca Basin near the border of present-day Peru and Bolivia. Although sharing similar iconographic motifs, it appears that the two states were distinct entities, with interaction occurring with more intensity in the southern hinterlands of the Empire (i.e., Moquegua). In addition to the contextual development of the empire, Chapter 3 addresses the interaction networks present within the Wari Empire, including the heartland (the site of Conchopata) and the surrounding regions (Sondondo, Apurímac, and Southern Nasca Region) as well as hinterland expressions of empire in Cusco and Moquegua. Through exploring the circumstances within which the empire developed, and subsequently the expansion and consolidation of the empire, it is possible to begin to contextualize obsidian networks within a Wari political economy, which follows in Chapter 4.

Chapter 4 addresses the history of political economy and craft production studies within archaeology. In this dissertation, political economy is defined broadly as the organization of economic systems as they intersect with power and political and social

systems. By defining political economy in this manner, this dissertation attempts to follow Hirth (1999) in focusing on four key principles to the study of political economy in archaeology: 1) the accumulation of resources; 2) the where and how of resource accumulation; 3) the position of elites at nexuses of control; and 4) the role of ideology in the control over these nexuses and resources (Hirth 1999: 4). And while it is acknowledged that a full understanding of political economy necessitates a focus on multiple resources across all levels of society, this dissertation begins by tracing obsidian from its source location, through to its production and consumption, and final discard at the Wari capital. It compiles these results with comparative data from other studies to address regional, social and temporal differences in the production and consumption of obsidian within the Wari Empire. In order to do so, Chapter 4 also addresses studies of craft production, as way to bring materiality to political economy. Craft production is defined as the study of technologies, human agents and organizing principles, with the goal of explaining historically specific production systems and cross-cultural regularities and variability within those systems (Costin 2005). Costin (much like Hirth) suggests that archaeological approaches focus on six key features of a craft production system: 1) producers—specialization, labor, compensation, and skill; 2) means of production—raw materials, tools, and knowledge; 3) organization—spatial, social production, and temporality; 4) objects—function and use; 5) distribution—transportation and oversight; and 6) consumers—use and reuse (Costin 1991: 190-191). In sum, this chapter presents an argument for focusing on the role of resources (in this case obsidian) as one vehicle for understanding the institutionalization of power within and across the empire.

Chapter 5 addresses obsidian throughout the prehistory of the Andes as well as during the Middle Horizon. The chapter provides a brief discussion of obsidian as a material, and its

use as both a functional as well as an aesthetic (of course often overlapping) resource both in the Andes and worldwide, and follows with a discussion of obsidian sources, and the material aspects of obsidian that make it an ideal candidate for x-ray fluorescence applications. More important to a discussion of political economy and craft production, Chapter 5 traces the history of the use and acquisition of obsidian from the first people of the Andes through to the Middle Horizon, exploring the lengths that people traveled to obtain obsidian as well as the type of products and the nature of production. Ultimately, obsidian was a highly used resource that required complex interaction networks long before the emergence of the first state or empire in the Andes. A more in-depth focus on obsidian in the Middle Horizon is also presented, which explores regional differences in the consumption and acquisition of obsidian in the Wari heartland and Wari hinterland, which provides context for interpretation of the analyses and results of this dissertation.

Chapter 6 presents a description of the methods used for data collection and sampling strategy as well as the history and use of x-ray fluorescence for archaeological research. An in-depth discussion is provided on the parameters used for the portable x-ray fluorescence (PXRF) analysis. Following this, Chapters 7 and 8 present the results of the data. Chapter 7 presents the results from basic lithic attribute analyses (including context information, artifact type, lithic debitage traits, etc.). The results are presented using chi-square tests to explore the relationship between different variables (such as context and artifact type), and results are preliminarily compared with data from the neighboring Wari site of Conchopata. Chapter 8 presents the results form the PXRF analyses, and sources the artifacts to their obsidian source with the help of a comparative collection acquired from Archaeological Research Facility at the University of California Berkeley. The source results are then placed alongside the results

from lithic attribute analyses to explore source variation in different production and consumption processes at the site of Huari. Again, these results are preliminarily compared with the site of Conchopata and previous research done at the site of Huari itself.

The results confirm the use of three different obsidian sources at the site (Quispisisa, Alca and Chivay) as well as suggest an expedient nature to the production of obsidian at the site. The ubiquity of obsidian as a resource at the site may have led to something akin to "cavalier crafting" (Klarich et al. 2017). In general, obsidian production and use at the site of Huari follows a pattern that pre-dates the Middle Horizon, suggesting that the Wari Empire merely formalized, facilitated, or built upon pre-existing obsidian production and consumption processes established during the earlier Huarpa occupation. The only change brought about by Wari imperialism was the presence of Alca obsidian, signaling increased interregional interaction networks and a widened flow of resources from and between different regions of the empire, likely organized or enabled by Wari imperial processes.

Chapter 9 places the results from the previous chapters in context with prior obsidian research conducted by scholars in varying hinterland regions of the empire. Chapter 9 illuminates the nature of obsidian consumption and use prior to the Middle Horizon, as two general obsidian networks within the central Andes—one focused on the exploitation of the Quispisisa source in the central highlands (encompassing Ayacucho, the Southern Nasca Region and parts of Apurímac), and the other focused on the exploitation of the Alca and Chivay sources in the south (encompassing Cusco, Moquegua, and the Titicaca Basin). The results of this dissertation suggest that during the Middle Horizon, the Wari Empire had a political economic strategy that focused on capitalizing on the pre-existing obsidian networks within the Andes, changing and formalizing where necessary. For example, while most

networks continue to operate as they did prior to the Middle Horizon, Cusco is incorporated into the central highlands network, likely indicating the (need for a) greater connection between Cusco and Ayacucho. Lithic attribute analyses focus on the production and consumption of obsidian, and a comparison between the capital of Huari and the neighboring imperial site of Conchopata suggests limited in-situ bifacial production and instead the expedient production of tools from a ubiquitous obsidian source. Chapter 9 discusses these results and attempts to provide insight into Wari political economy through a focus on obsidian.

In sum, this dissertation attempts to bring together aspects of political economy and craft production, with a history of the Wari Empire, to explore in-depth how one resource is experienced within the capital of the empire. By tracing the connections between not only the data acquired for this dissertation, but by combining it with research collected by other scholars, it is possible to begin to see patterns in the use of a resource throughout time and space, and how imperial processes both changed and formalized those patterns.

CHAPTER 2

IMPERIAL STUDIES: HISTORY AND APPLICATION

The study of empires and imperial processes has long been of interest to social theorists, historians and archaeologists alike. Definitions of what constitutes an empire are, therefore, quite varied in relation to not only specific historical, environmental and contextual circumstances, but also in relation to dominant theoretical models and paradigm shifts. In this chapter, I trace the development of archaeological approaches to empire, from the systems models and universal typologies of the 1960s to 1980s, to the historically-specific and agentcentered approaches gaining popularity in the 2010s. Early archaeological approaches to empire began with the desire to produce universal generalizations that could be used to define and study social and political evolution. World Systems Theory (Wallerstein 1974), the Metrocentric-Pericentric-Systemic model (Doyle 1986) and the Territorial-Hegemonic model (Luttwak 1976; Hassig 1985) paved the way for systems approaches, and sought to identify and define the key components of imperial societies. As a direct response to what was seen as the limitation of typologies and neo-evolutionary models, archaeologists began to focus on strategies of control and the material manifestations of power (Schreiber 1987; DeMarrais et al. 1996; Mann 1986; D'Altroy and Earle 1985). More recently, a shift in archaeological theory away from models (a shift largely influenced by post-processual and post-modern theoretical movements), scholars have begun to approach empires by looking at the agency of individual actors and groups as opposed to top-down systemic processes (Dietler 2010; Stein 2002; Khatchadourian 2016). After exploring the theoretical foundations

for archaeological studies of empire, I close this chapter by positioning my own approach to imperial studies within these theoretical frameworks.

I. Defining Empire

Definitions of what constitutes an empire can be difficult to formulate, as defining characteristics vary by a scholar's regional and topical interest. Some scholars prioritize geographic characteristics of empire (Morrison 2001), some economy (Costin and Earle 1989; Smith 2001; D'Altroy 1992; Smith and Berdan 1992), while others focus on the political (Stanish 1997), ideological (DeMarrais et al. 1996; Bray 2003; Lucero 2003) and/or militaristic components of imperial strategies (Sinopoli 1995; Woolf 1992; Mann 1986). Another difficulty in defining empire is the actual variability of empires themselves, and the complexity of comparing a diversity of sources (archaeological vs. historical), and both old world and new world and archaic and "modern" examples. The word "empire" is used to refer to all of the above cases synonymously, although each case is much more complex than a single word would suggest. This dissertation focuses on what Katharina Schreiber (1992) refers to as a more "archaic form of empire", meaning those empires in prehistory that rose to power, and subsequently lost it, long before globalization and the emergence of the Nation-State. This dissertation will follow the definition of empire set forward by Carla Sinopoli, in which an empire is defined as a "territorially expansive and incorporative kind of state, involving relationships in which one state exercises control over other sociopolitical entities (e.g., states, chiefdoms, non-stratified societies) (Sinopoli 1994: 159)." In addition, empires are understood to encompass a "diversity of localized communities and ethnic groups, each

contributing its unique history and social, economic, religious and political traditions" (Sinopoli 1994: 159).

II. Early Systems Models of Empire (1970s – 1990s)

Definitions and conceptualizations of empire have always been heavily linked to theories of social evolution. Empires were understood as the natural end point following a long trajectory of development from simple societies, progressing to chiefdoms and states, and finally culminating in empires. Following the theoretical framework of social evolutionism, empires were subject (as were societies of all levels of complexity) to intense classification and typology, with very little room given for any variability across time or space (Khatchadourian 2016). Archaeological studies of empire became increasingly popular following the emergence of New Archaeology in the 1960s. Scholars began to show interest in models, and in a departure from previous cultural historical approaches, sought to compare and universalize patterns of behavior in the archaeological record in an attempt to understand general human behavior from social, ecological and political perspectives.

World Systems Theory

The work of Emanuel Wallerstein fit perfectly. In 1974, Emanuel Wallerstein proposed that his model, originally intended to facilitate understanding of western Europe after the 16th century, could, in fact, be applied to archaic empires. Wallerstein's World Systems Theory emphasized the exploitation of marginalized or peripheral areas by an empowered core, as central to the definition of empire. At the very cornerstone of the model

was an inverse relationship between development in the capital/core and underdevelopment in the periphery (something echoed in concurrent Marxist studies on class divisions). Ultimately, this distinction between core and periphery was picked up by archaeologists and used in subsequent world systems approaches to social and political evolution. For example, Ekholm and Friedman (1979), developed one of the first archaeological models for imperialism based on World Systems Theory. They focused on the economic marginalization of the periphery as the singular goal of imperial societies, resulting from a desire to accumulate capital in the imperial core. This emphasis on economic motivation was something that was seen as parallel between both modern and archaic empires. Another beneficial aspect of World Systems Theory was its acknowledgment that an empire could not be understood without looking at both the core and the periphery (Cusick 1998).

More recently, World Systems Theory as a model for archaeological studies has been heavily problematized, due in large part to the model's emphasis on the unidirectional motivation from core to periphery. The binary of the dynamic core/static periphery was seen as limiting the value of the model by denying agency and social identity to the individuals and groups participating in these systems of interaction in both the periphery and the core (Dietler 2005; Stein 2002). World Systems Theory became so unpopular that in 1994, Marshall Sahlins felt that it had become "the superstructural expression of the very imperialism it despises" (Sahlins 1994: 412-413). More recently, scholars have shown that there is no predictable drop-off rate of underdevelopment with distance from an imperial capital and that the reality of imperial interactions both in the core and periphery is much more nuanced and even more importantly, historically, environmentally, and culturally contextual (Sinopoli 1995).

Metrocentric-Pericentric-Systemic Model

As World Systems Theory began to fall out of favor in the late 1970s to 1980s, new models emerged that specifically addressed a more archaic and archaeologically relevant understanding of empire. The Metrocentric-Pericentric-Systemic model was proposed by Michael Doyle in 1986 and focused on motivations (or pressures) for imperial expansion. This model postulated that imperial expansion operated predominantly through one of three frameworks: 1) metrocentric; 2) pericentric; or 3) systemic. Metrocentric expansion was seen as the result of pressures/motivations originating in the core, metropolis or center of the empire and thus, was the framework most similar in nature to World Systems Theory. Pericentric expansion originated from pressures/motivations in the periphery, yet imperial expansion was still often addressed in terms of benefits to the core. For example, a periphery may have been part of a defensive strategy to secure borders, or to secure an economic benefit or advantage. These actions were understood as pressures felt in the periphery, but ultimately executed by the core (D'Altroy 1992). Systemic expansion was the result of pressures/motivations felt in both the core and periphery, and was often assumed to be rooted in competition over international power (Doyle 1986). For example, a core and periphery operating with a singular motivation in contrast to an "other" sociopolitical entity. Doyle made sure to stipulate that the model only worked through a combination of the above frameworks, and that "the existence of empire called for a combined explanation, one that took into account the apparently necessary roles of a metropole, a periphery, and a transnational connection" (Doyle 1986: 160). Despite the insistence on a combined explanation, many scholars still found that the model limited the variability inherent in imperial interactions (D'Altroy 1992; Sinopoli 1995).

Territorial-Hegemonic Model

The Territorial-Hegemonic model (Luttwak 1976; Hassig 1985) moved away from motivations/pressures for imperial expansion to a focus on the exertion and maintenance of control as experienced by different imperial ventures and peripheries. Hassig (1985) proposed the model operated along a continuum, from more indirect hegemonic control to more direct territorial control. The hegemonic end of the spectrum emphasized the role of core polities and client polities (a hold-over from core-periphery models), and focused on the purpose of empire as a means of extracting and securing resources, but often without much investment or continued maintenance in the periphery. Hegemonic empires did not necessarily have fixed boundaries, and most commonly ruled or maintained control over areas through a system of "rewards and punishments" (Sinopoli 1995: 6). The territorial end of the spectrum emphasized militarism, occupation and a more direct governance by taking a more active role in establishing and maintaining order in the periphery. Aspects of the Territorial-Hegemonic model would be echoed in Michael Mann's (1986) treatise on the sources of social power, calling the two ends of the continuum "integrated territorial empires" and "empires of domination", respectively. While the Territorial-Hegemonic model was still rooted in the binary dynamics of core-periphery models, many scholars felt it was more appropriate, as it accounted for the effect of space and geography on relationships of power (D'Altroy 1992).

III. Current Approaches (1990s – present)

In the last few decades, new ways of understanding empire have been put forth, largely in an attempt to widen the understanding of archaic empires by acknowledging context, variability, and the agency of regional or hinterland (previously periphery) areas in imperial interactions (Smith 1998; Schreiber 2005; Sinopoli 1995; Stanish 1997; Stein 1992). The desire to move away from earlier models is summarized by Sinopoli, who states that "defining an empire as being either patrimonial or bureaucratic, or hegemonic or territorial, can obscure the significant variability that exists within individual empires in the nature and extent of imperial control and in relations between imperial centers and outlying areas" (Sinopoli 1995: 6). As archaeological theories began to move past the overly-generalizing World Systems, Metrocentric-Pericentric-Systemic and Territorial-Hegemonic models, so too did definitions of empire come to embody variation and adaptability. In turn, definitions of empires began to encompass the diverse sets of communities, histories, and social, economic, and political trajectories of a multitude of populations, all of whom were participating in imperial interactions (Sinopoli 1994). Local and regional populations were given back the ability to affect change and influence on the empire. At its fundamental core, however, the definition of empire was still inextricably linked to a recognition of power and inequality, and an emphasis placed on defining empire focused on the process or action of empire—imperialism. Imperialism is "an ideology or discourse that motivates and legitimizes practices of expansionary domination by one society over another" and is the "projection of power across space" (Dietler 2010: 15). Imperialism was understood as

operating over three phases: 1) expansion; 2) consolidation; and 3) collapse (Dietler 2010; Ho 2004; Sinopoli 1994).

Expansion, at its most basic definition, refers to the initial emergence of a high population density in a central city/metropolis followed by the creation of new geographic and/or demographic spaces (Sinopoli 1994). The reasons and methods through which an empire chooses to expand are varied (e.g., resource control, labor extraction, tribute/tariffs, secure borders) and an empire may even, in fact, undergo multiple expansions (possibly for different purposes) throughout the duration of its existence. Re-expansion into the same area may also happen, as rebellions and resistance are often cyclical in nature (Sinopoli 1994). For empires whose expansion is documented in written records, attention is often given to individual rulers (e.g., Sargon of Akkad; Augustus of Rome; Pachakuti of Cusco), whose leadership in war, and/or eloquence in speech making, elevate them to the forefront of imperial progress (Parker 2003). However, for prehistoric empires with no record of distinct individuals nor their actions, research often focuses on the more systemic aspects of imperial expansion. For example, the construction of roadways, outposts, population growth, and the intensification of agriculture are often archaeological markers of imperial exploits.

Consolidation refers to the institutionalization and maintenance of new infrastructure and administrative structures (including administrative, economic, ideological and social institutions). The consolidation of empires is inextricably linked to politics and administrative strategies of control, and the relationship between imperial and local elites established within a well-defined and strategized geographical and social hierarchy. Maintaining an empire also involves economic control. This control is experienced in a multitude of ways which will be explored in greater depth in Chapter 4. Economic

consolidation may involve tribute or tax (or a complex system of both), forced or corvée labor, and the access to, regulation, and control of valuable resources. Ideological control is also important to consolidation strategies, established through the co-option of pre-existing religions, beliefs, and worldviews, or through the creation and enforcement of new ones.

And finally, after expansion and consolidation, empires collapse. There is much debate on the usefulness or correctness of using the world "collapse" to define this last phase of imperial process (Yoffee 1988; Tainter 1988; McAnany and Yoffee 2009). The word itself is problematic in that it connotes a complete abandonment or catastrophic and rapid disappearance of populations and political systems. The ways through which empires come to no longer "be" are, in reality, varied. "Collapse" can be quick or prolonged in nature, can leave empty sociopolitical vacancies in the region, and can even cause reemergence or redevelopment and the beginning of a new cycles of imperial process (Schwartz and Nichols 2010). Collapse can be caused by many factors, not least of which are environmental conditions (such as drought, crop failure, etc.), and social and political unrest and instability.

Archaic empires may not be documented by historical sources or written texts. Therefore, much of what is known about archaic empires is thus derived from the archaeological record and the archaeological evidence for empires appears in a relatively predictable way: large-scale architecture, road systems, urban centers, temples, elaborate prestige goods and settlement patterns that often reveal a centralized core and a hinterland periphery. Each specific empire may not have all of the above, or even manifest the same imperial structures in similar ways. For example, regional settlements in hinterland areas may vary according to levels of control exerted by the empire based on a variety of factors such as distance from the imperial center, the pre-existing political conditions in the region, the level

of resistance encountered and the presence of valuable resources in the region (Schreiber 1992: 17-32; Smith 1998). Regions experiencing more direct control will show significant imperial impact, and formal imperial styles and features, while regions with relatively indirect control may have limited or even emulated imperial styles.

IV. Imperial Strategies of Control

Strategies of control are the political, economic and ideological sources of power by which empires expand and legitimize their domination (DeMarrais et al. 1996). These strategies reflect not only the organization and worldview of the empire, but also the preexisting structures, organization and ideologies of local subject populations (Schreiber 1987). Control is often exerted in both relatively indirect and relatively direct ways (Schreiber 1987; Stanish 1997). Indirect and direct control operate as ends of a continuum, with indirect control generally involving minimal change at the local level, and direct control generally requiring increasing levels of structural and organizational investment. This is complicated by pre-existing local sociopolitical organizations. For example, if a region lacks centralized authority the empire would need to create infrastructure and political organization. Conversely, if an area already has a strong political organization, the empire may only need to send an authority to govern or collect tribute (Schreiber 1987: 266). Imperial strategies of control are often discussed in relation to sources of power. Michael Mann (1986) provided the foundational study on sources of power and described sources of social power as being ideological, economic, militaristic and/or political in nature.

Types of Social Power

Social power is the ability of an actor to carry out his/her will, even in the event of resistance. Social power is often difficult to resist, as it inhibits collective action on the part of the marginalized through organizational deficiencies. Mann (1986: 6-9) identifies several descriptive categories of social power: a) distributive/collective power; b) extensive/intensive power; and c) authoritative/diffused power. Distributive power describes a unidirectional flow of power from actor A over actor B, while collective power represents a collaborative effort of multiple actors to increase their power over additional parties (Mann 1986: 6). Collective power may become institutionalized at the state or imperial level, whereby laws, values and/or societal norms serve to reinforce this power. Extensive power is the ability to organize large numbers of people across expansive territories, sometimes at the cost of internal stability, while intensive power is the ability to organize participants at a higher social/political/economic level, regardless of spatial extent (Mann 1986: 7). A final way to approach social power is to examine the distinction between authoritative and diffused power. Authoritative power is brought about directly by groups or institutions, while diffused power is not explicitly commanded (Mann 1986: 8). For example, collective power may at first be authoritative, but over time cultural norms and values and religions and/or ideology may institutionalize this power, in which case it may become diffused in nature. While all of the above categories of social power are interchangeable, they have been used as heuristic devices by archaeologists to draw broad comparisons across empires both worldwide and throughout history.

Ideological Power

In addition to outlining the above types of social power, Mann (1986: 22-28) identifies four sources of this power: a) ideological; b) economic; c) militaristic; and d) political. Ideological sources of social power are linked to the ways in which human beings make sense of their world, and to the norms and values that regulate and influence behavior, often performed through aesthetic and ritual practices (Mann 1986: 22). Ideological power may be *transcendent* or *immanent morale*. Transcendent ideology rises above mundane institutions and finds its roots in the sacred, following the sacred-profane dichotomy outlined by Emile Durkheim (1915). Transcendent ideological power is often a form of diffused power, in that it is not dictated from a ruler to a populace, but as a mandate from a higher and often intangible realm. Immanent morale ideology takes the form of a norm or value that attempts to foster social cohesion of a group (Mann 1986: 24). Often, immanent morale ideological power is institutionalized as a continuation and/or a promotion of pre-existing group cohesion.

DeMarrais et al. (1996) see ideology as fundamental to social power and propose looking at the "materialization of ideology" as the vehicle for its application in archaeology. Ideology, they argue, is materialized through symbolic objects, monuments, writing and even shared values and beliefs. It is ideology materialized that allows widespread values and beliefs to be shared widely within and between groups and to have influence over large territorial or social organizations. For example, an elite individual or group with social power can extend the range of its power through ideology, materialized in products that can outcompete those who do not have the resources (DeMarrais et al. 1996). In other words, ideology provides an avenue for "ambitious people to modify the worldviews and codes of

social behavior" to justify regulations of that behavior (DeMarrais et al. 1996: 31). For example, the distribution of iconographic motifs, the construction of monumental architecture, and even feasting may be an imperial or state ideology of power, materialized. Of course, empires are themselves subject to their own ideologies, meaning that ideologies are always linked to cultural and historical contexts (Stanish 1997). Archaeologists often approach ideological power through a lens of ritual (Leach 1966; Lucero 2003), because through ritual, "beliefs about the universe come to be acquired, reinforced, and eventually changed" (Kertzer 1988: 9).

Economic Power

Economic sources of power are found in the production, distribution, exchange, consumption, reuse and discard of resources. Mann (1986: 25) refers to the concept "circuits of praxis", to define two ends of a spectrum of economic organization; on one end, workers laboring and expressing themselves through the conquest of nature and on the other, circuits of exchange into which millions may be locked by natural forces. Mann's "circuits of praxis" is built upon the the work of Karl Marx and 19^a and 20^a century conceptions of capitalist economic and social organization, and relies on the relationship between the degree and type of economic organization and the "organizing power of class and class struggle" (Mann 1986: 25). While limiting in its applicability to archaeological studies of prehistoric economies, "circuits of praxis" does illuminate a fundamental aspect of economic power differential access to resources and goods. Differential access to goods, both resulting in and from economic strategies of control, can serve to reinforce economic power relations and legitimate the political and economic organization of a dominant power (Costin and Earle

1989). Costin and Earle (1989) see emergent complexity and state-level control as fundamentally linked to finance (both staple and wealth) that is intimately controlled by a governing institution. In fact, a defining characteristic of empire, accordingly, is the ability to extract tribute or taxes from subject populations (Schreiber 2001). Political economy and craft production as a strategies of control will be discussed in more detail in Chapter 4.

In early discussions of states and empires, economic power was often understood within a dichotomous system of finance, with wealth finance on one end of the spectrum and staple finance on the other (D'Altroy and Earle 1985). Broadly understood, staple finance involves heavy investment by the empire in resources such as grain and livestock and requires tribute and labor from subject populations. Staple finance systems are relatively straightforward, with subject families working to provide a portion of their own staple products to the empire. Conversely, staple finance systems are difficult to maintain, as it is difficult to move goods over long distances, and an empire needs heavy political organization in the hinterlands in order to effectively collect tribute from subject populations. Wealth finance, on the other end of the spectrum, is the production and exchange of special value products and resources, that are often exchanged among more high status and elite members of the empire, including local elites or leaders. Wealth finance is particularly lucrative for territorially extensive empires, in that wealth finance systems require minimal investment in transportation and do not require infrastructure to operate effectively. The downside to finance systems is that the resources that operate within wealth finance systems are limited, and often need to be converted for the general populace, which often results in a loss of associated power (D'Altroy and Earle 1985).

Coercive Power

Coercive power is linked to physical displays and acts of power (both defensive and offensive) and is the most concentrated form of social power, as it "mobilizes violence" (Mann 1986: 26). Many scholars propose that military power is a defining characteristic of empires (Mann 1986; Sinopoli 1995). This concentration of force can also be sustained beyond the battlefield and used to procure or concentrate labor, whether forced or coerced, slave or corvée. However, while military power is the most concentrated form of social power, it is not always the most useful for empires operating with dispersed power. For example, military power is not effective in controlling the investment and participation in agriculture, industry and/or trade, where discrete knowledge or skill is required. Military power is therefore more useful for states and empires where power is concentrated, intensive and authoritative in nature.

Political Power

Political power is related to and inseparable from social, economic and military power, and is often understood as the organizational force behind sources of social power. Mann (1986: 26) restricts the definition of political power to only apply to state or imperial societies. It is a governing or organizing form of power. Mann (1986) sees political power as unique to the core polity, in contrast to the other three sources of power, which can be multidirectionally present in all regions of a state or empire. In archaeological studies of political power, it is usually subsumed within the other three sources (e.g., political ideology, political economy) to refer the organization of, for example, economic practices within a discussion of imperial political power. It is neither simple, nor the intent of studies of imperial strategies of control, to separate, identify and only study one source of social power. While scholars may focus more directly on one source of power, each source is always inextricably linked to the others. For example, Charles Stanish focuses on "changes in organizational structure, specifically changes in the political organization of economic processes and the ideological legitimization of that organization" (Stanish 1997: 197). For Lucero (2003), it is through ritual that political actors can operate within political agendas. Lucero (2003) sees ritual not as a source of political power, like economy or the military, but as an avenue through which political power can be expressed. It is important to acknowledge the variability of sources of control and their expression in different states and empires, and to recognize that these combinations of strategies may not always manifest in similar ways across time and space (Morrison and Sinopoli 1992).

V. Critical Approaches to Empire (2000s – present)

Archaeological research on empires has come a long way since the early 1970s, from a focus on systems models and categorical typologies to thinking in terms of imperial strategies and the materialization of power and control. More recently, scholars have begun to problematize the uncritical use of categories and definitions of empire (Dietler 2010) and the heavy reliance placed on objects over individuals (Khatchadourian 2016). In her recent dissertation work on ancient Persia, Lori Khatchadourian (2016) provides a critique of previous archaeological studies of empire and their over-reliance on flawed typologies (e.g., World Systems Theory, Territorial-Hegemonic model). "Early attempts [at definitions of empire] left to archaeology the somewhat marginal task of illustrating 'on the ground' strategies of imperial control", something that Khatchadourian (2016: 28) sees as unnecessary, due to the large amount of historical and ethnohistorical data that already addresses these components. While Khatchadourian (2016) does correctly illuminate the almost pedantic nature of early attempts to categorize and define imperial societies, her critique gives priority and privilege to historic empires (predominantly in the "Old World"). As Smith (2003: 167-168) addresses, "the integration of text and archaeology" — the ethnohistorical and the material — can illuminate complicated dynamics within imperial systems, even for "Old World" empires. If archaeologists are to move forward in understanding imperial relationships, perhaps the avenue is not through a definition of empire as a bounded and discrete sociopolitical entity.

Interregional Interaction

Definitions of empire often result in a static view of individuals and their interactions, limiting the value of the model and denying agency and social identity to the individual participants in imperial systems (Dietler 2005; Stein 2002). Gil Stein provides a new paradigm for looking at interregional interaction, in which "the recursive relationship between social structure and strategic actions of individuals or small groups plays a major role in reproducing and changing the social organization of complex societies" (Stein 2002: 905). Interregional interaction is not as far from World Systems theory as might be expected, stemming from the Distance-Parity model that suggests that the core's ability to exercise power over the periphery decays with distance, thereby distant peripheries have a more equal relationship with the core. While this understanding is still too narrow, interregional interactions account for actions and processes being both directed by and experienced by

populations in both the core and periphery, both in relation to each other and independently. Looking at interregional interaction instead of empire as a bounded ideal provides a more dynamic and mutable approach to understanding imperial relationships. While looking at interregional interaction may seem too large of a concept for focusing on empire, it actually makes the approach easier to digest. Instead of focusing on material and patterns in the archaeological record as they apply to features of empire, the focus can be placed back upon the actors. It is important for studies of empire moving forward to acknowledge the active processes that are in play by individuals and social groups, and how these processes are embedded in a myriad of economic, political and cultural perceptions (Dietler 1998).

Entanglement

Another approach to focusing on imperial relationships is through a focus on entanglement, or "the complex webs of economic, political, social and cultural linkages that can result, often inadvertently, from the consumption of alien material culture" (Dieter 2010: 53). The process of entanglement is linked to the actions and choices of the individual and the "dynamic relationship between agency and structure" (Dietler 1998: 291). Interregional interactions, especially those that are imperial in nature, may best be approached as complex processes that entangle individuals and ideologies *across* regions, and not as unique *instances* leaving a unidirectional impact on the periphery. Entanglement can be a way for material resources to reflect changing identities and negotiations of power within imperial processes (Buzon et al. 2016). Often the concept of entanglement is used in archaeological research on colonialism and culture contact, in an effort to decolonize the traditional narrative which gives power and agency to the conquering society (Silliman 2005). Perhaps

then, focusing on entanglement for empires can help us to do the same thing. It may appear that focusing on interregional interaction and entanglement is just giving a new name to an old concept. And perhaps this is the case. But as Dietler (2010) suggests, this re-branding may be necessary for archaeological studies of empire in order to move forward. While stuck in a circular discussion of the definition of empire, perhaps we are missing the more nuanced perspective on individual and group identities and relationships.

VI. Concluding Remarks

My archaeological approach to the study of empire emphasizes objects and resources as fundamental to relationships of power. At the same time, I attempt to move away from categorizing these relationships of power as they pertain to empires as strict sociopolitical entities. My approach is built upon the concepts of entanglement and interregional interaction, which have primarily preferenced the hinterland or periphery in an effort to illuminate marginalized and/or forgotten areas of colonial, imperial, and other forms of culture contact. However, while building off of this theoretical approach, I aim to focus on the capital of the Wari Empire and its relationship with regions within the core (less than 100km from the capital) and in the hinterlands. I propose that focusing on entanglement is as useful for studies of an imperial capital as it is for the hinterlands. No capital is distinctly uniform, felt, expressed and understood equally among all individuals living there or passing through that space. It is just as important to view individuals and groups in the core as actors in imperial relationships as it is to acknowledge those populations engaging in imperial and non-imperial relationships at greater distances.

Despite critiques (Khatchadourian 2016) that political economic approaches reduce empires to things and objects instead of relationships between people, an approach to archaic empires, particularly those empires for which we have no written records, an archaeological approach must be, fundamentally, based in quantifiable, material "things" (Smith 2003). Privilege is often accorded to societies with written histories (even those for whom history is written by the colonial power), and different approaches must be taken for societies without written histories. Research on relationships of power can be difficult to identify in the archaeological record, and Stein (1998: 26) proposes two avenues to account for this difficulty: 1) to integrate textual/iconographic evidence with archaeological data; and 2) to look at regional analysis of political economy and map variation in "nodes of power" across a geographic or even social/political landscape. Stein (1998) suggests that differential/asymmetric movements of labor, goods, and the like within an empire provides some of the clearest evidence for power relationships. It is important to engage not only with things and objects, but with the human actors who ultimately give meaning to, and bring to life these objects. This study approaches the Wari Empire through this lens, of entanglements, complex relationships, and the social, political and economic power of resources.

CHAPTER 3

THE WARI EMPIRE (AD 600–1000)

The Wari Empire (AD 600–1000) was the first prehispanic empire in South America, and at its height covered the extent of present-day Peru, spanning roughly 1,300km from north to south and 400km from east to west (Schreiber 2013). While the Inca Empire (AD1400–1533) has captured the attention of the general public, largely due to elaborate stone masonry and history with Spanish colonization, the Wari Empire, in fact, paved the way for much of the infrastructure (terracing, road networks, etc.) used by the Inca. Originally considered to be part of the Tiwanaku religious cult originating in the Lake Titicaca Basin, with a ceramic style first identified as "Coast Tiwanaku", Wari was largely understood as operating within a Tiwanaku interaction network. This changed in the first half of the 20th century, when Peruvian archaeologist Julio C. Tello began to develop the first interpretation of Wari as not only the source of the "Coast Tiwanaku" style, but as the geographic and cultural origin for the entire iconographic suite, including all of its manifestations from masonry to textiles and ceramics. While Tello was one of the first to conceptualize of Wari as an empire, he was, unfortunately, never able to publish his findings before his death in 1947.

In 1946, John Rowe from the University of California Berkeley, Donald Collier from the Field Museum of Natural History and Gordon Willey from Harvard, traveled to the Ayacucho Valley to identify the architectural and ceramic styles at the Wari capital with the eponymous name of Huari. This dissertation follows Isbell (1991) in differentiating between the empire, Wari, and the capital, Huari. During this trip, Rowe, Collier and Willey saw

similarities between architecture at Huari and at the now-identified Wari administrative centers of Pikillacta in Cusco and Viracochapampa in Huamachuco. In the early 1960s, John Rowe and his student Dorothy Menzel, who had begun the pivotal ceramic seriation sequence on the South Coast, went on to seriate ceramics from both the coast and the highlands, and coined the term "Middle Horizon" to designate the widespread appearance of Wari iconography. This foundational chronology is still more or less widely accepted and utilized today (Menzel 1964; Bergh and Jennings 2013).

The Wari Empire is known for its infrastructural projects (including roadways, agricultural terracing, administrative systems, etc.), iconographic ceramics and fine stone masonry. Wari architecture, epitomized at the capital of Huari and seen at other important hinterland sites, is characterized by orthogonal patio-group compounds, or tightly clustered rectangular room blocks. Buildings were constructed to have one to three stories, and rooms were connected by narrow hallways and carefully arranged in organized and often unidirectional pathways. Often rooms, particularly those at the rear of a building, were accessible from only one or two entrance points. Wari architecture was coursed-wall with field stone masonry, and often contained characteristic niched walls (Schreiber 1992; Isbell 1991). Another hallmark of Wari architecture was D-shaped ritual or ceremonial structures, with the largest at Huari measuring 30m in diameter.

In this chapter, I address the geographic, cultural and temporal contexts that led to the rise of the Wari Empire, as well as discuss the capital city of Huari and its role within the larger Wari imperial process. I continue by discussing imperial interaction networks within the Ayacucho Valley, Apurímac and Sondondo regions, and further Nasca and Cusco regions, setting up the geographic and cultural stage for a discussion on the movement of

obsidian in Chapter 5. While these regions do not reflect the only interaction networks that were existent within the Wari Empire, they do reflect those in closest geographic proximity to the capital, and represent those populations from whom the Wari were drawing their most important resources, such as agricultural products, camelid herding, cotton, and obsidian.

I. Geographical Context: The Ayacucho Valley

The Wari Empire developed within the Ayacucho Valley of Peru, in the south central Andes (Figure 3.1). The Andes mountains are the longest, and second highest, mountain range in the world. The mountains divide the western half of South America into three ecological zones (this is especially prominent in Peru where the slope of the mountains reach their highest gradient): the coast (*la costa*), the highlands (*la sierra*), and the jungle (*la* selva). The height of the Andes, and the steepness of the slope, cause these three ecological zones to lie in incredibly close proximity to each other. For example, in some areas within Peru it is less than 200km from the coast to the jungle (Bergh and Jennings 2013). Within each ecological zone are micro-ecozones linked to elevation, with different flora, fauna, and resources that prehistoric and present-day communities have learned how to rely on with incredible efficiency. In 1972, John Murra studied the close relationship between Andean populations and the resources found within the different ecozones, and referred to the practice of exploiting from different ecozones as vertical ecology, or vertical archipelagos (Murra 1972). Vertical archipelagos refer to the practice of autonomous groups communally controlling ecologically diverse valleys, in order to exploit the resources from each ecozone

within. Verticality could also be practiced through extended migrations or by political conquest (seen in later Wari and Inca Empires) (Brush 1982: 23).

Figure 3.1. Map of the major Wari Empire. Showing major sites throughout the central Andes. Map courtesy of Matthew Edwards (2010: 21).

Populations within the Ayacucho Valley would have been able to access and exploit resources from the coast and the jungle at further distances, and to rely more dependently on

products from the three highland ecozones: *quechua*, *suni*, and *puna*. The *quechua* ecozone (2,500–3,500 meters above sea level, or masl), is a relatively warmer mountainous ecozone, and is ideally suited for intensive maize agriculture, as maize requires consistently warmer temperatures than much of the high Andes provides. The *suni* ecozone (3,500–3,800 masl), has increasingly cooler temperatures than found in the lower elevation *quechua* zone, and is used primarily for the cultivation of tubers and quinua. The *puna* ecozone (3,800–4,500 masl) is the coldest zone, and has limited or no agricultural potential, with a landscape dominated by *ichu* shrubs and brush. The *puna*, traditionally and at present, is primarily utilized for camelid pastoralism. The Ayacucho Valley largely falls within the *quechua* ecozone and would have been an ideal region for the development of maize agriculture, and archaeological evidence suggests that it was, in fact, a regional center for the development of maize agriculture and subsequent terracing for intensive exploitation (Leoni 2004).

The Ayacucho Valley, with the present-day capital of Huamanga, or Ayacucho, was not a prehistoric capital or city. In fact, Huamanga was a result of early efforts at urban planning by the Spanish, an attempt to restructure and resettle the populations of the Ayacucho region in the 16th century. In prehistory, the heart or cultural center of the valley was centered geographically around the confluence of the Huarpa and Pongora rivers and their southern tributaries. One of the earliest known sites in the region, the cave of Pikimachay (12,000BC), is located in this central area and has a vantage point to the site of Huari that would occupy the region some 13,000 years later (MacNeish et al. 1981). The site of Huari itself, located at 2,800 masl is in the heart of the Ayacucho Valley and was ideally suited for both a large-scale urban population and the intensive and extensive production of maize and tubers. This connection between the earliest evidence of people in the central

highlands at Pikimachay and the first Andean Empire at Huari, signals an ecological potential for the Ayacucho Valley that was largely capitalized upon by people from the first populations in the region through to the present-day.

II. Cultural and Temporal Context

Before beginning a discussion on the Wari Empire, it is important to understand the historical and cultural contexts for development. Cultural antecedents in the Ayacucho Valley and in the Southern Nasca Region played a pivotal role in the establishment and development of Wari imperial identity and practices. Concurrent with Wari expansion, the polity of Tiwanaku in the Lake Titicaca Basin contained an iconographic suite that was so similar to that of the Wari that for the longest time scholars understood the two societies to be one culture. No society or empire arises in a vacuum.

The Ayacucho Valley

Fundamental to a discussion of the Wari Empire is an understanding of the preceding occupations of the Ayacucho valley during the Early Horizon (1200–200BC) and the Early Intermediate Period (200BC–AD600). During the Early Horizon, the Chavín culture, originating in the north central Andes, influenced a wide expanse of the Andes through ceramic iconography and ritual motifs. In the Ayacucho valley, this influence was felt through the construction of ceremonial centers containing platform mounds, like the site of Chupas at the far southern end of the valley. Other sites of Wichqana, Waychaupampa, Jargampata de Huamanga and Aya Orqo were constructed with U-shaped temples (Cabrera 1998; Ochatoma 1992; Ochatoma 1998; Leoni 2010). During this period, populations lived in small sedentary communities subsiding on agriculture or pastoralism, and likely came together at the U-shaped or otherwise, ceremonial or ritual centers (Isbell 2001; Lumbreras 1974; Leoni 2004).

By the Early Intermediate Period (EIP), the Ayacucho Valley was undergoing a demographic change, characterized by population growth and the movement of populations into larger, nucleated communities. The Huarpa, originally identified through a diagnostic ceramic style, were an agricultural population that lived in nucleated settlements, possibly chiefdoms, and began to intensify agricultural production beginning around AD100–300. In the final moments of the EIP, the Huarpa began to adopt elements (largely stylistic) from Nasca potters from the Southern Nasca Region (Knobloch 1976; Leoni 2004; Isbell 2001). This cultural interchange, coupled with the continued intensification of maize agriculture and rising population densities, are considered to be the preeminent catalysts for the eventual polity that would become the Wari state.

Huarpa Ancestry

Huarpa was first identified as a ceramic style through the seriation work of John Rowe and Dorothy Menzel (Rowe et al. 1950; Menzel 1964) and was interpreted as the local EIP pottery style of the Ayacucho valley. First seen in the archaeological record around 300– 200BC (MacNeish et al. 1981), with some scholars pushing that date even earlier (Knobloch 1976), Huarpa ceramics were often matte white slip with red and black painting of geometric and linear designs: broad black bands, narrow black lines, and black and white checkerboard designs (Menzel 1964; Leoni 2010). Huarpa ceramics were the first to display the classic Middle Horizon chevron design iconography that is so characteristic of Wari ceramics (Menzel 1964). Due in large part to interactions with the Nasca culture from the south coast of Peru, Huarpa ceramics continued to evolve and increase in complexity, primarily adopting elements from Nasca fine polychrome ceramic style (Leoni 2010; Menzel 1964; Knobloch 1976).

Early archaeological survey work conducted in the Ayacucho valley by the Universidad Nacional de San Cristóbal de Huamanga (Benavides 1976) and by the Ayacucho-Huanta Archaeological-Botanic Project (MacNeish et al. 1981) identified over 100 Huarpa phase sites. This is a relatively large number of sites for the region, and is possibly the result of population growth, supplemented by the sites' locations close to water sources, extensive terracing on hillsides for agriculture, and the emergent use of irrigation methods (Leoni 2010). The sociopolitical nature of Huarpa was more complex than previous Ayacucho valley occupations, and early studies of the Huarpa (Lumbreras 1974, Lumbreras 1981), largely building on world systems models and social evolutionary theories of the 1960s, considered Huarpa to be a state-level society, a classification that was absolutely necessary in order for the Wari to be considered an empire. However, further systematic and regional studies of the Ayacucho valley contrasted this view, and put forward the notion that the Huarpa were a collection of small-scale polities, or chieftaincies (Schreiber 1992; Isbell and Schreiber 1978). Isbell (1984) suggested that the Huarpa were perhaps best understood as a series of nucleated chiefdoms, clustered around several regions within the valley. One cluster, the Nawinpukyo cluster, contained the sites of Nawinpukyo, Conchopata and Acuchimay. Another cluster, the Huari cluster, would have been centered around the site of Huari and included several other small and nearby sites (Isbell 1984). This idea was further

supported by the survey conducted by MacNeish et al. (1981), who noted the presence of an "administrative village" in the Huari area during the Huarpa phase. Interestingly, Isbell (1984) noted that in each proposed cluster of sites, only one site in each would have been continuously utilized by the Wari. For example, the site of Conchopata in the Ñawinpukyo cluster, and the site of Huari in the Huari cluster. However, recent research by Leoni (2010), confirms that the site of Ñawinpukyo was also occupied continuously through the Middle Horizon, and slightly undermines the one site, one cluster proposition.

The site of Nawinpukyo, situated less than six kilometers from the present-day city of Ayacucho, is the best studied site pertaining to the Huarpa occupation the valley (Leoni 2010; Leoni 2004; Finucane 2008; Finucane 2009; Ochatoma et al. 2015). Ñawinpukyo lies in the quechua ecozone at 3,000 masl, an ideal location for maize agriculture (MacNeish et al. 1981; Lumbreras 1974). The site was occupied by the Huarpa during the EIP from AD 400–700 and subsequently by the Wari from AD 700–1050. Nawinpukyo is notable for having been a center for public, communal rituals and displaying signs of emergent social differentiation (Leoni 2010; Finucane 2008). The largest archaeological remains at the site are on the hilltop, with agricultural terraces occupying the lower parts of the hill (Leoni 2010). The hilltop was the center of the EIP occupation of the site, with ceremonial buildings and a walled compound that was both ceremonial as well as defensive (Leoni 2010). Residential compounds immediately surrounded the ceremonial plaza and were likely elite residences with rectilinear rooms, patios, and elongated halls echoing later Middle Horizon patio group architecture (Leoni 2010). The East Plaza at the site consisted of a series of three concentric stone circles with a door opening to the snow-capped peak of Rasuwillka, the highest mountain visible in the region (Leoni 2010). Disarticulated camelid bones and round

stone tools provide evidence of feasting, and consequently, Leoni (2010) interprets the plaza as a location for the practice of a possible mountain cult. Some of these masonry walls at the site were physically incorporated into later Wari room blocks. While the residential areas were repurposed or continuously used and/or modified by the Wari during the Middle Horizon, the ceremonial spaces of Ñawinpukyo were not.

The reuse of EIP Huarpa sites by the Wari during the Middle Horizon is now welldocumented. At the site of Huari, Bennett's stratigraphic excavations in the 1950s identified (although incorrectly at the time) a Huarpa occupation at the lowest layers of the stratigraphy. Ochatoma et al. (2015) have confidently identified a Huarpa occupation under the Middle Horizon occupation within the Monqachayuq and Vegachayuq Moqo sectors at Huari. Ochatoma et al. (2015) found that Huarpa architecture is found, in relative abundance, beneath Huari material culture and architecture, and always under a layer of sand (usually red) that is not local to the area. This suggests that construction over Huarpa architecture contained some level of symbolic significance for Wari populations. Furthermore, the pattern of building Wari structures over preexisting Huarpa remains is also seen at the sites of Conchopata, Acuchimay and Chakipampa (Isbell 1984).

Influence from Nasca

The influence from Nasca polychrome ceramics on Huarpa style is frequently discussed in the literature on both the Huarpa and the Wari Empire (Menzel 1964; Vaughn 2006; Knobloch 1976; Conlee 2010). Dorothy Menzel's (1964) foundational south coast ceramic seriation identified burgeoning Nasca influence on Huarpa ceramics at the end of the Early Intermediate Period (Late Nasca ceramic style), around AD 500. This influence extends through the beginning of Middle Horizon. Chakipampa ceramics (a widespread highland tradition) and Ocros ceramics (possibly a local highland tradition) also have strong influences from Late Nasca phase pottery. Even "fancy" Chakipampa ceramics, strongly associated with the Wari Empire, bear a striking resemblance to Late Nasca ceramic style (Menzel 1964). While Nasca phase pottery began to influence Huarpa potters during the EIP, it wasn't until the Middle Horizon that highland styles began to influence Nasca and southcoast ceramic styles.

The nature of the relationship between Late Nasca populations and the Ayacucho valley may be illuminated by examining the iconographic features of Nasca ceramics. Towards the end of the Middle Nasca and beginning of Late Nasca style, iconography began to transition from early naturalistic and supernatural themes to images of violence and military exploitations in a more abstract or "proliferous" style (Proulx 2001; Schreiber and Rojas 2005) and is coeval with the cessation of construction at the Early Nasca ceremonial center at Cahuachi (Silverman 1994; Vaughn 2006). Around AD 540–560, a drought plagued the Southern Nasca Region, and perhaps marked a defining moment in the relationship between the highlands and coastal areas. Populations in the region began to shift to fewer, more densely settled sites, and it is at this time that Nasca influence appears on Huarpa ceramics (Schreiber 1999).

The connection between the Southern Nasca Region and the Ayacucho valley at the beginning of the Middle Horizon is so strong that scholars have even suggested that Nasca may have occupied a "special" place within the Wari Empire, possibly even influencing its expansion (Menzel 1964; Edwards 2010; Conlee 2010; Vaughn 2006). While it is still unclear whether the first occurrences of shared stylistic features during the EIP were due to

interregional interaction, trade, vertical ecology, migration, or imitation (Vaughn 2006), it is clear that there was a shared or similar belief system held between the two regions and exchange of ceramic styles, foodstuffs, obsidian, and other resources.

Middle Horizon Contemporaries: Tiwanaku

Tiwanaku culture (AD 550-1000) was first connected to discussions of the Wari Empire due to a perceived similar iconographic style, and the two polities were considered a singular entity linked by a religious following represented by a staff god iconographic figure. By the 1950s, John Rowe and Dorothy Menzel's ceramic seriation confidently identified the Wari Empire as the source for the Wari, or Middle Horizon ceramic style, not Tiwanaku. Apart from similar and/or shared iconography, Wari and Tiwanaku have very different styles of monumental architecture. While Tiwanaku monumentality focuses on sunken courts and raised mounds, with megalithic gateways and intricate masonry adornments, Wari monumentality was focused on grand masonry compounds with high walls and multistory interiors with complex and intricately connected galleries (Williams 2001). Similar to the Wari, Tiwanaku is also suggested to be the result of a consolidation of three different ethnic groups living in the Titicaca basin prior to the Middle Horizon (Uru, Aymara and Pukina) (Kolata 1993; Janusek 2004). Both Tiwanaku and Wari practiced land modifications. The Wari constructed extensive terracing programs and Tiwanaku erected intensive raised-fields for agricultural production.

Tiwanaku first rose to prominence around AD 550 in the Lake Titicaca Basin and the nature of the Tiwanaku polity has been much contested over the last several decades. It has been promoted as an expansionist state or imperial power (Ponce 1957), a religious

phenomenon, a trade center (Browman 1978) and an interaction network (Janusek 2004; Knudson 2008). More recently, it has been interpreted as an incorporative (rather than transformative) state (Janusek 2004; Goldstein 2005; Vaughn 2006; Stanish 2002). This definition is built on the models presented in Chapter 2, and refers to a state-level practice of incorporating diverse groups and populations into a system, rather than "forcing" them into a monolithic state program (Vaughn 2006). This transformation in archaeological perceptions of Tiwanaku has had lasting implications on the ways that scholars explore issues of craft production (for further discussion on craft production see Chapter 4). Paul Goldstein (2005) suggests that Tiwanaku-associated communities are best understood as belonging to a "diaspora" of trade and socioeconomic relationships, rather than as colonies of the state. Some regions, possibly selected for resource availability, were selectively incorporated into the Tiwanaku polity (Stanish 2002), leading some scholars to view productive regions, and migrant populations existing within them, as an "archipelago" of Tiwanaku interaction (Goldstein 2000). Through this system, Tiwanaku rulers were able to establish "political hegemony" in the Lake Titicaca region, incorporating pre-existing organization and populations into new institutions for state power (Janusek 1999). This is consistent with settlement patterns studies that show a relatively discontinuous application of Tiwanaku state power over different regions within the Titicaca Basin (Janusek 2004).

The center of the Tiwanaku state was the city of Tiwanaku, located at 3800 masl and covering an extent of six square kilometers by AD 800. The population growth in the city of Tiwanaku was coeval with an increase in population in the nearby hinterlands and an emergent organization of a four-tiered settlement hierarchy, similar to the process for consolidation at Huari (Janusek 2004). The city of Tiwanaku had great displays of power

(Kolata 1993; Janusek 2004) and a built landscape that used ideological concepts to materialize hierarchical social order (Janusek 2004; Kolata 1993; Janusek 2006). Iconographic themes that once showed deified personas connected to the water and the earth, shifted upon consolidation at Tiwanaku, to portray elite personas with prestigious resources connected to celestial beings and the sun (Janusek 2006).

III. The Wari Capital and Imperial Power

Capitals vs. Cities

As discussed in Chapter 2, much archaeological research on empires has focused on either the capital or on the periphery or hinterland. While this dissertation problematizes this dichotomous approach, it also acknowledges the very specific interactions that happen within an imperial capital, and nowhere else within the empire. Most research on capitals is founded upon World Systems Theory, emphasizing the push and pull influences from capital cores not regional peripheries. More recently, work emerging from post-processual critiques of systems approaches has focused on the more nuanced relationship between all participants within an empire. Amos Rapoport's work (1993) approaches the study of capitals in direct contrast from what they are not – cities. Rapoport argues that capitals are strong and enduring administrative and economic centers at the top of a regional settlement hierarchy. More importantly, they are characterized by high levels of investment in symbols of national or imperial identity (Rapoport 1993). For example, imagine any capital city today and they are represented by iconic symbols that both inhabitants of the capital, and outsiders alike, can recall and associate with that specific empire or nation.

Rapoport (1993) outlines three aspects that are considered unique to capitals: 1) they are centers for control (coercive, economic and political); 2) they have wide interests or scope when compared with other cities; and 3) they play a primary role in the organization of a territory. While focusing on the local and mutually affecting relationships between the capital and the hinterland is important, it cannot be done by ignoring the very real fact that a capital plays a very different, unique and fundamental role within an empire. Carla Sinopoli (1994: 293) acknowledges the benefit of focusing on the capital in archaeological research due to the fact that a capital can be studied as an "artifact" of empire, as a locus for control, and as a tangible, concrete location with measurable features. Because a capital contains the most direct access to the seat of imperial power, its archaeological material is a reflection of this proximity, and by proxy, a direct line into imperial power and process: "a capital is thus a center of symbolism, of culture-specific expression, of grandeur, elaboration, sacredness, [and] resources invested, etc." (Rapoport 1993: 33).

Huari, the Capital of the Wari Empire

The capital of the Wari Empire was a large city located in the highlands of the Ayacucho valley approximately 20km north of the present-day city of Ayacucho (Figure 1.2). As previously discussed, Huari lies at 2,800 masl and lies within the maize-growing *quechua* ecozone, where access to maize would have been readily available. Relying on vertical ecology, the Wari would have also had access to potatoes and other tubers and camelid pasturelands at higher elevations (Schreiber 2013). The entire site covered approximately 15 square kilometers and consisted of a dense urban population, elite palaces, ceremonial centers, craft production zones and mausoleums (Isbell 1997; Schreiber 2001;

Tung 2012; Ochatoma et al. 2015). What archaeologists know about Huari comes from less than 10% of the site, and the surface has poor visibility due to the expansive *tuna*, or prickly-pear cactus, growing through the porous soil created by archaeological remains.

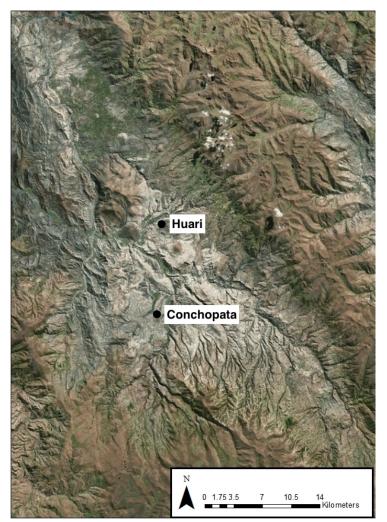


Figure 3.2. Map of the Ayacucho Valley. Showing Wari sites of Huari and Conchopata.

The site of Huari has been divided by archaeologists into sectors, largely based on geographic delimitations and functional characteristics. The sectors of Vegachayuq Moqo (from which the data for this dissertation was derived) and Monqachayuq contain large architectural groups and ceremonial structures, including the well-known D-shaped structure that spans 30m in diameter (Bragayrac 1991) that has been interpreted as a Wari temple (Ochatoma et al. 2015). In addition, these sectors include a mortuary complex with elaborate stone masonry (Isbell 1997; Ochatoma et al. 2015). The level of detail given to mausoleums is also echoed at the sector of Cheqo Wasi, which was constructed during the height of Wari expansion (Wolf 2012), and considered to be an elite burial location (Ochatoma et al. 2015). The site of Huari appears divided by socioeconomic or other identifying markers of class or status, based in large part on the quality of stone masonry within the sector. The sector of Moraduchayuq, perhaps with the best representation of Wari-style compounds, as well as Cheqo Wasi and Robles Moqo, were sectors of the site reserved for elite personages. Robles Moqo is separated from the rest of Huari by a large standing wall and contains walls of structures standing over eight meters in height (Ochatoma et al. 2015; Lumbreras 2007), and may have been utilized by the highest level elites, or "kingly" individuals (Ochatoma et al. 2015). In contrast, the sector of Waripampa, suggests a more densely clustered area with residential compounds for a more "common" population (Ochatoma et al. 2015).

IV. Wari Hinterlands

As discussed in Chapter 2, understanding imperial strategies of control is dependent upon a full understanding of the relationships both within and between the capital and the outlying, or hinterland, regions. The Wari adapted their strategies of control by region, administering control through a combination of relatively indirect or relatively direct control, largely depending upon the pre-existing sociopolitical organization, infrastructure and resources available within a region (Schreiber 1987, 1992). Therefore, it is important to examine Wari presence in hinterland regions. As mentioned at the beginning of this chapter,

the regions discussed here do not reflect the full geographic or administrative extent of the empire, but instead represent several of the regions in geographic and material proximity to Wari through the road network, and the movement of populations and resources. A map of the regions and sites discussed in this section can be seen in Figure 3.3.

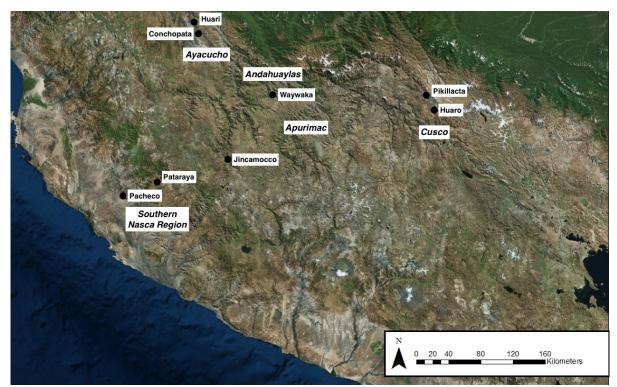


Figure 3.3. Map of sites and regions discussed in Chapter 3.

Ayacucho Valley

The site of Conchopata, located approximately 10km south of the capital at Huari, lies at 2,700 masl on a flat mesa within the present-day city of Ayacucho. At its height during the second half of the Middle Horizon, the site covered an area of approximately 20 to 40 hectares. First identified in 1942 by Julio C. Tello, the site is known for its elaborately decorated and oversized ceramic urns, buried in offering deposits throughout the site. The vessels depict mythological and ideological images of the staff god, or front faced deity, an iconography that was shared with the neighboring regions of Nasca and Tiwanaku. The shape and size of the urns suggest that they had been used to contain liquids, perhaps large quantities of *chicha* used for feasting purposes (Isbell 1984; Burger et al. 2016; Knobloch 2000). Further excavations at the site, led by Luis Lumbreras (1974; Pozzi-Escot 1985), also found evidence of a community of ceramic specialists (Burger et al. 2016). Apart from traditionally identified potting tools, the dense orthogonal architecture at the site contained evidence for the first kilns identified archaeologically in the region (Leoni 1999; Wolf 2012).

More recent research at Conchopata has led Isbell (2004) to consider the site a "second city" to the capital at Huari, consisting of a dense urban core, plazas and patios, and a possible perimeter wall. In addition to possessing architectural features diagnostic of an urban core, Isbell (2004) also identified burials at Conchopata containing markers of wealth, something that a strictly middle-class community of potters would not have had. The site of Conchopata also has the large patio groups, mortuary features and D-shaped ritual structures characteristic of other Wari imperial sites. The D-shaped structure at Conchopata measures 12m in diameter (compared to the 30m diameter at Huari), and was erected at the height of Wari expansion (Wolf 2012). The site of Conchopata, previously thought to have been abandoned in the earlier part of the late Middle Horizon, was, in fact, occupied until the end of the Middle Horizon, as late as AD 1000.

Central Highlands

Around 100km from the capital of Huari, lies the Andahuaylas region, located in the Department of Apurímac. Wari imperial presence was first noted in the region by John Rowe in 1956, and subsequently confirmed by excavations led by Joel Grossman (1972) and Frank

Meddens (1985). Further work continues to illuminate the nature of Wari involvement in the region (Bauer and Kellett 2010; Kurin 2016; Bauer et al. 2010). Andahuaylas is the name given to the valley containing the Chumbao River on the eastern slopes of the Chumbao mountain range, and is recognized as one of the most productive agricultural zones in the region, containing both the *quechua* and *puna* ecozones. Andahuaylas has a rich history of mineral extraction, including salt mines and copper veins (Kurin 2012; Burger et al. 2006), and the Potreropampa obsidian source (discussed in Chapter 5) is located 75km to the south. In addition, the region contains the earliest evidence for gold-working toolkits in the Andes at the site of Waywaka, dating to around 1,500 BC (Grossman 1972). In addition to rich lands for agriculture and camelid herding and extensive mineral resources, Andahuaylas was also along a natural corridor (and Wari road) from Huari to the Cusco region, as well as to the administrative center of Jincamocco in the Sondondo valley and subsequently Nasca and the South Coast (Kurin 2012). It is not surprising, therefore, that Andahuaylas is considered to be one of the first regions that was drawn into to the Wari hegemony (Grossman 1983).

The emergence and expansion of the Wari empire appeared to only minimally change the ceramic, architectural and economic structure of the Andahuaylas region (Bauer and Kellett 2010; Kurin 2012; Grossman 1983). Middle Horizon settlements in Andahuaylas continued to be located in areas of agricultural fertility, with only a marginal shift to greater population density and fewer sites (Bauer et al. 2010). Agricultural practices continued as they did the Early Intermediate Period, and surprisingly no new terraces were established during the Middle Horizon (even in one of the richest agricultural valleys), leading scholars to suggest that Andahuaylas was successfully "assimilated" into the empire instead of conquered or occupied (Bauer and Kellett 2010).

There is also no evidence of a Wari administrative center in the region, unlike in other neighboring regions (such as Sondondo). The relationship between Andahuaylas and the Wari Empire is perhaps most notable in the exchange of iconographic motifs and ceramics (largely acknowledged as unidirectionally flowing from Wari to Andahuaylas, and not the other way around). Wari ceramics (even "fancy" Wari ceramics) are present at many sites within the Andahuaylas region (Bauer et al. 2010), and there are even examples of ceramic sherds with distinctively Wari pastes, but with unmistakably local Qasawirka designs (Grossman 1983). This interplay suggests not only the transfer of iconography between regions, but perhaps also people and knowledge. However, this exchange is not easy to identify. It also appears that local individuals were responsible for the economic extraction of resources from the region. Danielle Kurin's bioarchaeological research identified zero individuals from the Ayacucho Valley living within Andahuaylas (Kurin 2012). Instead, the individuals extracting salt from the mines at Cachi and agricultural products from Turpo (products thought to be consumed by the Empire) were locally-born Andahuaylan individuals, all of whom were buried in association with Wari imperial symbols and products (Kurin 2012).

Following the collapse of the Wari Empire at the end of the Middle Horizon, the Andahuaylas region saw a dramatic upturn in violent aggression. Over 400 sites were abandoned, there was a sudden disappearance of Qasawirka and Wari ceramics, and new occupations were placed on hilltops and mountain ridges (Bauer and Kellett 2010). As Kurin (2012) states, the presence of Wari in the Andahuaylas region, while perhaps not uniformly felt, caused a definite aftershock in Andahuaylas that was "uniformly tumultuous" (Kurin 2012). The Late Intermediate Period in the region is marked by increasing levels of violence

and interpersonal conflict between perceived ethnic groups created in the empty vacuum left by the disappearance of Wari political power. The complete abandonment of Qasawirka and Wari sites and ceramic styles may represent a decision on behalf of the Andahuaylan people to forget and disassociate from the fallen-down empire (Kurin 2012). This practice of site abandonment is also echoed in the Nasca region following Wari collapse (Edwards 2010).

The Sondondo valley, is located approximately 150km south from the capital at Huari, roughly a six-day journey on foot (Schreiber 1987). Prior to the Middle Horizon, Early Intermediate Period sites in the Sondondo Valley were located between 2,800 and 3,800 masl, mostly within the higher *suni* ecozone corresponding to tuber production (Schreiber 1987). Some of the higher elevation *puna* areas in the valley would have likely been used for camelid herding, and several EIP villages located on the border between the *suni* and *puna* ecozones, were likely located to take advantage of both tuber production and access to camelid pasturelands (Schreiber 1987). The Wari occupation of the Sondondo Valley began around AD 600, and was characterized by extensive restructuring of the agricultural potential of the valley, including the relocation of sites to elevations below 3,300 masl (to areas capable of intensive maize production), and the construction of bench terracing in the lower valley (below 3,300 masl) to artificially increase the agricultural potential of the land (Schreiber and Edwards 2014).

The largest Wari facility in the Sondondo Valley is the administrative center of Jincamocco. Jincamocco is an architecturally Wari-style compound erected over an earlier local site, and when initially constructed, covered an area of approximately 3.4 hectares. Jincamocco was later expanded by the Wari to cover an additional 15 hectares (Schreiber 1987). This is the only known Wari administrative center (apart from Pikillacta in Cusco) to

have been expanded by the Wari after its initial construction, suggesting that whatever the function of Jincamocco, it may have changed or gained increasing importance in later phases of imperial consolidation. At Jincamocco, archaeological excavation and survey showed evidence of agriculture, food preparation, craft production of textiles, and possible storage facilities, suggesting that the site likely functioned as a generalized administrative center for the empire (Schreiber 1987).

The Sondondo Valley also contains (apart from Jincamocco) an additional three compounds with Wari-style architecture. These compounds are much smaller than Jincamocco, but still contain exclusively Middle Horizon period ceramics, and were possibly used as storage facilities, or habitations for important Wari families (Schreiber 1987). In addition, these compounds may have been important in regulating access and passage through the Sondondo Valley, as one compound is located where the Wari road enters the valley from the north, most likely a route to the capital (Schreiber 1987). Unlike Andahuaylas, the Sondondo Valley contain the remnants of four intrusive Wari settlements, while Andahuaylas has no evidence of direct infrastructural investment. This may be due to the differing resources of each region. While Andahuaylas contained mines for salt and metal (transportable objects with easily controlled extractive sources), Sondondo was utilized for intensive maize production (difficult to transport and requiring high levels of oversight and investment).

Southern Nasca Region

As previously discussed, the Nasca region continues to play a fundamental role in the Wari Empire during the Middle Horizon. The administrative outposts of Pataraya, Pacheco

and Incawasi were all established along the Wari road connecting the Southern Nasca Region to the Wari administrative center of Jincamocco in the Sondondo Valley. Each of the three administrative centers (a relatively high number of centers in comparison to other Waricontrolled regions) had distinctive Wari architecture, differentiating them from locally occupied sites. The highest elevation site (the first you would encounter on the road from Jincamocco to the Southern Nasca Region) was Incawasi (2,700 masl), which due to presentday agricultural disturbance has produced very little contextual data. Incawasi was the largest of the three Wari sites in the region, measuring approximately 400 square meters in area (Edwards 2010). The next site encountered on the road to the coast is the outpost of Pataraya (1,350 masl), likely a location for textile manufacture and the acquisition and transshipment of coastal cotton into the highlands (Edwards 2010; Edwards et al. 2008). Smaller than Incawasi, Pataraya spanned an area of 250 square meters, and was established on previously unused land and was occupied for its duration by non-local, Wari individuals (Edwards 2017).

The remaining Wari site in the Southern Nasca Region, Pacheco (375 masl), has been suggested to have been a site for religious offerings, in contrast to the more economicallyoriented site of Pataraya. Deliberately broken vessels interred in adobe chambers at Pacheco are similar to offering deposits found at Conchopata (Menzel 1964; Conlee 2010; Tello 2009). In addition, these vessels (some of which depicted the Wari staff god), were uniformly broken by blows to the chest or face of the figure, leading to interpretations of the vessels as either ritual, and/or evidence of a Nasca "resistance" to Wari hegemony (Schreiber 2005). The location of Pacheco is also important and it is positioned just up the valley from the Nasca ceremonial site of Cahuachi. Cahuachi functioned as not only a pilgrimage center for

south coast populations in the Early Intermediate Period, but was also located on top of the clay source used for all of Nasca fine polychrome ceramics (Vaughn and Neff 2000). The placement of Pacheco up valley from Cahuachi did not stop the use of the site, as cemeteries were constructed through the end of the Middle Horizon, but most likely controlled access to the important economic and spiritual location (Schreiber, pers. comm.).

The collapse of the Wari Empire was felt heavily in the Southern Nasca Region. The collapse appears to have occurred during a relatively short period of time, but was not sudden. Instead, Edwards (2010) proposes that Wari abandonment of the region was a purposeful and methodical removal. Excavations at Pataraya show that the site had been ritually closed, with the Wari symbolically walling up sections, performing closing rituals, and cleaning the space as they left (Edwards 2010). Similar to the response in Andahuaylas, the collapse of Wari in the region prompted a "dark ages", resulting in the abandonment of previously occupied habitations and cemeteries, and the movement of populations up into defensive locations (Conlee 2003).

Cusco

Within the entire Cusco region, the Lucre and Huaro basins have the greatest evidence for Wari presence in the region, at the Wari sites of Pikillacta and Huaro, respectively. The Lucre and Huaro basins may have been heavily utilized by the Wari due to their close proximity to both the Andean highlands and the upper Amazon drainage (Skidmore 2012). In addition, lower elevations in the Cusco region were similar geographically to the Ayacucho area (i.e., suitable for maize agriculture), and would have been familiar to the Wari (Schreiber 1992; Skidmore 2012). Prior to the Middle Horizon and Wari investment in the region, the Early Intermediate Period in Cusco was marked by population growth and the movement of settlements into lower elevations of the basin, likely to capitalize on burgeoning maize agriculture (Covey et al. 2013). However, prior to the Middle Horizon, there was no evidence of landscape modification (terracing, irrigation, etc.) (Skidmore 2012).

Perhaps one of the best-studied Wari sites in the Cusco region is the administrative center of Pikillacta, located in the Lucre Basin at 3,250 masl, approximately 30km southeast of Cusco. The site measures approximately 500 square meters and lies on a ridge above Lake Huacarpay, and was built in a characteristically Wari-style orthogonal pattern consisting of multiple compounds (Covey et al. 2013; Glowacki and Malpass 2003). Despite being the largest architectural structure in the Cusco region prior to the Inca Empire of the Late Horizon, Pikillacta had minimal surface remains and has therefore been difficult to reconstruct archaeologically. One sector of the site was originally suggested to have been a storage facility based on its location and architecture, however direct evidence of storage has not yet been identified (McEwan 1996). McEwan (1996) suggests that Pikillacta more likely operated as a provincial or regional capital of the Wari empire, due to its location within a maize producing region and along the Wari road network, connected to Huari through Andahuaylas. In addition, Pikillacta was the largest site in the region during the Middle Horizon, and must have been an impressive symbol of Wari power. Lastly, the presence of fine polychrome ceramic, shell and spondylus from the coast as well as other elite and prestige goods (including feasting vessels) suggest that the site was an administrative or regional site for Wari elite personnel (McEwan 1996).

Despite the fact that McEwan (2005) estimated that construction of Pikillacta took approximately several million worker-days, some sectors of the site were never completed before it was abandoned at the end of the Middle Horizon (Covey et al. 2013). Similar to Pataraya, the abandonment of the site was orderly and consisted of elaborate closing rituals, including the blocking of doorways, removing of valuables and other goods from rooms, and deliberately filling and closing rooms with clay. McEwan (1996) suggests that this may mean that the Wari intended to return to Pikillacta—but this never happened. Some time after the Wari left, the site was purposefully burned, likely by local and possibly rebellious populations (McEwan 1996).

The Huaro Basin, also occupied by the Wari during the Middle Horizon, was home to the Wari-style residential center of Huaro. Huaro was less carefully planned, which has been interpreted as perhaps a softer form of direct control than that experienced in the Lucre Basin (Skidmore 2012; Covey et al. 2013). Huaro was constructed by the Wari during the Middle Horizon, but the residential sector of Hatun Cotuyoc at the site suggests that those living there lived similarly to other residential sites in the Ayacucho valley, with the exception of increased access to exotic resources, trade goods, and symbols of the Wari Empire (Skidmore 2012). Skidmore (2012) suggests that the similarity in domestic activities at Hatun Cotuyoc and other Ayacucho valley sites suggests that residents at Huaro were colonists from the Wari heartland.

V. Concluding Remarks

This chapter explored the ecological, temporal and cultural contexts in which the Wari Empire developed, consolidated and maintained power, over a wide expanse of the Andes. The Wari Empire employed a strategy for resource control in hinterland regions, using vertical ecology to capitalize on naturally occurring resources spread out over different ecological niches within in the central highlands. In the Ayacucho valley, maize agriculture spurred population growth and the development of the Huari capital. Andahuaylas served as an important hub on the Wari road network connecting to Cusco. And although the region was rich in salt, copper, and other minerals that were heavily utilized by the Wari, there was no known administrative center. The Sondondo Valley was heavily restructured to maximize production of maize agriculture, and the administrative center of Jincamocco was a pivotal stop on the way to the Southern Nasca Region. Nasca (along with the administrative site of Pataraya) supplied cotton, coca and iconographic inspiration from the south coast to the Wari highlands. Cusco's Pikillacta dominated the landscape in the region, and also facilitated intensive restructuring for maize agriculture. Understanding the intersecting relationships between regions and resources as managed through culturally, historically and regionally specific populations is the theme of this dissertation and will be explored in greater detail through a theoretical discussion of political economy in Chapter 4, and the distribution of obsidian in Chapter 5.

CHAPTER 4

POLITICAL ECONOMY AND CRAFT PRODUTION

Political economy, broadly defined as the organization of economic systems as they intersect with power and political and social systems, is heavily informed by theoretical frameworks developed by Adam Smith and Karl Marx in the late 18th and early 19th centuries. Smith and Marx explored burgeoning capitalist concepts of rent, labor, capital, profit, exchange, production, and distribution, as structured by complex webs of political, social and economic factors. Studies of political economy within archaeological contexts are, in most applications, focused on systems and societies far removed from more present-day capitalist systems. However, the acknowledgement of the inherent power differential existent within capitalist systems was seen as paralleling the power differentials universally present within all state-level societies, and therefore political economy became a universalizing approach to understanding material surplus and the use of labor to create and maintain political institutions, with an emphasis on social and political evolution (Wells 2006). Archaeological research utilizing a political economic perspective has historically focused on the development of social and political hierarchies, on political evolution, or on the maintenance and systemic integration of power in state-level societies (Hirth 1996; Vaughn 2006; Stanish 1992; Earle 1994).

I. Political Economy, Political Complexity and Social Evolution

Scholars who focus on the development of political and social complexity often turn to political economic approaches to explain the rise of chiefly power and institutionalized hierarchy (Stanish 1992; Vaughn 2006; Adams 1966). A primary focus for theses studies is the role of surplus and/or prestige goods in the development of social and political leaders and the subsequent institutionalization of power within chiefdoms and states (Childe 1950). Elmann Service even went so far as to state that "one of the most striking things about the evolution of culture is the rapid improvement in the products of craft specialization at the point of the rise of chiefdoms" (Service 1962: 148). This perspective, however limiting and typological, was quickly incorporated into processual models of social evolution. Managerial models saw redistribution as fundamental to the development of emergent leadership (Sahlins 1972; Service 1962), while finance models explored the manufacture or procurement of products and resources in exchange for service or patronage (Friedman and Rowlands 1977; Chase and Chase 2001). Debt models addressed elite self-interest and the establishment of relationships built upon unequal exchange, debt, or contractual relationships between patrons and clients. And world systems models (previously addressed in Chapter 2), focused on the universal relationship between cores and peripheries that dictated the directionality of exchange and consumption (Wells 2006).

Ultimately, however, the different foci of these models highlights the incredible variability present within political economic systems, and consequently, the inadequacy of a single model to represent the totality of power relationships and political, social and economic practices within a society. For example, Timothy Earle's (1987) foundational study

of Hawaiian chiefdoms explored not only the role of chiefs in the distribution of subsistence plots in exchange for corvée or indentured labor, but also how chiefs relied on surplus (managerial model) from corvée labor to "pay" for elite support and infrastructure (finance model). Simultaneously, Hawaiian society allowed for warriors to rise to chiefly status through an ideology favoring exploits in war, further complicating models by the fact that these wars were ultimately battles over chiefly-organized land and the rights to extract surplus and labor (Earle 1987). The complexities inherent in all political economic systems require a more nuanced approach than simply following the delimitations of a single model.

Cross-cutting the models presented above was a focus within archaeological studies on social evolution and the way in which elites began to control power through the regulation of prestige goods, also known as the "prestige goods theory" (Dupre and Rey 1973; Ekholm 1972; Costin and Earle 1989). In this theory, power is considered to ultimately derive from control over the labor and resources to produce limited quantities of high-value goods. The value of these goods can fall into a myriad of categories: religion, ritual practice, gift-giving, rarity, and many more. The theory posits that elites become patrons of special crafts and raw materials that carry symbolic, economic, and political value (or any combination of the above) as well as, or in addition to, objects that require high levels of knowledge and skill to quarry, produce, and/or utilize (Urban and Schortman 2004). Often goods that fall within the rubric of a prestige good are made from non-local raw resources, are difficult to fake or reproduce through skilled labor, and are only accessible through limited channels (Ekholm 1972). Ultimately, typologies and ideal models, while important in that they have informed all subsequent studies of political economy and social evolution, tend to simplify the complexities of political economic systems as they focus more on defining stages in a social

evolutionary sequence instead of focusing on the the political and economic processes themselves as the end goal (Earle 2011).

II. Political Economy and Power

From the 1950s to the 1970s, much of economic anthropology was focused on defining and debating the differences between formalist, substantivist and marxist economic theories. Formalist and marxist theories drew no distinctions between the capitalist economies (within which these theories developed) and the non-capitalist economies of prehistory (Smith 2004; Dalton 1990). The leading proponent of the substantivist models, Karl Polanyi, proposed that non-capitalist economic systems operated around reciprocity and redistribution and were incomparable to capitalist economics (1968). Polanyi's substantivist model became increasing popular among economic anthropologists during the processual archaeology of the 1960s to 1980s, however, the assertion that non-capitalist societies lacked the same economic rationality and were so far removed from other types of economic systems, has been considered a detriment by some (Smith 2004).

Beginning in the early 1990s, two different approaches to economic anthropology emerged that linked power to political economy: adaptationist and political. In adaptationist approaches, economic practices were seen as adaptational responses from a society to its environment (Sanders et al. 1979). Adaptationist approaches asserted that (when environmentally beneficial) political elites intervened in the economy through mechanisms of redistribution, reciprocity, centralized decision making and sponsored trade (Service 1962; Sahlins 1958). For example, specialization and redistributive economic practices emerged in

in areas of high resource diversity and resource instability (Brumfiel and Earle 1987). In contrast, the political model assumed that political elites employ specialization and exchange to create and maintain social inequality through monopolies, coercive power, and control (over materials, labor, and distribution) (Brumfiel and Earle 1987). The political model focused on elite expropriation of resources from and through a broader population, either through labor and/or distribution (Wells 2006).

One of the more foundational political models was advanced by Elizabeth Brumfiel and Timothy Earle (1987) and outlines how political elites fostered, and capitalized off of, specialization and exchange to encourage and maintain social inequalities, to strengthen political coalitions, and to establish widespread institutional control. "Political economy is the material foundation upon which complex social institutions are constructed, and is the mechanism by which elites support the institutions on which their power, control and legitimacy rest" (Earle 1994; Earle 1991). This model has provided a starting point for most discussions on power relations in state-level societies. The political model, and this dissertation, both begin from the assumption that the political economy of a society is not only the basis for which power and control is institutionalized and maintained, but also a material and patterned reflection of these intersections. Scholars have sought to illuminate the processes by which power and control are institutionalized within political economies. Earle's (1977) division between two principle forms of economic interaction (staple finance and wealth finance) within state-level societies has formed the basis for much of the subsequent research on the subject.

Staple Finance

Staple finance is the political economic system characterized by state-sponsored control over staple products, such as grains, livestock, clothing, and other necessary goods (Earle 1994). In a staple finance system, the state owns all lands—and the products subsumed within—and allows subject populations to use the land for subsistence, in exchange for the production of goods for the state (as a tax or through a system of corvée labor). Or it may also involve the subject population performing labor on a part-time or seasonal basis (D'Altroy and Earle 1985). Staple finance systems are relatively straightforward; they rely on the mobilization of labor and the state-controlled redistribution of land, products and resources to the subject population (Earle 1977; Smelser 1959). This form of labor mobilization, also known as assigned production, separates land from its typical context—the household (Hirth 1996). This system excels because it collects from its population not only subsistence resources, but also generally necessary household goods, and then redistributes them back to the subject population (D'Altroy and Earle 1985).

Despite the fact that staple finance systems are relatively straightforward in theory, they are logistically difficult to execute, particularly over a large territorial empire. The main disadvantage is that the system relies on the production and mobilization of bulk products that require storage and are often too heavy to be transported over long distances (D'Altroy and Earle 1985). This makes staple finance systems more suitable for small agrarian states or for empires capable of regional-level resource mobilization and control (D'Altroy and Earle 1985). For larger states or empires, the political economy is usually decentralized, meaning that much of the power and influence exerted over the management and regulation of landuse and production outside of the heartland is done so at great physical as well as political

and economic distance from the capital (Earle 1994). In addition, instead of moving resources or goods produced in a province to the capital, they are mobilized and redistributed in the same region in which they were produced. This makes maintaining the power and control in the capital an increasingly more difficult endeavor as it requires managerial investment either of imperial officers outside of the physical control of the capital, or the promotion of local elites to positions of power over their local populations. The more decentralized a staple finance system becomes, the less control can be exerted by the capital, or imperial center. Wealth finance systems are often a solution to this managerial dilemma.

Wealth Finance

Wealth finance systems are political economies that are characterized by the manufacture and distribution of special objects (such as personal adornments, status markers, currency, prestige goods, etc.) that operate as a form of political or social payment and as a way for elites to foster and maintain relationships and obligations with necessary personnel (Dalton 1977; D'Altroy and Earle 1985). Special objects within a wealth finance system usually have an established relative value when compared to other special objects, but are not necessarily linked to subsistence goods as they would be in a form of market exchange (D'Altroy and Earle 1985). The value of a special object is largely symbolic, but must still be agreed upon by all individuals within the system. The giving of a special object within a wealth finance system is only one aspect of this political economic model. The objects themselves are usually produced from non-local (i.e., rare) raw materials, involve higher levels of skilled production, and have tightly controlled distribution channels. Some special objects are produced as corvée labor (discussed above), in exchange for subsistence use of

the land, or can be more regulated and produced by craft specialists (hired or indentured). The control achieved over special goods that operate within a wealth finance system can be limited to one phase of the production or distribution sequence or all of them, depending on the level of control necessary (Urban and Schortman 2004). This can be further complicated in that different objects may have or require different levels of control, even as they operate within the same wealth finance system. Items that operate as wealth objects may also not always intersect obviously with status, and may be multipurpose or utilitarian tools that are often ignored during archaeological analyses (Cobb 1996). While easier in that wealth finance systems do not require the storage requirements of staple finance systems, the primary disadvantage to wealth finance systems is that they are, by nature, limited in that the value of wealth objects must be converted to subsistence goods if they are to operate on a level outside of elite exchange (D'Altroy and Earle 1985).

Although originally dichotomized as two independent systems, staple and wealth finance are rarely independent from each other in complex societies (D'Altroy and Earle 1985; Smith 1998). For example, in the Hawaiian chiefdoms studied by Earle (1987), staple goods mobilized from the labor of subject populations are used to support craft specialists who produce wealth items for elite personages. This cyclical arrangement is seen in the Inca Empire as well. In addition, objects that operate as wealth items may not be prestigious, but may be highly useful utilitarian items that are difficult to procure or produce (D'Altroy and Earle 1985). Most scholars now approach staple and wealth finance as different systems that can be present within a political economy in varying permutations, and that context- and object-specific analyses are required for each society (Smith 1998). An example is presented below of the intersections of staple and wealth finance in the Inca Empire.

Staple and Wealth Finance in the Inca Empire

The Inca Empire provides a good example for approaching the co-operation of staple and wealth finance systems within the Andes, particularly due to the ethnohistoric accounts from Spanish conquistadors, a level of historical information that is lacking for the earlier Wari Empire. The Inca relied heavily on corvée labor, a form of indentured labor, in which labor was exacted in exchange for subject populations having access to land and resources for subsistence. Corvée labor as a form of obligation between the subject population and the state was not unique to the Inca Empire, and evidence suggests the practice developed from a local pre-state Andean system of *avllu* exchange, a form of reciprocal exchange between households along kinship lines and different ecological zones (see Chapter 3) (Wachtel 1977; D'Altroy and Earle 1985). Laborers for the Inca Empire largely did not provide staple products directly from the household, but instead served the state apparatus on a part-time basis and produced resources (grain, textiles, etc.) from state-owned lands or locations (D'Altroy and Earle 1985). The pre-hispanic Andes had no known system of market exchange (Stanish 1992), and so communities produced goods for the empire, or gave labor to the military, mines, infrastructural projects, etc. in exchange for the ability to subsist off of state-owned land (Earle and D'Altroy 1982).

Within the Inca Empire, wealth finance objects operated to link and integrate managerial personnel from the capital to the far-flung hinterlands (D'Altroy and Earle. 1985). Furthermore, the practice of exchanging or gifting special value or prestige goods predated the emergence of the empire. Prior to the Inca Empire, Andean populations circulated special products such as spondylus, obsidian, precious stones and metals, and feathers from elaborately colored Amazonian birds, to name a few (Vaughn 2006). Within the Inca Empire, wealth finance objects were mobilized in two ways: 1) gifts between local elites and the state; and 2) conversion of staples goods into objects produced by craft specialists (both resources and labor) (D'Altroy and Earle 1985). A regional example of the wealth finance system was documented in the Mantaro Valley where the beginning of the Inca Empire corresponded to increased silver production by regional communities, but decreased consumption of silver by those same communities (D'Altroy and Earle 1985; VanBuren and Presta 2010). A similar pattern was seen in the production and consumption of maize (a staple resource) by hinterland populations (Hastorf 1990). In other words, the empire employed a process of labor taxation upon the Mantaro communities to produce a special object (silver) that was intended not for redistribution back to the community, but for mobilization within a wealth finance system directed by the state.

Further complicating the staple and wealth finance dichotomy are the ways in which economic organization exists outside of the capital within the Inca Empire. According to ethnohistoric documents, local lords would receive tribute taxes or payments from local populations, consisting of textiles, beads, metalwork, and specialized agricultural products (such as coca). These products would be redistributed as gifts within local political hierarchies to establish obligations as well as to purchase other products. In addition to this system, there were merchant intermediaries who bought and sold special objects both from and to local elites. And it appears that the intersections of these different systems were dependent upon pre-existing regional political and economic systems that pre-dated the emergence of the empire (D'Altroy and Earle 1985). Schreiber (1992) suggests that the Wari Empire would have practiced the same regionally flexible model of political economy, making our understanding of Wari political economy dependent not only upon the

specialized product, but on the local and regional political and economic systems that intersect the larger imperial agenda.

III. Recent Approaches to Political Economy

More recent approaches to political economy have begun to move away from a singular focus on resources and finance, to a focus on individuals, ideology, and social control as inextricably linked to political economy (Bourdieu 1979; Giddens 1984; Brumfiel 1992; Urban and Schortman 2004). Studies of political economic systems have, consequently, begun to focus on craft production and the individuals (most often non-elite) who "actively [participated] in fashioning the social and cultural worlds they inhabited" (Urban and Schortman 2004: 186). Crafts and goods can show evidence of the crafter's identity, including gender, rank, status, kinship, etc. (Wells 2006; Inomata 2001; Janusek 1999). Ultimately, it comes down to the fact that political economic systems reliant on the purely symbolic value of goods do not succeed unless those objects have a recognized and agreed upon value by all within the system (Giddens 1984; DeMarrais et al. 1996; Demarest 2013). Therefore, scholars have begun to focus on the materialization of ideology, or how objects themselves can carry symbols of ideology, to explain how symbols of imperial control come to be incorporated within subject populations. However, at the same time scholars still recognize that symbols, and the objects that contain them, can carry multiple interpretations, with different meanings attributed to the object by different populations, similar to the idea of religious syncretism (Bourdieu 1979; Schortman et al. 2001; Loren 2001; Silliman 2009; Appadurai 1986). For example, in the Andes, indigenous populations

continued to celebrate their own traditions and gods through the pantheon of saints and holidays of Catholicism, the double meaning of which was often hidden to the Spanish priests. In analogy, objects can contain the same double meanings, hidden to some members of the population. As Arjun Appadurai (1986: 5) suggests, it is "things-in-motion" that can illuminate hidden social contexts and meanings. As Wells states, "consumption can be viewed as politico-symbolic drama that provides an arena for highly condensed symbolic representations of social relations" (Wells 2006: 282; Cohen 1974).

Studies of political economy have attempted to move past this dichotomous approach focused on typologies and binaries (substantivist vs. political; staple finance vs. wealth finance) and to acknowledge that production, exchange and all other phases of a *chaine operatoire* are "two sides of the same political coin... used together by elites to accumulate resources and exercise control over their respective populations" (Hirth 1996: 206). Hirth (1999: 4) suggests that political economy needs to be studied archaeologically through a focus on four guiding principles: 1) the accumulation of resources; 2) the where and how of resource accumulation; 3) the position of elites at nexuses of control; and 4) the role of ideology in the control over these nexuses and resources (Demarest 2013). In addition, all studies of political economies benefit from a focus on the diversity of resource mobilization strategies and the common mechanisms used across all societies (Hirth 1996: 206). It is both the recognition of micro-level diversity as well as the orientation of macro-level systems that comprise a complete understanding of political economy in archaeology.

IV. Craft Production

Studies of political economies have begun to place a renewed focus on the materiality of objects and their role within society and turned to craft specialization and production as a way to address the social, political and economic actions of individuals, groups, and societies. Craft production is the study of technologies, human agents, and organizing principles, with the goal of explaining historically specific production systems and crosscultural regularities and variabilities within and between those systems (Costin 2005). Craft production has been linked to studies of sociopolitical organization through three research avenues: 1) the role of craft production in the creation and maintenance of hierarchies; 2) the organization of the production process and its affects on the social and the political; and 3) the function and meaning of objects within social and political structures (Costin 2001: 273-274). Primarily in studies of state-level societies there is a focus not only on craft production (which all communities do), but more specifically on craft specialization, or "fashioning items at volumes above and beyond the needs of the individual or group for exchange [through a variety of different mechanisms]" (Schortman and Urban 2004: 187). Craft specialization studies pay attention to fabrication, distribution, and use, as well as political centralization, social differentiation, ideological factors, and inequality (Schortman and Urban 2004: 187).

A focus on craft production has also illuminated the need to approach the variability present not only across different craft materials but also within the *chaine operatoire* of each individual product (Lemmonier 1992; Leroi-Gourhan 1964). The *chaine operatoire*, or the operational sequence, consists of every phase in the life-cycle of an object and the decision-

making strategies involved in each: resource collection, manufacturing, production, time, distribution, consumption, reuse, and discard (Schortman and Urban 2004). While the *chaine operatoire* was popularized within archaeology to study the "rules" that govern technological behavior, more recent approaches have focused on agency and social identity in reference to the producers (Dobres 1999). The benefit of looking at the *chaine operatoire* is that it can link "tangible and intangible dimensions of technological practice" as well as "make it possible to link the archaeological record… to the dynamic social milieus in which they were practiced" (Dobres 1999: 129).

In order for craft production to be relevant to archaeological research studies and comparable across larger social evolutionary theories and studies of political economies, scholars tend to focus on exploring general aspects of the production process along different phases of the *chaine operatoire*. Costin suggests a focus on six dominant features of any craft production system: 1) producers—specialization, labor, compensation, and skill; 2) means of production—raw materials, tools, and knowledge; 3) organization—spatial, social production, and temporality; 4) objects—function and use; 5) distribution—transportation and oversight; and 6) consumers—use and reuse (Costin 1991: 190-191).

Production Systems

Production systems include the level of specialization of the object, the labor involved, the compensation [of varying forms], and the technological knowledge of the producer. When a craft object is specialized it means it is the product of alienable goods produced by one segment of the population for consumption by others (Inomata 2001; Clark and Parry 1990). Other definitions of specialization link it directly to institutional control and hierarchy (Costin 1991). This alienation of both resources and labor (important to look at both) often results in information regarding institutionalized power and production systems, rather than the craft product itself. In studying the specialization of a production system it is important to account for 1) the affiliation of the specialists (independent/attached), 2) the product, 3) the intensity of specialization (part-time/full-time), 4) the scale (individual, household, workshop, village, etc.), and 5) the volume of output (Brumfiel and Earle 1987: 5).

One of the primary ways that scholars have approached the study of specialization is through a scalar approach to independent vs. attached specialization systems (Earle 1981). Independent specialists produce goods and services for an unspecified population while attached specialists produce for a patron or social/political elite and/or governing institution (Brumfiel and Earle 1987). Simply put, independent specialists hold rights of alienation over their products, while attached specialists do not (Inomata 2001). Both independent and attached specialists, or a combination thereof, can be present within a single political economic system. Another scale for examining specialization categorizes production on a continuum between household production and large-scale industry (van der Leeuw 1977). It is important to remember, however, that specialization occurs in *degrees*, not in discrete categories (Costin 1991). A downside to the plethora of models for specialization is that cross-cultural work is difficult and the abundance of different terms to describe similar phenomena obscure comparisons. Ultimately, however, studies should focus on the context, scale, and intensity of specialization instead of typologies in order to eliminate these problems (Costin 1991).

In addition to studying the specialization of a production system it is important to address the means of production, or the raw materials, tools, and technical skill and knowledge necessary to produce a craft product. The organization of the means of production are one of the most readily studied pathways to inequality and institutionalization of power. Alienation of workers from their own labor and from the products they create is not only a key tenet of capitalist systems, but more generally speaking is a hallmark of social and political inequality. Furthermore, the organization of production, including how long it takes to produce an item, where it is produced (regionally, centrally, etc.) and the individuals responsible for production are essential elements for understanding craft production systems. After products are made, they are distributed, used, reused, and discarded in a wide variety of permutations.

Recent Approaches to Craft Production

Included within recent studies of craft production, largely drawing from practice theory (Bourdieu 1979; Giddens 1984), is the understanding that technology is a meaningful engagement of social actors with the material conditions of their existence (Dobres and Hoffman 1994), and that archaeological patterns represent collective production of material culture by a community of practice who share a worldview (Peelo 2011). Instead of looking at objects as representative of identities, it may be useful to see them as a medium for the construction of identities (Peelo 2011). The objects themselves carry significant weight in understanding their own production systems. The function, use, and symbolic meaning attached to objects is paramount in understanding their consumption. The theoretical concept of object agency asserts that objects are not only reflections of human action, but also that they themselves structure the lives of human actors (Gell 1998; Gosden 2005; Latour 2005). While some studies of object agency take the concept into the realm of abstractionism, it is important to acknowledge the role of the object itself *within* the production system, not external to it. Despite the fact that studies of production processes discuss the alienability of objects from their producers, object agency asserts that objects are not, in fact, alienable. They may be removed from the physical possession of the producer, but the formal, stylistic, and other choices made by the producer are inalienable to the object itself (Thomas 1991).

V. Political Economies of the Wari Empire

In the Andes, most discussions on political economies are focused on the rise of elite populations and middle-range societies (Vaughn 2006; Stanish 1992; Levine et al. 2013; Costin 1991; D'Altroy and Earle 1985). Prehistorically, Andean political economy was centered around the household and organized within larger kin-groups, forming an *ayllu* (Stanish 1992). Each *ayllu* participated in a system of vertical exchange, using the ecology of the Andes to take advantage of different resources from different ecozones determined by elevation (see Chapter 3). The exchange of resources, including reciprocity and redistribution, was dependent upon systems of extended kinship. Unlike in Mesoamerica, there is no archaeological evidence of "markets" or market exchange in the Andes (La Lone 1982; Stanish 1997). While there are architectural features (such as large plazas), that are associated with market systems in other regions, Andean scholars (and ethnohistoric sources) do not believe that markets were in operation in the Andes, either prehistorically or during the Inca Empire (Earle 1985; Stanish 1997).

The Andes does, however, have a long history of the production and exchange of crafts and craft products. For example, metals, unlike in other areas of the world, were first used in the Andes as prestige objects (e.g., jewelry, ornaments, figurines) (Vaughn 2006; Lechtman 1984). As early as 1,200 BC, the first widespread temporal horizon centered around the ceremonial site of Chavín de Huantar. The site became a hub for the distribution of iconography and was a pilgrimage location for offerings of ceramics, lithics, and other craft products such as spondylus and precious stones from distant regions (Vaughn 2006). By the Early Intermediate Period on the south coast, polychrome pottery and textiles became the dominant vehicles for symbolic imagery and ideology, mediums that were picked up and brought into the developing Wari iconographic canon.

While most information scholars have on political economies in the Andes relies on analogy with the Inca Empire, it was the Wari Empire who first paved the way for state-level political organization in the wider region. However, understanding the political economy of the Wari Empire is difficult due to the lack of historical or ethnohistorical information. An examination of the products more popularly exchanged within the empire can provide a starting point for understanding the intersection between commodities, products, production, exchange, consumption, and the institutionalization of power.

Textiles

Most of what scholars know of Wari textiles comes from Wari occupations on the South Coast, where the dry climate preserves the highly organic and fragile material. Wari textiles utilized both cotton and camelid fiber on the same loom, and the use of cotton helps explain why the site of Pataraya was so important, as the lower elevation zones on the south

coast were ideal for cotton production (Edwards et al. 2008). Pataraya was a Wari colonial outpost in the Nasca region, and was occupied by non-local Wari individuals (Edwards 2010). The site of Pataraya has evidence of spinning (as do other Wari imperial sites like Jincamocco), and spindle whorls were found at the site in contexts associated with domestic activities, such as food preparation. Wari weavers wove mantles, headbands, and most commonly the tunic (Bergh 2013). Wari tunics are perhaps the most documented of the products that use textile as a medium. Tunics measured approximately 204 by 111 cm and were often placed in Wari burials with minimal evidence of use-wear, a feature characteristic of ceremonial garments (Stone-Miller and McEwan 1991). In addition, the iconography on many textiles depicting supernatural figures adds to this interpretation of the tunics use in ceremonial arenas. After death and in burial, the tunic served as a cover for the false-headed mummy bundle that was present in many Middle Horizon burials (Stone-Miller and McEwan 1991). Stone-Miller and McEwan (1991) see the Wari textiles operating as vehicles for state values in life, and as connected to the supernatural realm in death. As such, these tunics were likely reserved for elite or state-affiliated individuals during the Middle Horizon.

Wari tunics were intricate and detailed, including multiple production choices for the weavers: elements of composition, coloring, format, imagery, etc. Fibers used included camelid and cotton, and the selection was followed by spinning, plying and dying of the fibers with precious colorants and in multiple combinations. Likely worn by individuals important to the state or given as gifts, the use of the sleeved tunic may have been adopted by the Wari from the Moche (Bergh 2013). "These tunics imply that to a very great degree Wari elites' authority derived from trust in their privileged access to the sacred realm and its

denizens. Indeed, by donning such tunics Wari lords may have identified themselves with or even transformed into these figures" (Bergh 2013: 188).

The weft and warp of the tunic are such that the spinners and weavers likely possessed a great deal of technical skill in order to produce such tightly woven cloth (Stone-Miller and McEwan 1991; Rehl 2000). It has been predicted that due to the amount of labor involved in production, it likely took two to four individuals to complete a singular tunic within a workshop setting (Stone-Miller and McEwan 1991). In addition, the high thread count of each tunic would have meant that producers spent a considerable amount of time and energy on each individual piece. Stone-Miller and McEwan (1991) suggest that each weaver made choices to produce a tunic with a unique combination of shapes and colors, while following basic rules of repetition. In other words, craft producers were able to make choices along each step of the *chaine operatoire*. In addition, many of the Wari tunics had "mistakes", or errors in the formal rules, primarily in terms of color, and even more specifically in relation to blues and greens. Since these choices were not quick decisions, but would have required considerable investment to make, they are more likely the intentional introduction of deviance (Stone-Miller and McEwan 1991). In fact, the abundance of textiles with errors or deviations suggests that it was possibly the rule to "break the rule" (Stone-Miller and McEwan 1991). The deviation in blue and green hues may also relate to a paucity of dyes of a blue color in Wari regions, while blue is more prevalent in Tiwanaku-style ceramics (Oakland 2000). Perhaps color represented something of a symbolic nature. The freedom given to the craft producers to change and manipulate color choice and other aspects of textile production suggest that it may have been high-status individuals both producing and wearing the tunics.

Another known Wari textile is the tie-dyed tunic, which involved weaving,

disassembly, tie-dying and then re-assembly (Rowe 2013). The function and use of tie-dyed tunics is known to scholars primarily through depictions of tie-dyed textiles on ceramics. Iconography from the early half of the Middle Horizon depicts tie-dyed tunics among scenes of perceived ritual or religious importance. For example, in one scene of a kneeling figure carrying a bow and arrow and a shield shows the man wearing a tie-dyed tunic. His kneeling position, and the fact that the vessel was found in the Tiwanaku region, suggested to scholars that the individual represented was possibly an important Wari religious figure, or even an individual responsible for spreading Wari religion to distant regions (Cook 1996). By the later Middle Horizon, this figure no long wears a tie-dyed tunic but a striped tunic and a fourcornered hat (Rowe 2013). This change in regalia alludes to the fluid and dynamic nature of tunics as "materialized ideology". Images of tie-dyed tunics are also found on the face neck jars that were ritually smashed at both Conchopata and at Pacheco (Rowe 2013). The smashed vessels have been interpreted as offerings to the gods, and so the importance of the tie-dyed tunics on these face neck jars seems paramount. Due to the level of detail and time involved in the process of making tie-dyed tunics and their iconographic restriction to contexts and scenes of religious importance, suggests that the tie-dyed tunic may also have been restricted in its consumption.

In sum, the high level of skill and time associated with textile production, coupled with the limited availability of cotton and imported dyes, and the portrayal of state-affiliated and/or supernatural content, suggests that textiles were a highly restricted medium both in production, consumption, and discard (through burial). The use/consumption of the textile likely served a myriad of purposes (clothing, symbol, ritual object, etc.). Rehl (2000)

explored the order of images on Wari textiles from different contexts and discovered that Wari-style symbols were presented with a higher object-order (dominance and clarity of the image when looked at) for areas in which Wari presence may have been more contentious. For example, Wari-style symbols were blended and developed from south coast imagery, while more pronounced or emphasized on tunics from the north-coast (Rehl 2000: 13). Waristyle textiles could also signal differences in comparison with the complex polity of Tiwanaku to the south. Differing four-cornered hat styles, as well as different pigment preferences may have served as signals of identity (Oakland 2000). And while most scholars suggest that dyed tunics were reserved for elite individuals, they may have also been used within a wealth-finance model or as gifts for state-service.

Ceramics

Ceramics are the most durable medium created by the Wari, and therefore, one of the most well-studied craft products. Polychrome and iconographic pottery is often found in Wari ceremonial and burial contexts, while plainware sherds and other utilitarian products are commonly found in household or midden contexts. Wari-style ceramics are found as far south as the Titicaca Basin, leading to the original misclassification of Wari as part of the Tiwanaku interaction sphere. Some of the largest ceramics within the Wari Empire were ceremonial urns, feasting vessels and large, deity effigy vessels. Some of the greatest examples of these ceramics are found at the site of Conchopata in Ayacucho and at Pacheco in the South Coast.

Pottery was the most "accessible and expedient means of distributing the symbols of [Wari] authority" (Knobloch 2013). Wari pottery likely spread through a combination of

migration, trade, and military conquest (Knobloch 2013) and was also a highly valued object frequently used in offerings (Glowacki 2013). The Wari practiced a ceremonial ritual in which large oversized urns and vessels were smashed, and the deposits of these smashed vessels have been found at the Wari sites of Pikillacta in Cusco, Pacheco in Nasca, and at Conchopata in Ayacucho (all imperial Wari sites). At Conchopata, the numerous ritual ceramic deposits contain vessels and urns depicting deities and mythological figures. The large size and shape of the smashed urns has led scholars to suggest that they may have been used to contain liquids, the most likely candidate being *chicha*, a type of fermented beverage used for feasting events (Isbell 1984; Knobloch 2000). Another ceramic deposit at Conchopata contained five smashed urns and a face neck jar, buried in association with five young women (Glowacki 2013). The vessels were prepared explicitly for ritual use as they showed no evidence of wear caused by repeated use (Glowacki 2013). At Pacheco, a ritual deposit of smashed urns depicted images of deities and agricultural products (such as potato, olluco, etc.) (Knobloch 2000). Also at Pacheco, all of the vessels had been smashed by blows to the face and neck, leading to several interpretations of the vessels as either ritual deposits by the Wari, or perhaps a rebellion by local Nasca populations at the decline of the empire (Schreiber 2005).

Within archaeological material recovered from Wari imperial sites, the ceramic assemblages can be studied within the context of state-sponsored feasting, a part of the Wari political economy that operates to redistribute food and beverages to a labor force or to gain favor among other elite members. This usually operates within a staple-finance model of political economy, where protection and the right to live within Wari territory is granted in exchange for labor or specialized production (D'Altroy and Earle 1985). Within a ceramic

assemblage, a relatively high percentage of serving vessels (in comparison to cooking/production vessels) is characteristic of feasting practices (Cook and Glowacki 2002). This is common at many Wari imperial sites. For example, the site of Jargampata (east of Huari in the Ayacucho region) had a ceramic assemblage that contained over 50% serving vessels (Isbell 1988). At Azángaro (west of Huari in the Ayacucho region), serving vessels comprised 68% of the ceramic assemblage (Anders 1991). At the site of Pikillacta in Cusco, patio groups with ceramic assemblages produced 70% serving vessels (Glowacki 1996). And at the site of Huaro in Cusco, serving vessels made up 80% of the ceramic assemblage.

Within Wari imperial sites the percentage of serving vessels is uniformly high, however, the relative ratio of the type of serving vessel (bowl vs. cup) varies between sites. This variation in vessel type is likely due to the nature of the feasting activity. A higher bowl to cup ratio is indicative of administrative-labor feasting, while a higher cup to bowl ratio suggests a more elite-oriented feasting practice (Cook and Glowacki 2002). Jargampata, Azángaro, Pikillacta and Huaro all contained higher bowl to cup ratios, indicating that these sites were possible locations for state-sponsored administrative-labor feasting events. However, Huaro contained a higher percentage of cups than that found at Pikillacta (Glowacki 1998), suggesting some variability in feasting events across Wari imperial sites (Cook and Glowacki 2002). Because Huaro was not the predominant imperial administrative site within the Cuzco valley, it may have been a location for either Wari and/or local elites to feast together, the higher prevalence of cups suggesting a more elite-oriented feasting practice.

Despite the abundance of Wari pottery in the archaeological record, there is limited evidence for pottery production facilities. The largest known ceramic production workshop is at the site of Conchopata in the Ayacucho valley itself. Lumbreras (1974) and Pozzi-Escot (1985) found evidence at Conchopata for a dense community of ceramic specialists due to the frequency of tools and ceramic waste found during excavations. In addition, Conchopata is also the location of the first-identified kiln in the region, dating back to the Middle Horizon (Leoni 1999; Wolf 2012). Burials at Conchopata suggest that this large city neighboring Wari also contained a high degree of wealth, something that would have been previously unexpected for a pottery producing community (Isbell 2004). Perhaps the potting community was more important to the Wari Empire than previously assumed, or perhaps Conchopata was both an elite community and an adjoining pottery production facility. A second Wari pottery production facility has also been identified at the site of Maymi in the Pisco valley in the South Coast (Anders 1990).

The lack of production facilities for imperial polychrome pottery suggests that the production may have been tightly controlled, always produced and consumed within imperial (and elite) settings. Ultimately, polychrome ceramics served as a main vehicle for the transportation and display of Wari iconography throughout the empire. Much of the Wari iconographic style developed from a close association with Nasca potting communities on the south coast as well as with Tiwanaku staff-god imagery. These images were then publicly displayed during the consumption of *chicha* at feasting events among elites for alliance building or social solidarity, and for state-sponsored labor. The images of supernatural deities presented on feasting vessels would have linked Wari individuals with a supernatural power through public display.

Other Products

The most common Wari metal products were made from gold, silver and copper. Common metalwork included plumes (meant to be worn or to adorn a headdress), figurines, and jewelry (Bergh 2013). While the Wari possessed the ability to craft and forge metals, they did not create weapons or utilitarian products from these materials. Metals were reserved for elite, ceremonial, or ritual contexts. While metal workshops have not been identified in the archaeological record, the neighboring region of Andahuaylas contains the first evidence for gold-working, dating to around 1500 BC (Grossman 1972). This history of metal working at the region's copper veins also point to Andahuaylas as a possible region for Wari metal extraction and production (Kurin 2012). Metal was a relatively high-labor resource to extract, requiring high investment with minimal returns – aspects commonly associated with prestige or wealth items. Metal is also easily transported and difficult to reproduce given a lack of technical knowledge or access to extraction zones. It would have been an easily controllable resource, and entrances to mines are often narrow and easily guarded. This is not difficult to imagine as mines for precious metals and stones are some of the most highly contentious locations in the world today.

In addition to metals, the Wari political economy also included products made of precious stones, including lapis lazuli, serpentine, turquoise, and chrysocolla. These stone are often found in ritual or elite contexts, in offerings, or in burial deposits. Production locations for objects made from these materials have not yet been identified, although the source locations for these materials come from a diverse ecological range. One of the most distant materials found within the Wari ritual deposit assemblage is spondylus, a mussel from the ocean which shines with iridescent colors. Spondylus is found on the coast of Ecuador and

would have been brought to Wari sites at great effort. While not much is known about the production locations of metals and other precious stones and materials, their deposit in Wari elite and ceremonial contexts speaks volumes about the value placed on exotic material within the empire and the empire's ability to mobilize and to restrict or allow access to these resources within their territory.

VI. Concluding Remarks

The political economy of the Wari Empire intersects with not only the materials produced (encompassing processes of extraction, production, distribution, and consumption), but also the social and political networks at play within the empire and between its populations. While agricultural resources like cotton (used in textile production) and maize were intensively cultivated, the empire was relatively dispersed, and the agricultural products may have been mobilized and consumed within their territories of production. The Wari does, however, appear to capitalize on and fetishize regional resources with restricted and limited access. For example, spondylus from Ecuador, brightly colored feathers from the Amazon, coca from the coast, and metal and other precious stones and dyes found in distant reaches of the empire. This preference for objects of limited extractive access appears to highlight interaction networks within the empire built on the acquisition of these resources and the display of objects signaling rarity and value (e.g., tunics made from blue dye, obsidian from Alca, a spondylus necklace from Ecuador or a metal tupu from Andahuaylas). At the site of Huari, the fill layer overlaying the previous Huarpa occupation and ushering in the new Wari Empire, is a layer of imported red sand, likely from the coast over 150km

away. Perhaps operating as items in a wealth or prestige economy, or perhaps serving an important ritual or symbolic function, resources from across the empire play a fundamental role in the Wari political economy.

The research for this dissertation, therefore, focuses on the role of resources (and the products that can be made from them) as one vehicle for the institutionalization of power within the Wari Empire. Because the Wari drew resources from all corners of their far-reaching empire, the political economy inherently involves those distant regions and individuals and communities within them, not just those within the Wari capital. By following the *chaine operatoire* of a resource, not only in terms of its technological journey but also its social and economic one, this dissertation seeks to understand the intersections present within the life-cycle of an object, and what these can illuminate about the Wari political economy. The following chapter will address obsidian as one such resource through which to approach Wari political economy and the institutionalization of power and relationships.

CHAPTER 5

OBSIDIAN IN THE CENTRAL ANDES

Obsidian, a naturally occurring volcanic glass, is one of the most utilized resources in prehistory, not just in the Andes but worldwide. It is one of the most easily knappable materials due to its predictable conchoidal fracture pattern, and its edges are some of the sharpest in existence, making it a highly sought after and utilized resource for hunting, warfare and other cutting and scraping activities. In addition to obsidian's more "functional" qualities, its appearance, usually black and translucent with occasional hues of red, blue, and gray, have made it a commonly used prestige or high-value resource linked to aesthetic and symbolic values (Saunders 2001). While commonly utilized in prehistory, obsidian is not ubiquitous. Obsidian occurs only in regions of volcanic activity, and because it can decompose over time, high-quality obsidian is from eruption events younger than 10 million years (Ogburn 2011). For all of these reasons, obsidian is relatively limited in its occurrence (Chia et al. 2008). Its use in widespread archaeological assemblages is the result of human transport—through seasonal transhumance, trade, exchange, and other economic, political and social avenues. Because obsidian is a homogenous material, due to the fact that it is produced through individual volcanic events occurring in specific geographical locations, archaeologists can study the trace elements within an obsidian artifact and determine its original source location. The fact that obsidian can be accurately sourced means that it is possible to study prehistoric movements, and economic, political and social systems as they are linked to obsidian as a resource. This chapter explores obsidian as a resource, and its use (production, distribution, and exchange) in the Andes and during the Middle Horizon.

I. Obsidian

Obsidian, a type of rhyolitic silica, is a naturally-occurring volcanic glass (igneous rock with a glassy texture), that is formed during the rapid cooling process of volcanic lava. During a volcanic event, viscous lava that moves slowly enough either on the surface or at a shallow depth, under high pressure and temperature (1000 degrees Celsius), will not crystalize as it cools (Burger and Asaro 1977; Ericson et al. 1975). This lack of crystallization is what results in obsidian having the properties of a glass, or super-cooled liquid. Shackley refers to obsidian as a "liquid in all its properties except in its ability to flow easily" (Shackley 2005: 10). Because obsidian is a glass, it has no predetermined direction of fracture, but does have a conchoidal fracture pattern. Conchoidal fracture patterns are similar to those seen on broken window glass, (e.g., a curved breakage pattern develops as the energy moves away from the point of contact through the material). In other words, because obsidian is a volcanic glass it can fracture in any direction, and with a predictable and consistent fracture pattern, making it one of the easiest and most predictable materials to manipulate and flintknapp (Andrefsky 2005).

In addition to obsidian's fracture properties, its formation also results in a relatively homogenous material. Due to obsidian's formation within a singular volcanic event, it has a unique elemental signature that is directly correlated with its location of origin. As the lava cools, the melting and crystallization process changes the composition of elements within the lava. As lava cools it changes from a liquid to a solid state, and there are some elements that are incompatible with the solid phase of the material. These incompatible elements disperse at different rates due the speed at which the lava cools (solidifies), and eventually settle into a unique element ratio that is specific to the exact historical moment and location at the which the lava cooled and moved from a liquid to a solid state (Shackley 2005). Because these incompatible elements make up less than 1% of the material, they are called trace elements, and the study of them, trace element analysis. This process and the final ratio of incompatible elements is what allows archaeologists to source obsidian.

Another important feature of obsidian results from its natural devitrification process, whereby it slowly begins to crystalize, and therefore lose its glassy properties and conchoidal fracturing capabilities (Burger and Asaro 1977). For this reason, obsidian used for artifact production in prehistory is generally young (25 million years old or younger), with the most high-quality obsidian resulting form volcanic events that are younger than 10 million years (Ogburn 2011). Furthermore, obsidian is generally rare, occurring predominantly within the circumpacific tectonic belt near fault lines and other areas of high volcanic activity (Ericson et al. 1975). The Andes is rich in volcanic activity, particularly the south-central highlands (present-day central and southern Peru, northern Chile, and Bolivia), but much of the regions' obsidian is older than ideal, with only three major obsidian sources (Chivay, Alca and Quispisisa) and five secondary sources, utilized in prehistory for their superior quality.

II. Function of Obsidian in the Andes

Obsidian is still a relatively understudied material in the Andes. Studies of obsidian in the Andes have generally followed one of two approaches. The first examines obsidian tools in relation to functional activities of hunting and subsistence behavior in the Preceramic period (Quilter 1991; MacNeish et al. 1980). The second approach focuses on obsidian sourcing and quarrying activities (Burger and Glascock 2000; Burger et al. 2000; Vaughn 2006; Jennings and Glascock 2002; Tripcevich 2007). While generally perceived as a functional tool, obsidian is, in reality, a much more complex material resource that often operates simultaneously in both utilitarian and prestige/ritual arenas. Many scholars have noted that this variability has limited research, as obsidian has fallen victim to an overly simplified utilitarian/ritual dichotomy (Tripcevich 2007). As noted by Arjun Appadurai, "the line between luxury and everyday commodities is not only a historically shifting one, but even at any given point in time what looks like a homogenous, bulk item of extremely limited semantic range can become very different in the course of distribution and consumption" (Appadurai 1986: 40-41). Limiting obsidian to operating only in one arena limits our understanding of its use in prehistory.

Despite acknowledging the limitations of a utilitarian/ritual binary, most prior studies of obsidian still categorize its use along these divisions. Obsidian was used for projectile points, hafted onto spears and arrow shafts, and for knives, mounted onto wood or bone handles (Tripcevich 2007). Its utility in hunting is, however, debated within the archaeological community. Due to obsidian's fragile composition, any missed shots would have resulted in the destruction of a point (Metraux 1946; Bennett 1946; Kidder 1956; Ellis 1997). It is argued that perhaps obsidian wasn't used in hunting behavior but for butchering, scraping, and shearing wild game and subsequently domesticated camelids (Tripcevich 2007).

By 15,000 years ago, concurrent with the first populations in South America, obsidian was used in the Andes (MacNeish et al. 1980; Quilter 1991). As early as the Preceramic period (11,105–9,850 BP) populations were using obsidian at archaeological sites at

distances up to 130km away (four days travel) from where it was acquired at the source (Burger et al. 2000; Kellett et al. 2013). By the Late Archaic period (5,500–4,000 BP), projectile points had become smaller and more triangular, interpreted by some scholars as relating to the invention of the bow and arrow (Klink and Aldenderfer 2005; Vaughn 2006). Interestingly, the development of this new technology is coterminous with the domestication of camelids (Tripcevich 2007; Klink and Aldenderfer 2005). And despite the utilitarian purpose of early tools, the first known inclusion of obsidian as a burial good dates to approximately 5,500 BP, as early as the Late Archaic period. This is the same relative period in which bow-and-arrow technology develops and camelids are domesticated, highlighting the difficulty in differentiating between purely utilitarian and purely ritual uses of obsidian (Tripcevich 2007).

Ritual use of obsidian is often identified in the archaeological record through its inclusion in burial contexts and ritual deposits (associated with other known ritual objects), as well as its depiction in textile and ceramic iconography. For example, Paracas textiles from the south coast of Peru dating to the Ocucaje 8 period (2300–2000 BP) show representations of mythical figures taking trophy heads and holding obsidian knives, presumably used in the removal of trophy heads (Burger and Asaro 1977). Also on the south coast, an Early Nasca (AD 1–300) knife was found with an obsidian blade hafted onto a painted dolphin palate (Burger and Asaro 1977). The union of material from the mountains (obsidian) and from the ocean (dolphin palate) would have been of symbolic and ritual importance.

Obsidian was also used in medical procedures. Trephination, a medical process that involves removing a piece of the cranium to relieve cranial pressure, likely involved the use

of obsidian blades due to their naturally sharp edges. Those archaeologists working with obsidian in the field know that a thin cut from the blade will heal almost instantly, without the use of stitches. Another less examined role of obsidian is its use as a mirror (Burger and Asaro 1977). The transparent quality of the material can produce a reflection if it catches the light at the right angle, and may have been seen as mediator between cosmological worlds (Giesso 2003). Obsidian mirrors have been found in Huancayo and at the capital of the Wari Empire (Ochatoma pers. comm.). In Mesoamerica, the Aztec considered obsidian to be a symbol of rulership and power. The deity *Tezcatlipoca*, "Lord of the Smoking Mirror", observed the world through his magical obsidian mirror (Saunders 2001). While the Andes surely had their own unique understanding of the importance and symbolism of obsidian, this example from Mesoamerica provides a possible framework.

Obsidian in the Middle Horizon

As little research has been done on lithics in the Andes, even less has focused on lithics in the Middle Horizon. Formal typologies have been established by Burger and Glascock (2000) and by Vining (2005). Burger et al.'s (2000) typology categorized Middle Horizon point styles as usually following one of three forms: 1) small, stemmed-and-barbed shaped; 2) small concave-based shape; and 3) and convex-sided point with a straight or slightly concave base (Figure 5.1). Vining's (2005: 59) typology is more expansive and identifies seven point types: 1) "Type A" – a small triangular body with concave base; 2) "Type B" – a lanceolate body with a concave base; 3) "Type C" – a triangular body with a straight base; 4) "Type D" – a lanceolate body with a straight base (also known as the Wari type); 5) "Type F" – an excurvate body with a convex base; 6) "Type G" – a triangular body with a stemmed base (also known as the Tiwanaku type); and 7) "Type J" – a possible bifacial preform (Figure 5.2).

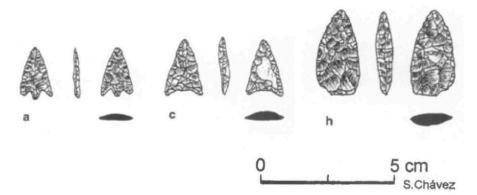


Figure 5.1. Burger et al.'s (2000) Typology of Middle Horizon Obsidian: a) small stemmed-andbarbed; c) small concave-based; h) convez sided point, straight/slightly concave base. Figure courtesy of Burger et al. (2000: 328).

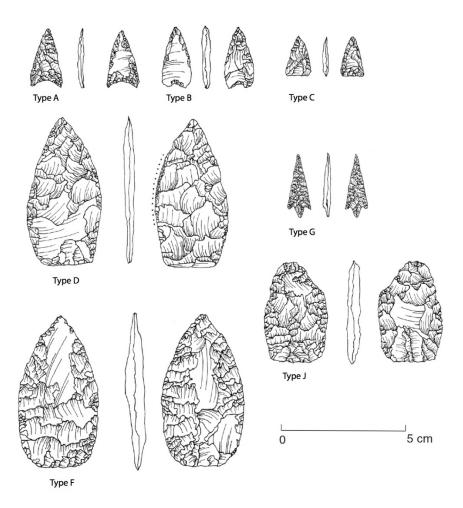


Figure 5.2. Vining's (2005) Typology of Middle Horizon obsidian: a) small, triangular body with concave base; b) lanceolate body with concave base; c) triangular body with straight base; d) lanceolate body with straight base (Wari); f) excurvate with concave base; g) triangular body with stemmed base (Tiwanaku); j) preform. Figure courtesy of Vining (2005: 52-58).

Most attention given to obsidian consumption has focused on the role of bifaces. Vining (2005) draws upon work by Gero (1989) to articulate the greater social, symbolic, political (and otherwise) content that is expected to be embedded in bifacial tools (over flakes or unifacial tools) due to the greater energy investment required for production. Therefore, while obsidian was used in prehistory for both expedient tools and for bifacially flaked tools (including points), most attention has been given to bifaces. However, as previously mentioned, often unassuming multipurpose objects (like scrapers and expedient flake tools), can carry with them important symbolic messages for both the consumer and the archaeologist. Following this, scholars have illuminated many multifaceted functions of obsidian in the Middle Horizon. Giesso (2003) identified obsidian as having both a social and ceremonial value at Tiwanaku. Giesso linked this to control over distribution and elite power at the site and regionally. Castillo (2000) found evidence of obsidian in ritual activities and offerings at San Jose de Moro and Nash (2002) found that not only did obsidian reflect elite status and ritual participation at Cerro Baul, but that it was found in close association with food preparation activities.

During the Middle Horizon, there does not appear to be a correlation between point form and obsidian source location. In other words, scholars have found that the same source can be used to produce a wide range of point styles, and that point styles can be produced by any obsidian source. What follows is that it was not important "where the obsidian came from, since the obsidian could not be distinguished visually, but rather that the tool was of obsidian (Burger et al. 2000: 296). However, this doesn't account for the distribution patterns of obsidian during the Middle Horizon. If all that was important was obsidian as a material, then sites and communities would use obsidian from sources closest to them, as was done in many regions prior to the Middle Horizon. However, this pattern changes during the Middle Horizon, suggesting that social, political and/or economic mechanisms were present and active in the production, distribution and/or consumption of obsidian during this period.

III. Obsidian Sources

Early studies of obsidian sourcing in the Andes began in 1971, with the identification of three distinct obsidian sources using neutron activation analysis. By 1975, eight major obsidian source types had been differentiated, but were not yet linked to their geological locations (Burger et al. 2000). By 1977, scholars had matched five source types with their geological location. At present, ten obsidian source types have been identified both chemically and geologically (Burger et al. 2000). The nine most commonly utilized sources in the central Andes are: Quispisisa, Alca, Chivay, Jampatilla, Puzolana, Potreropampa, Lisahuacho, Aconcagua and Macusani (Figure 5.3). As previously discussed, each of theses sources has a unique elemental composition related to the ratio of incompatible elements. In the Andes, researchers focus on the ratios of rubidium (Rb), strontium (Sr) and manganese (Mn) within a sample, although titanium (Ti), iron (Fe), zinc (Zn), gallium (Ga), yttrium (Y), zirconium (Zr) and niobium (Nb) can also be used for source-type analyses.

Despite the incredibly similar composition of all obsidian (with the exception of minor incompatible trace elements), the phenotypic characteristics of obsidian can be different between each source; although these differences are not always apparent to the naked eye. For example, Quispisisa, Chivay and Alca produce relatively larger nodules (up to 30cm in maximum dimension) than those found at the other six sources (Tripcevich 2010). There is also variability in color, transparency and cortex (the exterior surface of the rock) between sources, although most material is visually indistinguishable. The prehistoric use of these sources is likely due to factors such as a populations' proximity to a source, the quality

of the obsidian, the size of the nodule, other aesthetic qualities (such as color or transparency), as well as social, political and economic mechanisms (Burger et al. 2000).

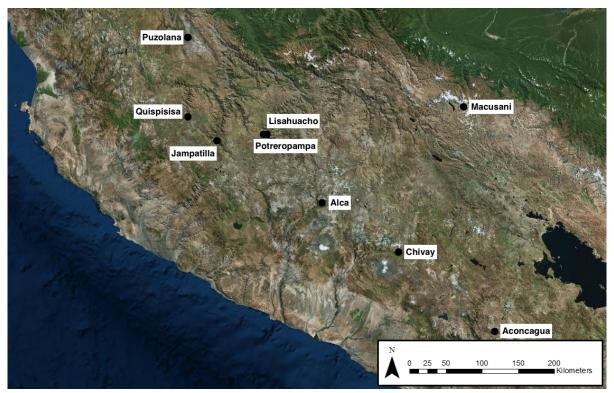


Figure 5.3. Map of Obsidian Sources in the Central Andes.

Quispisisa

The Quispisisa source, although originally thought to be located in the Department of Huancavelica, is located in the province of Huanca Sancos, approximately 100km south from the present-day city of Ayacucho, in the Department of Ayacucho (Burger and Asaro 1979; Burger and Glascock 2000). The word "Quispisisa" is derived from the Quechua word for "glassy (or crystal) stone". The source itself is part of the Grupo Barroso formation dating to the Pleistocene epoch, approximately 2.5 million years ago. The formation is composed of lavas with volcanic breccia, a type of sedimentary rock composed of broken fragments of rocks and minerals formed during volcanic eruptions, and is overlying the Castrovirreyna

formation dating to the Lower Miocene (Castillo et al. 1993; Tripcevich and Contreras 2011). The Grupo Barroso deposits in the region extend 19km north from the source location to the present-day town of Huanca Sancos. At this northern extent of the formation it is possible to find obsidian nodules, although they are usually smaller than 5cm at maximum dimension. The size of the nodules increases with proximity to the source, with nodules at the Jichja Parco quarry (located at the heart of the Quispisisa source) reaching up to 35cm in maximum dimension. Because nodule size is greatest at Jichja Parco, this quarry would have been the primary location from which to obtain obsidian for production (Tripcevich and Contreras 2011). The obsidian, while usually black in color, can occasionally have a red hue (Tripcevich 2007).

The quarry deposits at Jichja Parco have been identified by Tripcevich and Contreras (2013) as "doughnut quarries", characterized by their doughnut-like shape. "Doughnut quarries" are usually evidence of either 1) continuous, low-intensity quarrying activities conducted over a substantial period of time, or 2) coordinated, short-term, intensive exploitation (Tripcevich and Contreras 2013). In addition, within and around the Jichja Parco quarry, there is limited evidence for lithic reduction (Tripcevich and Contreras 2011). For Tripcevich and Contreras (2011), this suggests that obsidian nodules were selected from the quarry, minimally worked, and then transported to be further reduced and refined at another location. One possible zone of production, identified by Tripcevich and Contreras (2011) during their survey work and excavations in the region surrounding the quarry, is the town of Colcabamba, located 15km north of the source (just 4km south of Huanca Sancos). Despite lying within the Groupo Barroso formation, the quantity of obsidian within the present-day town and surrounding archaeological sites is more than natural accumulation. Colcabamba is

located at an elevation of 3,350 masl, and is the closest region to Quispisisa that would have supported both herding and agricultural (maize, in particular) activities, and a sedentary population. The largest archaeological site in the area, Marcamarca, is characterized by an atypically large collection of obsidian from both surface and excavation contexts (Tripcevich and Contreras 2011).

Quispisisa-type obsidian was first identified through elemental studies at the Lawrence Berkeley Lab at the University of California Berkeley, and was found to account for approximately 90% of all obsidian (from the sampled material) from archaeological sites in central and northern Peru (Burger and Glascock 2000; Burger and Asaro 1978). Obsidian artifacts from Quispisisa have been documented at sites in the Ayacucho region and elsewhere as early as 15,000 BP, nearly contemporaneous with the peopling of South America (MacNeish et al. 1980). By 13,000 BP, Quispisisa obsidian was routinely traveling to sites at distances well-over 100km from the source. For example, Quispisisa obsidian has been found in the archaeological record at the Preceramic sites of Uchkumachay in the Jauja-Huancayo region (200km north) and Hacha in the Acari valley (156km southwest) (Burger and Glascock 2000; Tripcevich and Contreras 2011). By 6,500 BP, Quispisisa obsidian was traveling distances over 400km to sites like Paloma in the Chilca Valley (central coast), and San Nicolas in the Nasca region (south central coast) (Quilter 1989; Burger and Asaro 1978; Vaughn and Glascock 2005). By the Early Horizon, obsidian from Quispisisa was making its way to sites located at distances over 500km, at sites like the ceremonial and pilgrimage center of Chavín de Huantar (590km north) and Pacopampa (1,000km north) (Burger and Glascock 2000; Tripcevich and Contreras 2011; Burger and Mendieta 2002). Not only was obsidian from Quispisisa traveling such distances, but it was doing so in large quantities. At

Chavin, 95% of the obsidian found from the ritual center has been sourced to Quispisisa (Burger and Glascock 2000). By the Middle Horizon, Quispisisa obsidian was traveling distances of 800km to sites like San Jose de Moro, Marca Huamachucho and Ancash on the north coast (Lau 2002). While the full distribution and extent of Quispisisa obsidian is still being studied, it is clear that it was both widely utilized and widely distributed in prehistory. Prior to the Middle Horizon, populations were likely acquiring Quispisisa obsidian through seasonal transhumance and *ayllu* exchange systems of vertical ecology (Eerkens et al. 2010; Vaughn 2006).

Alca

The Alca obsidian source (2,850 masl), located in the Cotahuasi Valley in the department of Arequipa, was first identified in geochemical sourcing studies as "Cuzco-type" obsidian (Burger et al. 2000; Burger et al. 1998). Within the Cotahuasi Valley, only 5% of the volcanic deposits are actually obsidian, and of those, only Cerro Aycano produces high-quality obsidian (quality in a region can differ due to varying rates of hydration and crystallization). Cerro Aycano is, therefore, the source location for Alca-type obsidian (Jennings and Glascock 2002; Burger 1998). Alca obsidian can range in color from black to brown, with occasional blue hues (in comparison to the often red hue of Quispisisa obsidian), and nodules from the Alca source can measure up to 30cm in maximum dimension (Jennings and Glascock 2002).

Like Quispisisa, the Alca source has been used consistently over the past 13,000 years. Some of the earliest evidence of prehistoric populations using obsidian form the source is found at sites like Quebrada Jaguay (11,105–9,850 BP), located over 130km from the Alca

source, on the southern coast of Peru at an elevation of 40 masl (Sandweiss et al. 1998; Jennings and Glascock 2002). Similar to the average distance traveled by Quispisisa obsidian in early prehistory (260.3km), Alca obsidian was traveling distances of, on average, 249.6km (Tripcevich 2007). Despite the prevalence of Alca obsidian outside of the Cotahuasi Valley as early as 11,000 BP, the valley was only occupied beginning in the Middle and Late Archaic periods, meaning that prior to the Middle and Late Archaic periods people were specifically traveling to the Alca source to acquire obsidian (Jennings and Glascock 2002).

Extraction patterns at the Alca source suggest long-term, low-intensity extraction. The exception to this is found during the Middle Horizon, when extraction at the source increases, concurrent with an increase in the distance at which obsidian travels (Burger and Asaro 1979; Burger et al. 2000). Prior to the Middle Horizon, Alca obsidian was used predominantly in the Cuzco and Arequipa regions, but during the Middle Horizon, Alca obsidian is found at Wari sites like Jincamocco and Huari in the Ayacucho heartland, Marca Huamachucho on the north coast and Cerro Baul in the southern Moquegua region (Jennings and Glascock 2002). The increase in distance and use of the Alca source during the Middle Horizon led to assumptions that Alca obsidian was part of a Wari-controlled economy. Jennings and Glascock (2002), however, suggest that the Alca source would have been difficult to control (as would all obsidian sources). Large obsidian deposits scattered over a wide geographical source location, coupled with the intersection of numerous well-utilized trails, terraces, irrigation canals and long-occupied villages, would have required significant investment on behalf of the Wari in order to regulate access to the source. Jennings and Glascock (2002) argue that there is no archaeological evidence to suggest that Wari

interfered in the region with the level of infrastructure that would have been necessary to control the Alca source.

Chivay

The Chivay obsidian source is located 175km to the NW of Lake Titicaca, at an elevation of 4,000-5,000 masl. The Chivay source was first identified in sourcing studies as "Titicaca-type" obsidian (Burger et al. 2000). Nodules from Chivay can reach lengths up to 30cm, with the highest-quality area of the source found at the Hornillo sector of the quarry (Tripcevich and Mackay 2011). Obsidian from Chivay is high-quality, and often black to light grey with occasional banding (Tripcevich 2010; Tripcevich 2007). Burger et al. (2000) consider obsidian from both the Chivay and Alca sources to be visually indistinguishable.

Evidence of early use of Chivay obsidian can be found at sites like Asana, in the southern central highlands from the Early Archaic period (8,200 BP) (Tripcevich and Mackay 2011; Aldenderfer 1998). Within the Titicaca Basin, approximately 90% of the obsidian used in prehistory is estimated to be from Chivay (Tripcevich 2007). Intensified extraction and use of the Chivay source is linked to the intensification of pastoralism and the domestication of camelids in the high-puna pasturelands in the region surrounding the quarry. Llamas were domesticated around 6000 BP (Wheeler et al. 1995), and Tripcevich (2007) links camelid domestication to the increased extraction and production of Chivay obsidian. Camelids would have been heavily involved with obsidian trade, as camelids were the only beasts of burden in the Andes, and would have been used to transport larger quantities of obsidian. Tripcevich (2007) suggests that llama herders would have circulated obsidian from Chivay as part of their seasonal migrations. In addition, camelid pastoralists

would have required a sharp tool like obsidian in order to work with hides, meat and wool. Tripcevich's (2007) hypothesis is further supported by the presence of obsidian found in burials in the region by 5,500BP, with obsidian found alongside other status objects like gold pendants and lapis lazuli (Craig 2005).

Potreropampa and Lisahuacho

The Potreropampa and Lisahuacho sources, previously known as Andahuaylas type-A and Andahuaylas type-B obsidian, are located in the Province of Aymaraes in the Department of Apurímac. Both Potreropampa and Lisahuacho are high-quality obsidian sources, with minimal hydration and low crystallization, and with nodules reaching sizes up to 10-15cm in maximum dimension at Potreropampa and 9-12cm at Lisahuacho (Burger et al. 2006). The regions surrounding the source have been occupied continuously since the Preceramic period through the Late Horizon (Fajardo 1998). Potreropampa obsidian (and secondarily Lisahuacho) is the dominant source type in the neighboring Andahuaylas and Chicha-Soras regions throughout prehistory, but is rarely utilized outside of the Department of Apurímac, with a few exceptions (Burger et al. 2006). Potreropampa has occasionally been found outside of the region at Early Horizon sites like Hacha in Acarí and Chavín de Huantar in the north (Burger et al. 2006). And during the Early Intermediate Period, Potreropampa is found in assemblages in Nasca (Eerkens et al. 2010; Vaughn and Glascock 2005). By the Middle Horizon, Potreropampa is found in Moquegua at sites like Cerro Baul (Burger et al. 2000). In contrast, Lisahuacho is never found outside of Apurímac. Even within the region, Lisahuacho is utilized secondarily to Potreropampa. This preference for Potreropampa in the region changes during the Late Intermediate Period following the

collapse of the Wari Empire, when Lisahuacho becomes the dominant source in the region (Kellett et al. 2013).

Jampatilla and Puzolana

The Jampatilla and Puzolana sources are located in the Ayacucho region, with Jampatilla located approximately 125km south of the Wari capital and Huari, while Puzolana is located just north of the capital (Burger et al. 1998b). Despite being located near to the capital, obsidian from Puzolana rarely makes it outside of the Ayacucho heartland, both before and during the Middle Horizon (Burger et al. 2000). One possible explanation for this is the fact that Jampatilla and Puzolana are both regarded as lesser-quality sources (Burger et al. 2000). Both Jampatilla and Puzolana are characterized by relatively smaller nodules, averaging only 5cm in maximum dimension (although Puzolana can occasionally reach larger sizes) (Schreiber pers. comm.). This is minuscule compared to the 30cm lengths found at Quispisisa, Alca and Chivay and the 15cm lengths found at Potreropampa and Lisahuacho (Burger et al 2000).

Although not transported outside of the region, Puzolana was heavily utilized by populations living in the Ayacucho heartland as early as the Preceramic period, during the local Puente phase (10,950–9,050 BP) (Burger et al. 2000). In general, Puzolana comprises 18% of the obsidian assemblage from sites in the Ayacucho basin prior to the Middle Horizon (Burger et al. 2016). Jampatilla obsidian has been found outside the Ayacucho heartland in limited frequencies on the south coast, at sites like Hacha in Acarí during the Initial period (3750–2750BP). The absence of obsidian from Chivay and Alca sources at central south coast sites like Hacha, in favor of obsidian from Quispisisa, Jampatilla and

Puzolana, suggests that these source groupings likely operated within different interaction spheres (i.e., northern and southern interaction zones) (Burger et al. 2000). There are, however, shared ceramic forms and iconography between the proposed northern and southern interaction zones. This leads Burger et al. (2000) to suggest that pottery and obsidian were distinct mediums with different mechanisms operating in the production, distribution and consumption of each medium (Burger et al. 2000).

IV. Middle Horizon Obsidian in the Ayacucho Valley

"The actual quantities of obsidian encountered and evaluated from the consumption sites throughout the south-central Andes are relatively low. The significance of obsidian circulation over the larger region is not a matter of weight or value, but rather a question of consistency and changes in the proportions of particular sources utilized over time" (Tripcevich 2007: 196).

As stated by Tripcevich (2007), an exploration of the use of obsidian by the Wari Empire during the Middle Horizon necessitates an understanding of diachronic changes in distribution and consumption patterns both in the Wari heartland and in the hinterland.

Conchopata

Conchopata, the closest site to the Wari capital at Huari (and presumably secondmost important Wari site), has a very different pattern of obsidian consumption during the Middle Horizon than that found at Huari. Burger et al. (2016) analyzed 93 samples from Middle Horizon contexts at Conchopata and found that 99% of the obsidian could be sourced to Quispisisa and 1% to Puzolana. While Puzolana was used throughout the entire Ayacucho Basin prior to the Middle Horizon (comprising 18% of the obsidian consumed), it experienced a dramatic decrease from 18% to 1% during the Middle Horizon. The use of Puzolana obsidian at Conchopata (even minimally) is not surprising, as the source is very close to the site (less than 20km). In contrast, Quispisisa dominates the assemblage at Conchopata, but also would have required a journey of approximately five days using camelids (Burger et al. 2016). Despite the increased effort it would take to procure and transport obsidian from Quispisisa, Bencic and Glascock (2016) documented that obsidian was used relatively inefficiently at the site. Simply put, while some expedient obsidian tools were being reused by the population at Conchopata, most tools and artifacts were simply discarded after their initial period of use. Bencic and Glascock (2016) interpret this behavior as evidence that the population at Conchopata may have believed that obsidian was a reliable resource, readily available and in unlimited quantity. This is further supported by the fact that Bencic and Glascock (2016) found that lithic manufacture was not taking place at Conchopata (save for minor retouching), implying that bifaces and other tools were being produced elsewhere and imported to the site as already finished products.

Bencic and Glascock (2016) analyzed over 1,000 obsidian artifacts (primarily debitage) and found that the point types were typically lanceolate in body, with both straight and convex bases. These point types correspond to Vining's "Types D and F" (Vining 2005). Vining (2005) identified "Type D" bifaces (lanceolate bodies with straight bases) as the "Wari-type" (see Figure 5.2). Wari-type bifaces are generally larger (up to 10cm or longer at maximum dimension), and are usually produced from Quispisisa obsidian. The correlation between Quispisisa obsidian and Wari-type bifaces may be due to the naturally larger sizes of Quispisisa nodules (up to 30cm in length). At Conchopata, Bencic and Glascock (2016) identified 13 complete Wari-type points ranging in size from 2.4cm to 11.6cm. These points

would have naturally required the use of Quispisisa over Puzolana in order to produce the larger dimensions. However, the smaller artifacts found at the site (triangular points, ovoid tools, biface preforms and retouched flakes and tools) could have been constructed from Puzolana, but were not. The preference for Quispisisa obsidian over Puzolana, therefore, was not simply a matter of "function".

In addition to bifaces, Bencic and Glascock (2016) identified seven possible biface preforms corresponding to Vining's "Type J" (Vining 2005). These preforms were similar in dimension to the finished bifaces, but more irregular in shape. The debitage found at Conchopata was sorted based on size-grade categories, with the expectation of waste from biface production, which results in debitage measuring between 6.35mm to 12.7mm (anything smaller falls through the standard 0.25 in screen) (Bencic and Glascock 2016). Only 5% of the debitage at Conchopata is smaller than 12.7mm, suggesting that very minimal production was being conducted at the site. This is further confirmed by examining the cortex, terminations, and platforms of the debitage (Bencic and Glascock 2016). Cortical pieces (exterior of the rock) of debitage are linked to earlier production phases and the preparation of blanks (Kooyman 2000; Odell 1989). Only 21% of flakes larger than 25.44mm at Conchopata had a cortical surface, suggesting that only limited amounts of early-phase preparation of tools, as well limited amounts of blank preparation, were occurring at Conchopata. Flake terminations (the distal portion of a flake) can be a relative estimate for the experience-level of the producer, particularly for obsidian due to its easy and predictable fracture mechanics (Bencic and Glascock 2016). 56% of the flakes with terminations were feathered (reflecting experience), while 44% of the flakes with terminations were stepped or hinged. Stepped and hinged terminations are often the result of

inexperience, causing fractures in the flake due to improper technique (incorrect striking angle and force applied). Flake striking platforms (where the striking implement hits the objective piece) can be a reflection of the type of tool being produced. Bifaces, because they are more heavily worked, often have complex or abraded platforms (Bencic and Glascock 2016). At Conchopata, complex and abraded platforms are only found on 44% of the obsidian flakes.

The lack of source diversity at Conchopata, coupled with the importation of completed obsidian tools, the limited production occurring in-situ, and the preference for discard over reuse of tools, suggests that Conchopata was part of an obsidian distribution network (Bencic and Glascock 2016). Conchopata relied almost entirely on obsidian from Quispisisa, leading Burger et al. (2016) to conclude that the site was likely not a cosmopolitan city, but was acquiring its obsidian through a controlled or a singular distribution channel. In comparison, the capital of Huari had a relatively greater obsidian source diversity, indicating that perhaps Huari was more cosmopolitan in nature, or that the distribution mechanism for obsidian operated differently for each of the Wari heartland sites. In addition, the distribution channel may may originate outside of the Huari heartland (whether by Wari control or not), and a different "order" is delivered to Huari than is delivered to Conchopata.

Huari

In 1977, Burger and Asaro conducted a geochemical sample of 52 obsidian artifacts from Huari. 50 artifacts (96%) were sourced to Quispisisa, 1 artifact (2%) was sourced to Potreropampa and 1 artifact (2%) was sourced to Alca (Burger and Asaro 1977). This

distribution is relatively more diverse than the assemblage examined by Glascock et al. (2016) from Conchopata. Similar to the consumption pattern at Conchopata, Quispisisa is the overwhelmingly dominant source-type within Huari samples. This is in contrast to the distribution of obsidian in the region prior to the Middle Horizon (Burger et al. 2016). Prior to the Middle Horizon, Puzolana obsidian was used in relatively greater frequency. From a sample of 80 artifacts from pre-Middle Horizon sites in the Ayacucho Valley, 15 artifacts (18.75%) were sourced to Puzolana (Burger et al. 2016). This is in stark contrast to the Middle Horizon, where the local Puzolana source is conspicuously absent from Huari, despite its close proximity and occurrence (even in limited quantities) at Conchopata. The presence of Alca and Potreropampa obsidian at Huari indicates a widened interaction sphere during the Middle Horizon, and their absence at Conchopata might suggest that Huari was much more of an operational hub or cosmopolitan capital than was Conchopata. Despite the increased obsidian source diversity, Huari had a production pattern similar to that at Conchopata—it was not a location for intensive obsidian production (Stone 1983).

Stone's (1983) dissertation examined 921 obsidian artifacts from surface collections at Huari to explore activity specialization and production patterns. Stone (1983) found that while there was specialized activity at the site based on material type (e.g., obsidian vs. andesite), there was no evidence for obsidian production workshops. Furthermore, she found a strong co-presence of ceramics and obsidian within shared contexts (Stone 1983). The mean length for bifaces at Huari was 2.3cm (similar to the dimensions of bifaces found at Conchopata). Flakes at Huari had a mean length of 18mm and width of 12mm (Stone 1983). These dimensions pertain to Bencic and Glascock's (2016) second size-grade category, implying that there was minimal production of bifaces occurring at the site of Huari.

Stone (1983) also addressed changes in obsidian production through different temporal phases at Huari and found that during the Early Intermediate Period or Huarpa phase of the site, imported materials (Puzolana and Quispisisa are considered local) were used sparingly. During the Middle Horizon, obsidian use increases to comprise 48% of the entire lithic assemblage, with a concurrent decrease in the production of tools at the site itself. This implies that obsidian became an important and heavily utilized resource during the Middle Horizon, but was not in large part produced by the population living at Huari. Apart from Stone (1983), Burger and Asaro (1977) and Burger et al. (2000), very little analysis of both obsidian and lithics in general have been conducted at Huari.

V. Regional Distribution of Obsidian in the Middle Horizon

The Quispisisa source is routinely recognized for having the greatest distribution of all obsidian sources during the Middle Horizon (Burger et al. 2000). This widespread use may account for the "doughnut quarries" identified by Tripcevich and Contreras (2011) at the Quispisisa source; a result of short-term, intensive exploitation on behalf of the Wari Empire. The Qhapaq Ñan (Inca road) was, in large part, constructed over top of previous Wari roads, and its route takes a traveler just across the Caracha river from the Jichja Parco quarries at Quispisisa. From Quispisisa, a traveler could continue on their journey from Ayacucho to Nasca and the south coast. The large nodules found at Quispisisa have been suggested as a possible rationale for investment at the Quispisisa source and the correlation between Quispisisa and large Wari bifaces seems to confirm this. Wari-type bifaces are among the largest found in the Andes, measuring 10cm in length on average, and are always associated

with Wari contexts. Wari-type bifaces have been found at sites like Huari, Conchopata, Cerro Baul, Pikillata, Jincamocco and other Wari administrative centers, and are commonly produced from Quispisisa source-type obsidian (Tripcevich and Contreras 2011). One possible explanation is that as large Wari-type lanceolate bifaces with straight bases (Vining's "Type D") spread as a component of Wari ideology/iconography, their movement brought with them the increased movement of Quispisisa obsidian, in general. Part of understanding the increased movement and distribution of Quispisisa obsidian is understanding how this distribution correlates with earlier hinterland distribution and consumption patterns of both Quispisisa and other obsidians source-types.

Central Highlands

The Andahuaylas region, within the Department of Apurímac, was closely associated prior to the Middle Horizon with the Potreropampa and Lisahuacho obsidian sources and experienced a fairly dramatic shift in the distribution of obsidian concurrent with the expansion of the Wari Empire. While the region predominantly relied on obsidian from Potreropampa and Lisahuacho, Quispisisa obsidian comprised approximately 5% (n=1) of the assemblage as early as the Muyu Moqo phase, spanning the Initial Period through the Early Horizon. During the Muyu Moqo phase, Potreropampa comprised 75% (n=15) of the sample and Lisahuacho 5% (n=1) (Kellett et al. 2013). A similar pattern is found at multiple sites across the Andahuaylas region, including the sites of Waywaka and Qasawirka. In a representative sample from all temporal phases, Potreropampa obsidian represented 53% (n=50), Lisahuacho represented 21% (n=20), Quispisisa represented 12% (n=11) and Jampatilla represented 6% (n=6) of the sample (Kellett et al. 2013). In addition, a single Alca

flake has been found at the site of Waywaka, suggesting that even marginally, southern Andean interaction spheres may have been part of the Andahuaylas region prior to the Middle Horizon (Burger et al. 2000).

By the Middle Horizon, Quispisisa obsidian makes up 23% (n=5) of the assemblage from the Andahuaylas region, while the reliance on the Potreropampa source drops from 75% to 63% of the sampled material (Kellett et al. 2013). This difference is notable, in that obsidian from Quispisisa would have required an additional several days of travel when compared to acquisition of obsidian from the Potreropampa source. Furthermore, the nodules at Potreropampa would have been sufficiently large enough to create the "Wari-type" larger bifaces, indicating that the shift to Quispisisa wasn't solely about "functionality". Following the Middle Horizon, the use of Quispisisa obsidian in the region decreases to comprise only 12% of the assemblage, and the local source of Lisahuacho jumps from 0% during the Middle Horizon to 37% (n=19) in the Late Intermediate Period (Kellett et al. 2013). Despite the fact that during the Middle Horizon, local sources were still the predominant source-types of obsidian used in the Andahuaylas region, there is a statistically significant increase in the consumption of Quispisisa obsidian during the Middle Horizon, and a subsequent decrease in its use after the Wari Empire collapses (Kellett et al. 2013).

The decreased reliance on Potreropampa obsidian in favor of Quispisisa obsidian in the Andahuaylas region during the Middle Horizon is not found, however, in the neighboring region of Chicha-Soras (Department of Apurímac), which, like its neighbor, also heavily relied on Potreropampa and Lisahuacho obsidian prior to the Middle Horizon (Kellett et al. 2013). At the site of Chiqna Jota in the Chicha-Soras region, excavated by Frank Meddens (1985), Burger et al. (2006) found that the use of obsidian during the Middle Horizon was

exclusively sourced from Potreropampa or Lisahuacho obsidian, not from Quispisisa. Because Chicha-Soras and Andahuaylas are neighboring regions within the Department of Apurímac, with similar obsidian distribution patterns prior to the Middle Horizon, why would their obsidian distributions be different during the Middle Horizon? While this result may be due to the small sample size (n=2), it may also be due to differing relationships with the Wari Empire. Furthermore, the site of Chiqna Jota is built in a Wari architectural style, an attribute that is closely associated with proposed imperial control over the region and the valley's capacity for camelid herding (Meddens 1985). Why was obsidian from Quispisisa not brought to Chiqna Jota and the Chicha-Soras region, as it was to other territories under imperial control? And why would Andahuaylas, with no evidence of Wari imperial architecture or direct control, show a significant influx in Quispisisa obsidian? One answer may be the the use of Andahuaylas as a route from Ayacucho to Cusco.

Another region neighboring the Chicha-Soras and Andahuaylas regions is the Sondondo Valley, home to the Wari administrative center of Jincamocco. The Sondondo Valley is located only 48km from the Quispisisa source, only one to two days travel (Schreiber, in press). It is unsurprising, therefore, that Quispisisa makes up a relatively larger percentage of the obsidian collection throughout prehistory. In 1974, William Isbell, Katharina Schreiber, and Patricia Knobloch collected 70 obsidian artifacts from four sites in the valley spanning the Formative through Late Intermediate Period in the region. These samples were analyzed by Burger and Asaro (1979), who found that 47.14% (n=33) of the obsidian was sourced to Quispisisa, while 42.85% (n=30) was sourced to the local Jampatilla source (previously known as the Pampas source). Only two pieces of obsidian within the Sondondo Valley were sourced to Potreropampa, from the sites from Caniche and Corralpata.

And all five of the obsidian artifacts sourced to Alca were from the Wari administrative site of Jincamocco (Schreiber, in press).

The site of Jincamocco, although occupied in earlier temporal periods, was transformed into a Wari administrative center at the onset of the Middle Horizon. The importance of Jincamocco within the Wari network was evidenced by its location on a Wari road to the Southern Nasca Region, and by the fact that it was expanded by the Wari during the later Middle Horizon (Schreiber 1987; Schreiber and Edwards 2014). Of the 33 obsidian pieces sourced to Quispisisa, 24 (72.72%) were from the site of Jincamocco. In addition, the Wari established the site of Mamacha Coral nearby to the Jampatilla source, possibly for prohibiting local access, or to capitalize on the the source themselves. Despite the location of Mamacha Coral, there is still a heavy reliance on the Quispisisa source within the Sondondo Valley during the Middle Horizon.

Southern Nasca Region

The only region that doesn't experience a major shift in the pattern of obsidian distribution during the Middle Horizon is the Southern Nasca Region (SNR). Quispisisa was routinely used in the SNR as early as the Early Archaic and was, consistently throughout prehistory, the dominant source-type in the region (Eerkens et al. 2010). In fact, Quispisisa was used almost exclusively at sites in the region with few exceptions (Potreropampa, Jampatilla, Lisahuacho) during the Middle and Late Archaic, Early Nasca, and Late Intermediate periods. This is not entirely surprising as Quispisisa is the closest source to Nasca (100km). Obsidian from the Potreropampa source was imported as finished tools, while obsidian from Quispisisa was more likely to have been brought in as preforms and

finished at regional Nasca sites (Vaughn and Glascock 2005). The Middle Horizon in Nasca shows a distribution pattern of exclusively Quispisisa obsidian (Eerkens et al. 2010).

Prior to the Middle Horizon, Potreropampa obsidian was found almost exclusively in Apurímac and the SNR, while Quispisisa obsidian had a greater distribution as early as the Formative period. The early use of Potreropampa obsidian in the SNR, coupled with Quispisisa obsidian, may suggest a connection between the Apurímac region and the SNR that pre-dates the Middle Horizon. Drawing on the prehistoric Andean economy centered on vertical ecology, it is possible that these two regions were engaged in *ayllu*-based, or even resource-motivated exchange systems. This is further supported by the fact that all of the Potreropampa points (across all time periods) recovered in the SNR are found in the Tierras Blancas valley, the same valley from which the Wari road network connects to the central highlands. In fact, of the Potreropampa material recovered in the SNR, 83% are points, and 66% are found above 1000 masl, further suggesting a link to vertical ecology and the acquisition of higher-elevation resources (Eerkens et al. 2010). The Wari administrative site of Pataraya lies within the upper limits of the Tierras Blancas valley suggesting that it was possible that populations were traversing the same set of pathways from the coast to the mountains prior to the Middle Horizon, and that pathways were only formalized by the Wari into what we now consider to be Wari roads. If so, this would place the SNR in the central highland interaction zone, within which the SNR, Ayacucho, Sondondo and Apurímac regions were utilizing (and possibly sharing/exchanging) obsidian from the Quispisisa source while southern interaction zones would have operated around the sources of Alca and Chivay (Burger et al. 2000).

If these four regions were part of the same interaction sphere prior to and during the Middle Horizon, and were connected through a system of long-term resource exchange relationships, this may explain why regions such as Chicha-Soras, that we would expect based on proximity to these regions to have the same obsidian distribution pattern, falls outside of expectation. The long-term existence of trade networks has been proposed to stem from demand for "relatively commonplace items that were unavailable locally" (Smith 1999: 61; Tripcevich 2010). Obsidian is, in fact, one of the most consistently transported materials throughout the entire prehistory of the Andes, and its limited occurrence would have necessitated the formation of exchange relationships built around this durable and incredibly useful material.

Cusco

At the site of Pikillacta, a Wari administrative outpost in the Cusco region, eight flakes (of a sample of nine) sampled by Burger and Asaro (1977) were sourced to Quispisisa. The distance from the Quispisisa source to the site of Pikillacta is over 280km, the equivalent of roughly eight days of travel (Kellett et al. 2013). Prior to the Middle horizon, Quispisisa was imported into the Cusco region in more limited quantities, but by the Middle Horizon, 41% of the obsidian from sites in the region was from Quispisisa (n=13), while 28% (n=9) was sourced to Alca, 3% (n=1) to Potreropampa and 3% (n=1) to Jampatilla (Burger et al. 2000). In sum, this means that roughly 50% of the obsidian from the Cusco region during the Middle Horizon was sourced from the Ayacucho region and central highland interaction sphere. This is in contrast to the Early Horizon and Early Intermediate Periods in Cusco where over 87% of the obsidian is sourced to Alca (and the southern interaction sphere), and no Quispisisa obsidian was present in the sample (Burger et al. 2000).

At the site of Huaro in the Cusco region, a proposed colonial outpost for Wari migrants to the region, Quispisisa represents the primary obsidian source at 60.38% of the assemblage (n=32), Alca represents 24.53% (n=13), and Chivay represents 9.43% (n=5) (Skidmore 2014). The presence of Quispisisa obsidian Huaro is in relatively greater proportion to the representation of Quispisisa obsidian across all Middle Horizon sites in the Cusco region (41%) (Burger et al. 2000). This may be due to the fact that Skidmore (2014) found that much of the material culture and architectural construction at Huaro was reminiscent of local Ayacucho lifeways, and suggested that residents of Huaro likely moved into the Cusco region from the Ayacucho Valley, possibly bringing with them knowledge of and access to Quispisisa distribution networks.

Moquegua

The Moquegua region, located on the very southern coast of Peru, is an important region for studies of the Middle Horizon, as the region was active within both the Wari Empire and the Tiwanaku interaction spheres. The site of Cerro Baul, with its prominent plateau, is one of the most intensively studied Middle Horizon sites from the region. Obsidian found at the Middle Horizon component of Cerro Baul has been sourced by Burger and Glascock (2000) and by Williams et al. (2012). The sample analyzed by Burger and Glascock (2000) was sourced to Chivay (79%), Alca (8%), Quispisisa (8%), and Potreropampa (8%). In other words, 16% of the obsidian found at Cerro Baul was moving into Moquegua from the Ayacucho region and central highland interaction sphere. Williams

et al. (2012) analyzed obsidian from several contexts: 1) palatial residences on the summit; 2) specialist residences adjacent to the palatial residences; 3) two D-shaped temples; and 4) Wari residences located on the underlying terraces. The authors found that the obsidian was sourced to Alca (86%), Quispisisa (8%) and Chivay (4%) (Williams et al. 2012). Most interesting to their analysis was the identification of five points on the north-slope residences that were exclusively sourced to Chivay. This statistically significant pattern suggests that certain point-types or source-types, may have been connected to status, whether that be class, imperial identity, or other (Williams et al. 2012). This also may explain why Alca dominated the assemblage sourced by Williams et al. (2012), and Chivay the assemblage sourced by Burger and Glascock (2000).

Also in the Moquegua region, the site of Cerro Mejia has a similar obsidian distribution pattern to that found by Williams et al. (2012) at Cerro Baul, with 80% of the obsidian coming from Alca and 20% from Quispisisa. The representation of obsidian from Quispisisa is greater at the site of Cerro Mejia than it is at Cerro Baul. Another site in the region, Mejia Ladera has an even greater relative representation of obsidian from Quispisisa. At Mejia Ladera, 55% of the obsidian was sourced to Alca, 38% to Quispisisa and 1% to Chivay (Williams et al. 2012). Mejia Ladera was occupied during the early Middle Horizon during the initial phase of Wari expansion and it was abandoned relatively early, prior to the collapse of the Empire in AD 800. If Mejia Ladera represents an initial program of imperial expansion (through Wari-style bifaces), this may account for the larger quantity of Quispisisa obsidian present at the site, when compared to neighboring sites in the region like Cerro Mejia and Cerro Baul.

VI. Concluding Remarks

This chapter explored previous studies examining the regional distribution and consumption of obsidian throughout the prehistory of the Andes and in the Middle Horizon, more specifically. Several patterns emerge from a close examination of the data. First, highlighted in the analyses is a likely regional separation between the central highland and southern interaction spheres, linking Ayacucho, the Southern Nasca Region, Apurímac and Sondondo in a central highlands network, and the Titicaca Basin, Cusco, Moquegua and Arequipa into a southern network. Throughout most of prehistory these regions generally utilized obsidian from within their own networks, relying on the major high-quality obsidian sources of Quispisisa in the central highlands, and Chivay and Alca in the south. Second, prior to the Middle Horizon, there may have been long-established relationships, likely based on obsidian trade routes (among other elevation-specific resources) and the vertical ecology of Andean economic systems, that linked these regions within their respective interaction spheres. As one of the most ubiquitously transported materials that is only available in nine locations throughout the entire southern Andes, obsidian has a 13,000-year history of transportation and presence within exchange systems (Tripcevich 2007).

Third, during the Middle Horizon, the distribution of Quispisisa obsidian dramatically increases. Quispisisa is the closest high-quality source to the Wari capital, and its transportation to distant locations, and often its replacement of local sources, has been linked to projects of imperial expansion (Burger et al. 2000). But in addition to Quispisisa obsidian, the Potreropampa obsidian source (and to a lesser extent the Jampatilla source) also shows an increased distribution pattern, reaching sites like Cerro Baul in Moquegua and Pikillacta in

Cusco. Both regions did not use obsidian from Potreropampa or Jampatilla prior to the Middle Horizon. And fourth, Quispisisa (consumed both in the hinterland and in the Wari heartland) appears to have been produced in a location other than where it was consumed. Stone (1983) and Bencic and Glascock (2016) find that Quispisisa obsidian was generally not produced nor retouched at the Wari heartland sites of Conchopata and Huari, suggesting an alternate location for the production of obsidian tools. This pattern is similar in hinterland regions farther from the source as well. Tripcevich and Contreras (2011) suggest a possible production location near the Quispisisa source itself, in the region of Huanca Sancos. Further research is necessary to verify the extent of this production. This chapter attempts to explore the distribution and consumption of obsidian at the Huari capital itself to explore patterns connecting the heartland and more distant regions in obsidian transport, trade and consumption. The next several chapters will address original data collected and analyzed from the site of Huari, and a provide a discussion of how this data fits in with the pre-existing patterns.

CHAPTER 6

METHODS

The analyses for this dissertation derive from a sample of 628 obsidian artifacts from the 2012 excavations of the Vegachayuq Moqo sector of Huari, conducted by Dr. Jose Ochatoma Paravicino, Licenciada Martha Cabrera, and Licenciado Carlos Mancilla Rojas. All artifacts were analyzed in collaboration with the archaeology lab at the Universidad Nacional de San Cristóbal de Huamanga (UNSCH), Ayacucho, and all x-ray fluorescence analyses were conducted in Lima. This chapter presents a background and history of x-ray fluorescence analysis and its use in archaeology, as well as elaborates on sampling strategies, laboratory methods, and sourcing analyses conducted for this dissertation.

I. X-Ray Fluorescence

X-ray fluorescence (XRF), although currently a popular method for archaeological research, has only recently been made more readily available to researchers after little more than a century since the discovery of the x-ray in 1901 by German physicist Wilhelm K. Röntgen. While the x-ray was quickly utilized within physics, it wasn't until the early 1960s that scholars from the University of California Berkeley began to use XRF for geological and anthropological analyses. The first published XRF analysis of obsidian within an archaeological context was published in 1968 by Robert Jack and Robert F. Heizer from UC Berkeley (Shackley 2011). XRF soon became comparable to other methods of compositional analysis, such as Neutron Activation Analysis (NAA), and many scholars began to see the

benefits of developing research using XRF (Jack 1971; Jack and Carmichael; Shackley 1991). XRF was beneficial in that the method was non-destructive, meaning that the sample could remain whole instead of being ground into a homogenous powder. XRF also involved minimal preparation of the sample, so it was fast, easy to use, and cost-effective for researchers (Shackley 2011).

As with all scientific developments, scholars began to search for a way to make XRF more efficient and, particularly for archaeologists, more research and fieldwork-friendly. In the early 2000s, portable x-ray fluorescence (PXRF) became the answer. Overall, PXRF allowed researchers to take the instrument into the field for in-situ spectrometric analyses. Its lightweight design encouraged transportation, was more accessible to a greater number of scholars, and was noticeably more cost-effective than heavier, more cumbersome equipment. Earlier PXRF instrument models, however, were not as accurate as other XRF devices (Craig et al., 2007), but this error has largely been eradicated due to newer and more precise PXRF instruments and calibration methods. The new and increasing accessibility of PXRF suggests that archaeology will continue to improve upon existing analysis methods and calibration techniques as more scholars become familiar with PXRF as a tool for research.

There are several different companies (i.e., Bruker, Niton) who manufacture PXRF instruments and each company, model, and individual instrument should be considered unique, and more accurate and comparable analyses involve trace element measurements taken from the same device, or across the same model, and subsequently company. This dissertation was conducted using a Bruker Tracer III, which was used for both in-field analyses of artifacts from Vegachayuq Moqo, as well as for comparative data collection from the Archaeological Research Facility at UC Berkeley. One downside to several models of

PXRF instruments, is their inability to function at high elevations (greater than 2,000 meters). (Several newer models for high-elevation applicability have only recently emerged). Because the Tracer III uses oil as an insulator/coolant for the high-voltage mechanisms of the device, changing the pressure (high altitude) can cause the oil to release gas and damage the x-ray tube (Bruker). Due to the constraints of the machine, material analyzed for this dissertation was brought from Ayacucho to Lima (coastal elevation) to avoid device malfunction during XRF analysis.

Physics of XRF

XRF works by sending a photon emitted from a short wavelength form (x-ray) of electromagnetic radiation (Kaiser 2015; Shackley 2011). The energy of the photon excites the atoms in the sample, causing the negatively charged electrons in the sample to dislodge from the inner electron shell. This movement causes a chain reaction whereby electrons from outer shells drop to the inner shells to create stability in the atom. When an electron drops from an outer electron shell to an inner electron shell, the energy of that movement is released in the form of another photon (fluorescent radiation), and the energy of this photon can be measured by an XRF instrument and identified not only to a specific element but also to a specific electron shell transition (Kaiser 2015; Shackley 2011) (Figure 6.1). For example, the K-shell (inner electron shell) of Iron (Fe) has an energy of 6.40 keV (electronvolts), so if the XRF instrument identifies a rebounding photon with an energy of 6.40 keV, the researcher knows that the element Iron is present in the sample. XRF works particularly well for spectrometric analysis because the researcher can choose the energy of the photon sent toward the sample, ranging from 1 keV to 250 keV. The energy of the photon will determine

which elements in a sample become excited and drop electrons, this is especially useful for when a researcher is looking at relatively light or relatively heavy elements. The PXRF instrument is able to read the energy displaced from the atom, due to a siPIN Detector (silicon type photodiode).

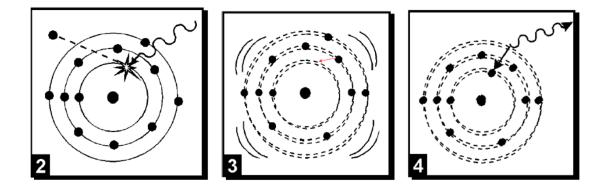


Figure 6.1. The Physics of X-Ray Fluorescence. 2) The photon from short wavelength radiation (an X-ray) hits the sample and excites an electron, which becomes displaced from the atom. 3) Electrons from the outer shells drop to the inner shells to take the place of the displaced electron. 4) The energy from the electron drop is released from the element as a photon, which is read by the XRF instrument as a unique elemental energy (e.g. Iron K-shell energy is 6.40 keV) (Kaiser 2015).

II. PXRF in Archaeology: Obsidian Source Analyses

The use of XRF and PXRF in archaeological applications has come a considerable distance since the first studies conducted at UC Berkeley in the 1960s. XRF is used to identify unknown elemental compositions of soil (Abrahams et al. 2010), pigments (Huntley 2012; Jones and Photos-Jones 2005) and metals (Rehren et al. 20120), and to source materials such as clay (Tedman 2012; Walker 2012), obsidian (Carter and Shackley 2007; Forster and Grave 2011; Golitko et al. 2010; Jia et al. 2010; Moholy-Nagy et al. 2013; Smith et al. 2007), basalt (Lundblad et al. 2011; Johnson et al. 2011; Winterhoff et al. 2007), chert (Wurtzburg 1991; Milne et al. 2011), and other silicate materials. However, despite the

multiple applications for XRF in archaeology, the most widely developed and researched is its use in defining and differentiating obsidian sources.

Why Study Obsidian?

Obsidian is a naturally occurring volcanic glass (igneous rock with a glassy texture) formed during the rapid cooling process of volcanic lava (see Chapter 5). Obsidian has a conchoidal fracture pattern (meaning that it fractures in a predictable curved break) and brittle composition that make it one of the easiest and most reliable materials for knapping (Andrefsky 2005). In addition, the sharp fractured edges are one of the sharpest edges formed by a natural material, an attribute that has been highly sought after in prehistory. In addition, it's relatively limited occurrence have added to its value (Chia et al. 2010). Apart from the more functional aspects of obsidian, its phenotypic appearance, usually black and translucent with occasional red or brown inclusions, naturally sharp edge, and frequent association with hunting, warfare, ritual etc., has made it a commonly used prestige or high-value resource across the globe and throughout prehistory, based on aesthetic and symbolic values (Saunders 2001). (Chapter 5 presents a full discussion on the varying dimensions of obsidian in Andean prehistory.)

Because obsidian is homogenous and occurs in limited frequencies, it is an often studied material. A homogenous composition means that all obsidian from one source location will have relatively identical trace element compositions, making obsidian artifacts and obsidian sources an ideal research question for the application of XRF. XRF analyses of obsidian artifacts and sources is ongoing in North America (Doyel 1996; Joyce et al. 1995; Lesko 1989, Shackley and Tucker 2001), Mesoamerica (Brown et al. 2004; Healan 1993;

Moholy-Nagy et al. 1984), and South America (Burger and Glascock 2000; Burger et al. 2000; Tripcevich and Contreras 2011) as well as in Asia (Chia et al. 2010), the Near East (Frahm and Feinberg 2012; Healey 2007) and Oceania (Frederickson 1997; Fullagar et al. 1991). While there is overlap in the methods and application of XRF to source obsidian in these varying regions, it is important to understand that there are regional differences to the trace elemental composition of obsidian. And, in fact, it is these regional variations that make obsidian so easily sourced.

How to Source Obsidian

XRF analyses of obsidian work by isolating and reading the weight of the diffracted electrons to identify the concentration of trace elements within the sample. The most commonly identified elements, and most utilized for obsidian source comparisons, are potassium (K), calcium (Ca), titanium (Ti), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), rubidium (Rb), strontium (Sr), yttrium (Y), zirconium (Zr), niobium (Nb), palladium (Pd), and barium (Ba) (Shackley and Tucker 2001). Not all of these elements are important for determining source location, with the primary identifying elements varying from region to region. For example, in the Andes, scholars primarily look at concentrations of rubidium, strontium and manganese and secondarily at iron, zirconium and niobium (Craig et al. 2010; Kellett et al. 2013; Burger et al. 2015).

As previously mentioned, this dissertation was completed using a Bruker Tracer III PXRF and all sample measurements, calibrations and analyses were done in best practices and in an effort to be comparable to other obsidian studies in the Andes, for the following factors: 1) voltage; 2) current; 3) filter and 4) time (Burger et al. 2000; Eerkens et al. 2010; Kellett et al. 2013; Burger et al. 2015). Each of these above factors is malleable, and reflect a choice made by the researcher during data collection. Each choice can produce a different concentration of trace elements, or target in on a different range of elements altogether. For these reasons, it is important that the choice for each element is carefully selected to produce accuracy, as well as to be relevant and comparable to other sourcing studies conducted in the region of interest. As addressed in the previous section, The PXRF instrument works by sending a photon of a specific energy toward the artifact sample to excite and measure the weight of the rebounding electrons. Based on the elements that a researcher is looking to analyze, the energy (voltage) of the emitted photon can be adjusted. For obsidian, the energy of the emitted photon is usually set to 40keV. The standard current setting for obsidian analyses is 35uA.

Obsidian analyses also benefit from the use of a filter, which serves as a mechanism for narrowing in on the specific target elements intended for study. For example, for obsidian, a Green filter essentially blocks elements that have energies lower than 17keV and greater than 40keV from reaching the SiPIN detector. This ensures that the elements that fall within the desired range are clearly visible during analysis. The last factor of the analysis that is dependent upon the researcher is the length of time that the photon is sent toward the sample. The general idea is that the longer the x-ray is hitting the sample the deeper into the material it will penetrate, providing greater strength to the analysis. Samples are generally run from 90 to 180 seconds, largely depending on the time available to the researcher. For this dissertation, all obsidian was analyzed using a voltage of 40keV, a current of 35uA, a Green filter, and all tests were run for 180 seconds.

III. Data Collection

The data for this dissertation are comprised of 628 obsidian artifacts from the site of Huari, located in the central highlands of Peru. The sample derives from the collections of material excavated from Sectors I, II and III of Vegachayuq Moqo at the site of Huari during the 2012 field season, under the direction of Dr. Jose Ochatoma, Licenciada Martha Cabrera and Licenciado Carlos Mancilla Rojas. The analyzed material represents a 100% sample of the obsidian assemblage from the corresponding collections. Permissions were given to conduct XRF analysis of the material for the months of July to September 2016. Inventory and preliminary analyses were conducted at the Archaeology Laboratory at the Universidad Nacional de San Cristóbal de Huamanga (UNSCH) in Ayacucho. Due to the potential malfunction of the PXRF instrument above 2,000 meters, all XRF analyses were conducted in Lima. Inventories of all material were submitted to Dr. Ochatoma and Lic. Cabrera prior to analysis in Lima and all materials were returned to their original locations at the Archaeology Laboratory at the UNSCH promptly after analysis.

Context

All material was examined and analyzed for basic lithic attributes at the UNSCH Archaeology Laboratory in Ayacucho, and a sample of the collection (505 artifacts) was selected for XRF analysis in Lima (see following section for discussion on sampling strategy). Some of the obsidian artifacts had already been separated by material type prior to my analysis, and the material that had not yet been sorted and catalogued was done so in collaboration with the UNSCH archaeology lab during this dissertation. All obsidian material

was therefore inventoried along with corresponding contextual information, re-packaged and labeled in artifact material bags, and given to the archaeology lab along with the completed inventory.

All obsidian for Sectors I, II and III were inventoried and contextual information on each artifact pertaining to the site (within Huari), sector, sub-sector, *capa* (layer), level, feature and unit was recorded. Additional contextual information available was excavator name and the date of excavation, and each was noted when present. Because some of the obsidian artifacts had been inventoried and assigned an ID by the archaeology lab and some had not, I assigned each artifact a unique identification number for this analysis to keep information organized and identifiable. Table 6.1 provides a sample for context information collected for each artifact.

ID	Site	Sector	Subsector	Capa	Nivel	<i>E.A</i> .	Unit	Excavator	Date
0001	Vega	2	B4	М			XVI	OHL	1/12/12
0002	Vega	2	B4	М			XVI	OHL	1/12/12
0003	Vega	2	B4	М			XVI	OHL	1/12/12
0004	Vega	2	B4	Ν			XVI	OHL	1/12/12

Table 6.1 Example inventory for collected data, conducted at the Archaeology Laboratory at the University in Ayacucho and samples prepared for XRF analyses (*Capa*: layer; *Nivel*: level; E.A.: architectural feature).

Lithic Attributes

In addition to the inventory and contextual information, a basic lithic analysis of the materials was conducted in Ayacucho to identify the following attributes: artifact type (i.e., projectile point, biface, uniface, flake, nodule, core and fragment), length, width, thickness, and weight. Additional attributes were recorded for flake artifacts: flake termination (hinge, step, feathered, overshot), striking platform (flat, cortical, complex, abraded), cortex, and flake scars. A note was made of retouching present on all artifacts and all material was

photographed. Table 6.2 shows the recording strategy for lithic attributes and Table 6.3 provides a definition of all recorded attributes. A further discussion of the application of flake termination, striking platform and other attributes to analysis and interpretation is discussed in Chapter 7.

ID	Туре	Length	Width	Thick	Weight	Term.	Platform	Cortex	Scars
0001	Flake	30.94	25.26	11.95	8.6	Н	F	2	1
0002	Flake	26.15	16.63	5.88	2.3	S	Ср	4	2
0003	Flake	17.73	20.23	6.46	1.7	F	Ср	4	3
0004	Flake	18.79	9.74	5.91	1.5	F	С	3	3

Table 6.2. Example inventory for lithic data. (Termination: H = hinged, S = step, F = feathered, O = overshot; Platform: F = flat, Cp = complex, C = cortical, A = abraded; Cortex: 1=100% cortex, 2 > 50% cortex, 3 = <50% cortex, 4 = 0% cortex; Flake Scars: 1 = 0 flake scars, 2 = 1 flake scar, 3 = 2-5 flake scars, 4 = >5 flake scars).

Attribute	Description of Attribute
Biface	Artifact that is heavily modified over both faces.
Uniface	Artifact that is moderately modified on one face of the artifact
Flake	The detached piece removed from the core. Flakes can be turned into bifaces or unifaces with modification, utilized as flake tools, or discarded in the form of debitage.
Nodule	A geological (not anthropogenic) specimen.
Core	Homogenous lithic material from which detached pieces (flakes) are removed.
Fragment	A broken artifact of any category.
Point	A biface that has been utilized as a spear point or arrow head (e.g., in contrast to a knife).
Edge Retouch	An artifact that has been worked on one or both sides (edges).
Flake Termination	Depending upon the force, angle and tool used, the distal end of a flake will have a different projection. Feathered terminations are smooth, and indicate the force traveled equally through the core and objective piece. Step terminations occur when the detached piece snaps or breaks. Hinge fractures occur when the force of impact moves toward the objective piece. And overshot terminations occur when the force of impact moves away from the objective piece.
Striking Platform	The striking platform, found at the proximal end of the flake, is the location where force of impact is applied. Different platform types pertain to different forces of impact and striking tools. A cortical platform occurs when the striking tool is applied to the cortex (or exterior) of the core. A flat platform is smooth, and typically results from removing the flake from a flat surface (i.e. non- bifacial tool, unidirectional core, flake blank). Complex and abraded platforms result from the impact tool striking a piece of the core that is multidirectional. Abraded platforms have been smoothed by abrasion or rubbing of the platform.
Cortex	Cortex is the natural exterior of the rock.
Flake Scar	Flake scar is the impression left on the objective piece from the detached flake. Multiple flake scars indicate increased modification.

Table 6.3. Definition of lithic attributes, adapted from Andrefsky (2005).

Sampling for PXRF

After the basic lithic attribute analyses were complete, a sample of the collection was prepared for PXRF analysis and transported to Lima. Sampling of the artifacts was done so with the intent of sampling as much material as possible, and only artifacts that could not be analyzed accurately were omitted. One such limitation derives from the thickness and size of the artifact. Artifacts that measure less than 3mm in thickness can not be accurately analyzed using PXRF due to the inability of the x-ray to penetrate the sample to a proper depth. In other words, too thin a sample means that less elemental information can be recovered from XRF analyses. This resulted in the removal of 82 artifacts from XRF analysis.

A second limitation stems from the need for the x-ray to hit the sample clearly and directly, without obstruction. Many of the obsidian samples that had been previously inventoried, had been given permanent laboratory identification numbers by the UNSCH Archaeological Laboratory, many of which were written onto the obsidian artifacts using a combination of white out and black permanent marker. The artifacts for which the white out or permanent marker obscured all flat surfaces were removed from the sample. If the x-ray were to pick up on the white-out or black marker, this would cloud the accuracy of the results. This resulted in another 41 samples being removed from the XRF analysis. In sum, 505 samples (80%) of the original collection were taken to Lima for XRF analysis. A comparison of artifact information by context and by attribute shown in Chapters 7 and 8 shows that despite the removal of artifacts for PXRF analysis, the sample is representative across context features and lithic attributes.

Conducting PXRF

The Bruker Tracer III, on loan from the University of California Santa Barbara, was temporarily housed at the Pontificia Universidad Católica del Peru (PUCP) in Lima from July to September 2016. During this time, XRF analyses were conducted over the course of six weeks after lithic analysis had been completed in Ayacucho. Sampled artifacts were lightly washed with water to remove loose dirt, allowed to dry, and then each artifact was

analyzed using the PXRF instrument. To run the analysis, a flat piece of the artifact was placed on the instrument platform to cover the source location of the x-ray beam. It is important that a flat part of the sample covers the x-ray beam fully, and that it is flush with the sensor to ensure maximum accuracy. The instrument was placed upright on its stand, and each obsidian sample analyzed was small enough to allow for the safety shield cap to be used for each trial. The instrument settings were adjusted to send photons of 40keV at a current of 35uA, using a Green filter to magnify elements from 17 to 40keV. Each trial was conducted for 180 seconds and three trials were conducted for each obsidian artifact. Three trials were conducted to ensure there was no human or machine error and to account for surface variations on the sample. Each trial was run from a different location on each artifact. After all obsidian artifacts were analyzed using PXRF, the material was returned to the UNSCH Archaeology Laboratory in Ayacucho, along with the corresponding inventory.

IV. Data Analysis

XRF Data and Calibration

XRF analyses were conducted in the field using the Bruker program S1PXRF, which produced a visual display of the trace elemental composition and recorded data on the region of interest (ROI), or the area under the curve. In other words, the visual ROI data represented concentrations of different elements picked up during analysis by the SiPIN detector and is displayed by elemental weight (see Figure 6.2). Through this visual data, even without statistical analysis, it is possible to get as sense of what elements are present within the sample. Raw ROI data is in relation to only a single artifact and is not precise for comparison across a data set. However, ROI data can be used to determine a ratio between the concentration of two elements within an artifact. This ratio can then be compared to the ratio of the concentration of the same two elements in another artifact. For example, for artifact 0001 there is a ratio of 7097.31 strontium to 8334.49 rubidium (or 0.85) while for artifact 0002 there is a ratio of 6264.52 strontium to 7572.56 rubidium (or 0.82). The ROI provides a general description of elemental concentrations across a sample.

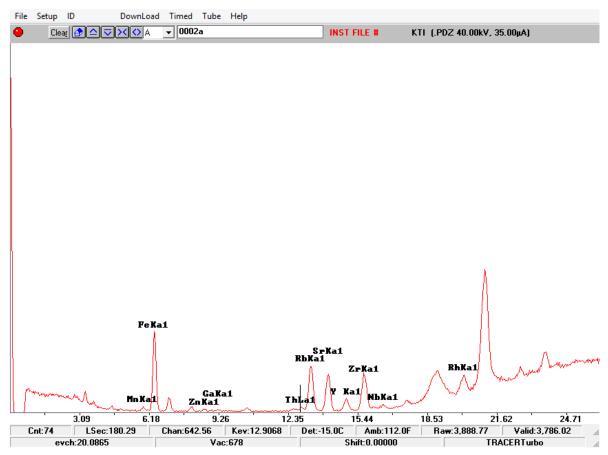


Figure 6.2. Graph of Elemental Regions of Interest (ROI), S1PXRF. Raw ROI data from PXRF analysis. (Peaks represent greater raw amounts).

For more detailed analyses of the collection, it is useful to acquire the concentration of elements in each sample in parts per million (PPM), not just the raw measurements registered by the SiPIN detector. In order to obtain the PPM for each element that can then be compared across a sample set, it is necessary to calibrate the data. Bruker provides a calibration specific to each instrument, which can be used to calibrate within a dataset (the company conducts prior tests and assessments of each individual device against known, standard materials and datasets which form the basis for the calibration). Each Bruker instrument analyzes a standard sample of obsidian from North and South America to create a calibration coefficient that can be applied to data acquired from that specific tracer to determine the PPM of each element within a sampled collection. The data calibration is run through a program developed by Bruker, called S1CalProcess. S1CalProcess operates as an add-in for the program Excel and the pre-calibrated obsidian standards are placed in the same file as the sample obsidian run for this dissertation. S1CalProcess then executes the program to calculate the calibrated PPMs for the sample obsidian. As a point of note, Shackley (2011) acknowledges that this calibration is often not appropriate for comparisons across multiple data sets and instruments, and may only be statistically useful for comparisons and analyses from the same instrument. Accordingly, the comparative data for obsidian sources used in this dissertation is derived from data collected by myself, following the same protocol on the same device, from comparative source collections at the Archaeological Research Facility at UC Berkeley, under the direction of Nicholas Tripcevich. (See Appendix 2 for a full list of calibrated PPMs for each artifact).

Sourcing the Data

The calibrated PPMs for each sampled artifact as well as the calibrated PPMs from the comparative source collection were compiled in SYSTAT for analysis. Figure 6.3 shows a graph of all known sources grouped by a concentration of the elements rubidium (Rb) and strontium (Sr). Figure 6.4 shows the raw data points prior to source identification of the sampled artifacts. Each artifact was compared for multiple element concentrations, although the most distinctive combinations were rubidium vs. strontium, rubidium vs. zirconium, and rubidium vs. niobium. All points were analyzed alongside 95% confidence ellipses for each known source location, and identified as belonging to a source if they fell inside the 95% confidence interval. Because each artifact was analyzed across three different trials, each trial was examined separately to conduct source identification and then source IDs were compared across the trials. If each trial produced a matching source ID, then the identification was considered accurate and noted. More specific results and analysis of XRF sourcing data can be seen in Chapter 8.

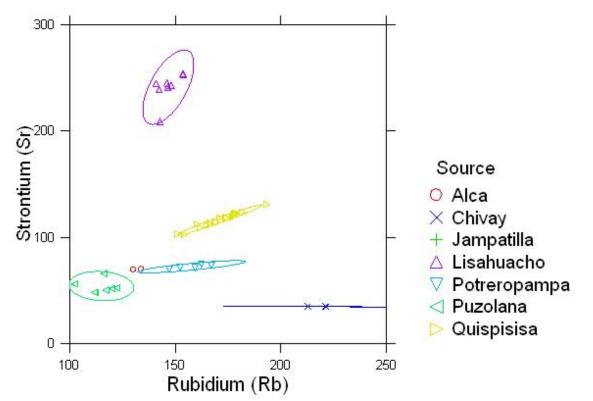


Figure 6.3. Graph of Obsidian Sources, known comparative collection. Collections courtesy of Nicholas Tripcevich and the Archaeological Research Facility at University of California Berkeley.

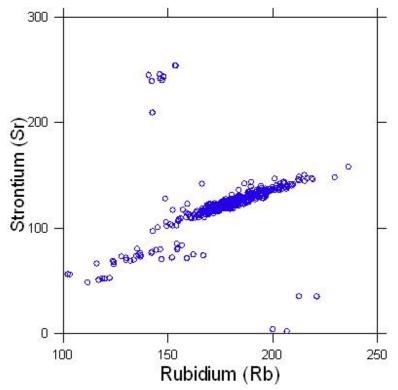


Figure 6.4. Graph of Total Sample. All obsidian points considered in this dissertation, includes sample collection and comparative collection.

Lithic Attributes

Basic lithic analyses were conducted for the previously mentioned attributes of artifact type, flake termination, flake striking platform, cortex and flake scar as well as excavation and temporal context. Because most features identified were categorical, tests of significance were largely conducted using chi-square tests to explore the relationship between two variables. Because chi-square tests can only reveal whether or not a relationship exists, and not what that relationship is, results from lithic attributes were compared with sourcing results, and background history of the Wari Empire and theories on imperial processes and resource/craft production provide the avenue for interpretation. More specific results and analyses from lithic attributes and excavation context can be seen in Chapter 7, and a discussion of the results follows in Chapter 9.

CHAPTER 7

ARTIFACT RESULTS

The obsidian samples analyzed for this dissertation derive from the 2012 excavations within the Vegachayuq Moqo sector of Huari, conducted by Professors Dr. Jose Ochatoma Paravicino, Licenciada Martha Cabrera and Licenciado Carlos Mancilla Rojas. The 2012 excavation project was titled "Investigación y Puesta en Valor del sector de Vegachayuq Moqo–Huari", and was conducted during the months of April to June, 2012, and December 2012. The obsidian artifacts analyzed for this dissertation represent a 100% sample of the obsidian recovered from their respective contexts. Some, but not all, of the lithic material from the excavations had been previously inventoried and assigned an identification number prior to my analysis. As a result, I assigned each obsidian artifact an independent ID, recorded contextual information about each artifact including sector, sub-sector, *capa* (layer), *nivel* (level), feature, bag number, excavators and date of excavation. In many instances, the obsidian artifacts were co-mingled with other lithic and ceramic material from the same excavation context (likely the result of material recovered through screening or sifting).

As part of this analysis I separated and inventoried the obsidian artifacts from the excavations, and the resulting inventory was given to the Archaeology Lab at the Universidad Nacional de San Cristóbal de Huamanga (UNSCH), alongside the data from the source analyses. The final sample consisted of 628 obsidian artifacts, ranging in type from debitage to projectile points (heretofore differentiated from non-projectile bifaces). All obsidian artifacts were analyzed according to their basic attributes (type, size, cortex, retouch, flake scars, flake platform and flake termination), context (sector, sub-sector, *capa*

and time period) and source location (PXRF). By examining attributes, context and source location it is possible to get a wider understanding of the use of obsidian within the site of Huari in the Middle Horizon, Peru.

I. Excavation Context

Vegachayuq Moqo, Huari

Vegachayuq Moqo is one of the best-studied sectors within the site of Huari, due in large part to the D-shaped architectural feature located along the western edge of the sector (Figure 7.1). First excavated by Enrique Bragayrac and Enrique González Carré in 1982, and again by Bragayrac in 1991, the D-shaped structure, which measures 30m in diameter, has been interpreted by many as a temple of a ceremonial and/or ritual nature (Ochatoma et al. 2015; Carré and Bragayrac 1996; Bragayrac 1991). The sector of Vegachayuq Moqo was first occupied during the Early Intermediate Period by the Huarpa, and subsequently built over by the Wari Empire (Ochatoma et al. 2015). Within the sector it was common practice for Wari-period construction to rest on top of Huarpa walls that were filled with a layer of imported red sand (Ochatoma et al. 2015) (Figure 7.2). In addition to the sector's use prior to the Middle Horizon, there is also archaeological evidence of the purposeful destruction of the site, as well as pre-historic looting, following the collapse of the Empire during the Late Intermediate Period (Ochatoma et al. 2015). During the 2012 excavations, which were conducted with the intention of exploring architectural features and establishing a more refined chronology of the sector, the principal investigators found that temporal contexts were intact only for earlier phases of the site's occupation (Ochatoma et al. 2012). While

Huarpa and expansion-period Wari occupations were found with intact contexts, collapse and post-collapse period contexts were heavily co-mingled due to the above-mentioned destruction, looting, as well as more recent agricultural activity within the sector.

Figure 7.1. Map of Huari. Image courtesy of Schreiber (2013).

Figure 7.2. Photo of intentional red, sandy fill overlying Huarpa occupations. Photo courtesy of Ochatoma et al. 2012

The results of the 2012 excavations, presented in a final *informe* (report) to the Ministerio de Cultural in Lima, suggest that Vegachayuq Moqo was, in fact, a seat of power within the Ayacucho region as early as the Early Intermediate Period during the Huarpa occupation of the site. The sector continued to play an important role within the expanding Wari Empire until the end of the Late Middle Horizon (Ochatoma et al. 2012). The authors reaffirm that Vegachayuq Moqo was an important location within the site of Huari, as an architectural feature expressing imperial power, and also as a ceremonial space where rituals were conducted in honor of the gods: "*Vegachayuq Moqo fue un lugar donde se expresa claramente la arquitectura del poder en Huari desde el Intermedio Temprano hasta el colapso del estado imperial. Se trata de un espacio sagrado donde se realizaron rituales en honor a sus deidades*" (Ochatoma et al. 2012: 3).

Sectors, Sub-sectors, and Capas

The obsidian artifacts analyzed come from excavations conducted within three distinct sectors of Vegachayuq Moqo, within the site of Huari (Figure 7.3). Sub-sectors further define the location of excavation units, and *capa* (layer) refers to the vertical delineation of stratigraphic layers within an excavation unit. Excavation units across all three sectors were excavated to varying horizontal and vertical extents. Some units were trenches, while others were broad exposure, and not all were excavated to the same profundity (Ochatoma et al. 2012). In addition, *capas* were determined independently for each unit, and cannot be applied universally across the site. The analysis here approaches *capas* by subsector, which is how they are presented in the 2012 *informe* (Ochatoma et al. 2012). The *nivel* (level) designates subtle distinctions within each *capa*, however temporal information is presented as uniform for each *capa*, so the analysis presented in this dissertation uses *capa* as the smallest contextual designation.

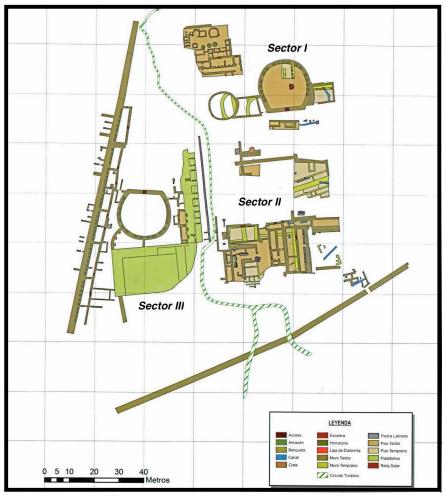


Figure 7.3. Map of Vegachayuq Moqo and 2012 Excavations, map adapted from Ochatoma et al. 2015.

Of the 628 obsidian artifacts analyzed, 20 (3.18%) were associated with Sector I, 419 (66.72%) with Sector II and 189 (30.10%) with Sector III (Table 7.1). This suggests that obsidian was most prevalent within Sector II, however, this assumption does not take into account the difference in the size of excavations within each sector. Sector I contained excavation units measuring a total of 639.149m², Sector II units measured a total of 786.147m², and Sector III measured a total of 350m². Because Sector III excavations were not as large as those conducted in Sector I and II, obsidian artifacts are underrepresented from Sector III.

	Sector I	Sector II	Sector III	Total		
Count	20 (3.18%)	419 (66.72%)	189 (30.10%)	628 (100%)		
Table 7.1. Obsidian count by sector.						

The analysis of obsidian count by sub-sector faces similar complications, in that each sub-sector contained diverse excavation units with varying depths and horizontal extents. Furthermore, sub-sectors were not differentiated by temporal context, rather they were delineated by surface features, their location chosen through both judgmental and stratified sampling methods. For the investigators, sub-sectors were positioned primarily to investigate architectural features (Ochatoma et al. 2015). This makes it difficult to address variation in the frequency of obsidian by sub-sector to any degree of statistical significance. Nevertheless, exploring patterns of obsidian (type, size, source location) within each sub-sector is a potential avenue for analysis.

The basic obsidian count by sub-sector is presented in Table 7.2. Within Vegachayuq Moqo, 13 sub-sectors produced obsidian artifacts, and 21 artifacts were not attributable to one specific sub-sector (subsequently referred to as sub-sector N/A). As was expected, the sub-sectors with the highest counts of obsidian were found in Sectors II and III (most likely due to their larger excavations). For example, sub-sector C6, located within Sector II, produced 136 artifacts (21.66%) and sub-sector D9, located within Sector III produced 121 artifacts (19.27%). Some sub-sectors were co-mingled during collection and inventory, for example sub-sector A8-B8-A9, located within Sector III, which produced only three obsidian artifacts (0.48%).

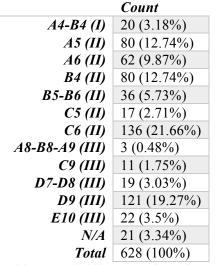


Table 7.2. Obsidian count by sub-sector. (Sector noted in parentheses.)

Capas were designated in the field based on changes in soil type, artifact type, or architectural feature. For many *capas*, temporal context could be ascertained given the presence of diagnostic cultural material found within each layer, but in others there was little to no diagnostic material with which the the excavators could have made a definitive assessment (Ochatoma et al. 2012). Similar to analyses of sub-sector and sector, it is difficult to compare obsidian frequencies across *capas* due to differing layer thickness and soil disturbance patterns (looting, destruction, agricultural activity, bio-turbation, etc.). In addition, *capa* designations are not identical across sectors or even some sub-sectors, making comparison even more challenging. However, diagnostic material within a *capa* is the best approximation for temporal association apart from absolute dating techniques, which have yet to be conducted. To maintain contextual integrity, obsidian counts by *capa* are presented below in relation to their corresponding sectors and sub-sectors. All contextual information regarding the *capas* is derived from the *informe* presented by Ochatoma, Cabrera and

Mancilla (Ochatoma et al. 2012). A complete display of obsidian counts by *capa* can be found in the Appendix (Appendix 2.1).

Sector I

Sector I is located on the northwest side of Vegachayuq Moqo, near the D-shaped temple (see Figure 7.3). The excavations in Sector I covered an area of 639.149m² and were aligned with visible architectural walls, eroding floors and other architectural features of interest (Ochatoma et al. 2012). Of the total obsidian analyzed from Vegachayuq Moqo, 20 artifacts pertained to excavations from Sector I, 3.18% of the total sample (see Table 7.1). Obsidian from Sector I was only found in two sub-sectors: A4 and B4. Sub-sectors A4 and B4 correspond to unit 1 and units 20 and 21, respectively. Each sub-sector forms a square of 20m² and both were a southern extension of sub-sector A3 (a sub-sector from which no obsidian was found during the 2012 excavations). Within the obsidian collection, there was no contextual distinction made between these sub-sectors, and so for analysis they are considered one sub-sector.

Within sub-sectors A4 and B4, obsidian artifacts were found within *Capa* A and *Capa* B (see Table 7.3). *Capa* A consisted of a semi-compact, dry sediment of a dark brown color and a medium-fine matrix. The layer was 8-9cm thick and contained inclusions of roots and irregular-shaped rocks of basalt, rhyolite and puzolana (Ochatoma et al. 2012). Within sub-sector A4, *Capa A* had very little cultural material, mostly non-diagnostic ceramic fragments. Within sub-sector B4, *Capa* A produced relatively more cultural material, such as ceramics, obsidian, turquoise and human remains. However, all lithic material from both sub-sectors was co-mingled. *Capa* B was a semi-compact layer of a dark brown color and a fine

matrix. Unlike *Capa* A, *Capa* B was humid, and contained roots, shell casings and irregularshaped rocks of basalt and rhyolite. Little cultural material was present in *Capa* B, with the exception of ceramic fragments and isolated carbon deposits (Ochatoma et al. 2012). Similar to *Capa* A, more cultural material from *Capa* B was found in sub-sector B4 (including ceramics and obsidian artifacts), but all material was co-mingled during excavation and inventory. In sum, *Capa* A contained 70% of the obsidian found within sub-sectors A4 and B4 (n=14), while *Capa* B contained 30% (n=6) (Table 7.3).

	A	В	Total	
Count	14 (70%)	6 (30%)	20 (100%)	
Table 7.3	. Obsidian c	ount by <i>cap</i>	a, sub-sector	s A4-B4, Sector I.

Sector II

Sector II is located on the east side of Vegachayuq Moqo, aligned with carved stone interpreted as possible platforms (Ochatoma et al. 2012; Carré and Bragayrac 1996) (see Figure 7.3). The excavations of Sector II covered an area of 786.147m², employing 3x1m and 2x2m trenches. Within Sector II, 419 obsidian artifacts (66.72%) were collected during excavations (Table 7.1). In addition, Sector II had the most defined cultural sequence of all three sectors and corresponded to the final phases of the Huarpa occupation at the end of the Early Intermediate Period and to the expansion and consolidation phases of the Wari Empire during the beginning and middle phases of the Middle Horizon. While later contexts are not as well-intact, Sector II overlays a colonial pathway connecting the archaeological site of Huari to the present-day towns of Quinua and Pacaycasa (Ochatoma et al. 2012). Within Sector II, obsidian was found from seven sub-sectors: A5, A6, B4, B5-B6, C5, and C6 (see Table 7.2). Eight obsidian artifacts from Sector III could not be assigned to any sub-sector (N/A).

Sub-sector A5 pertains to excavation units 5, 6, 9, 13, 14, and 21. Obsidian was present in all stratigraphic layers within sub-sector A5 (see Table 7.4). The surface layer (S), 8-13cm thick, was a dark grey sediment with inclusions of roots and small stones. Few ceramic fragments were present and the layer appeared to have been used for agricultural activities in more recent decades. Capa A was a grey, semi-compact layer with a thickness of 8-14cm. The layer contained small stones and roots and limited cultural material, consisting mostly of non-diagnostic ceramic fragments. *Capa* B was a semi-compact, light grey layer of diatomaceous earth. The layer was 13-17cm thick and contained cultural material of plainware and polychrome ceramics, most of which were non-diagnostic. Capa C was a layer of beige sediment, with a medium matrix and thickness of 11-24cm. Within the layer were clay nodules, both diagnostic and non-diagnostic ceramics and dispersed animal bones. Capa D was a brown, compact clay floor with a medium matrix. The floor was 2-5cm thick and associated with a mixed deposit of ceramics of Huarpa, Viñaque, and Chakipampa styles, as well as domestic ceramics, camelid bones and obsidian. The contextual integrity of Capa D was compromised in some by its connection to a Wari patio associated with the D-shaped temple. Capa E was a semi-compact, red, sandy layer with a medium matrix. It was 5-10cm thick, and the intentional sandy fill was likely brought into the site from another location the red sand is non-local to the Ayacucho region. This layer of red, sandy fill, appears multiple times throughout Vegachayuq Moqo, and is associated with the transition from Huarpa to Wari, often overlying Huarpa architecture (Ochatoma et al. 2015). This is

supported by the fact that cultural material in *Capa* E was temporally associated with Huarpa and early Chakipampa ceramic styles (Ochatoma et al. 2012).

	Count
S	4 (5%)
A	1 (1.25%)
В	4 (5%)
С	29 (36.25%)
D	11 (13.75%)
E	10 (12.5%)
N/A	21 (26.25%)
Total	80 (100%)

Table 7.4. Obsidian count by *capa*, sub-sector A5, Sector II.

Sub-sector A6 was originally placed to align with a possible passageway that was proposed to link the higher elevation sectors of Huari to Vegachayuq Moqo. Upon excavation, it was found to correspond to a colonial pathway connecting the site of Huari to the present-day towns of Quinua and Pacaycasa. The investigators suggested that this colonial pathway may have originated as an earlier Wari canal (Ochatoma et al. 2012). Obsidian material found within sub-sector A6 comes from *capas* B, C and D (see Table 7.5). *Capa* B was a semi-compact, light grey layer with a thickness of 7-20cm. Cultural material included carbon, ceramics, lithics and animal bones and was associated with the Chakipampa ceramic style. In addition to pre-hispanic material culture, Capa B also contained contemporary material, likely due to agricultural use or tourism activities. *Capa* C was a compact, beige layer with a medium matrix. The layer was 15-24cm thick and contained cultural material that was predominantly Chakipampa and Huarpa in style, but some ceramic fragments recovered were also a mixed deposit of Kumunsenga, Okros, Caja, Huamanaga and Huari styles (Ochatoma et al. 2012). In addition to ceramics, *Capa* C contained camelid remains and obsidian artifacts (the most within this sub-sector) as well as occasional lenses

of red earth, interpreted as a possible intentional fill lying on top of an earlier wall structure. *Capa* D was a compact, dark beige layer with a medium matrix and a thickness of 4-15cm. The layer contained large rocks measuring 50cm by 40cm, under which a floor was found with ceramic fragments pertaining to Chakipampa, Huarpa, Okros and Kumunsenqa ceramic styles.

 B
 C
 D
 N/A
 Total

 Count
 3 (4.84%)
 43 (69.35%)
 11 (17.74%)
 5 (8.06%)
 62 (100%)

 Table 7.5. Obsidian count by capa, sub-sector A6, Sector II.

Sub-sector B4 contained obsidian within 12 different *capas* (see Table 7.6). *Capa* A was a semi-compact, dark brown layer that contained roots as well as fragments of nondiagnostic ceramics, lithics and animal bones. Capa B was a brown, compact occupation floor with a thickness of 3-5cm. Within Capa B, cultural material consisted of ceramic fragments, lithics, animal bones and some isolated carbon deposits. Capa C was a semicompact layer of red sand with an underlying, compact, dark brown to beige sediment. Cultural material found within Capa C consisted of animal bones and Huarpa-style ceramic fragments. This layer also contained an intrusion of loose rocks and ceramic fragments pertaining to Huarpa, Kumunsenga, and Chakipampa ceramic styles. Capa D was a semicompact, dark brown sediment mixed with red sand. The sand was located towards the top of the layer, with the sediment becoming more compact towards the bottom. *Capa* E was a semi-compact, beige layer lying above a possible occupation floor found in Capa F. This floor was dated to the EIP and contained fragments of animal bones, ceramics, metal, and lithics. Subsectors B5, B6 and C5 were an extension of sub-sector B4 and contained a similar stratigraphic profile (see Table 7.7 and Table 7.8). *Capas* G-P were presented without

contextual information in the 2012 *informe*, and therefore, no contextual information about them is presented here (Ochatoma et al. 2012).

	Count
A	4 (5%)
B	5 (6.25%)
С	10 (12.5%)
D	8 (10%)
E	17 (21.25%)
G	5 (6.25%)
H	13 (16.25%)
J	2 (2.5%)
K	2 (2.5%)
M	3 (3.75%)
N	3 (3.75%)
Р	8 (10%)
Total	80 (100%)

Table 7.6. Obsidian count by capa, sub-sector B4, Sector II

	С	D	Ε	N/A	Total	
Count	1 (2.78%)	20 (55.56%)	9 (25%)	6 (16.66%)	36 (100%)	
Table 7.7. Obsidian count by <i>capa</i> , sub-sector B5-B6, Sector II.						

	D	E	Total			
Count	11 (64.70%)	6 (35.30%)	17 (100%)			
Table 7.8. Obsidian count by <i>capa</i> , sub-sector C5, Sector II.						

Sub-sector C6 contained obsidian within six different *capas* (see Table 7.9). The surface layer showed evidence of recent plant cultivation as well as the remains of adobe walls, likely constructed during colonial times and associated with the path from Huari to Quinua and Pacaycasa. The surface was a semi-compact, dark brown layer with a thickness of 5-25cm. Agricultural activity had brought ceramic fragments and animal remains to the surface from lower lying layers. *Capa* B was a semi-compact, light grey layer with a medium

matrix. The layer was 20-25cm thick and was interpreted as a layer of intentional fill covering an underlying floor of red earth. Capa C was a clay floor of a light brown color and a thickness of 3-5cm. On this floor, excavators found fragments of ceramics, camelid remains and stone walls with irregular mortar. Capa D was another layer of intentional fill, composed of a fine, red sand. This sand, similar to that found in other sub-sectors, was not endemic to the site and would have been brought in from further distances. The intentional fill was 5-25cm thick and contained the most obsidian artifacts within this sub-sector (Table 7.9). However, because this layer is an intentional fill, the obsidian may be temporally associated with the later material in Capa E. Capa E was a semi-compact, dark brown layer with a medium matrix. The layer was 15-30cm thick and contained roots and more intentional fill covering temporally earlier walls and floors. This layer also contained abundant cultural material dating to the Huarpa occupation. The presence of several Huari-style ceramics within Capa E suggests an association with a late Huarpa and early Wari expansion phase of the site. Capa G was a compact, white floor with a medium matrix and thickness of 5cm and dated to the Huarpa occupation of the site (Ochatoma et al. 2012).

Count				
Surface	40 (29.41%)			
В	8 (5.88%)			
С	2 (1.47%)			
D	74 (54.42%)			
E	7 (5.14%)			
G	4 (2.94%)			
N/A	1 (0.74%)			
Total	136 (100%)			

Table 7.9. Obsidian count by capa, sub-sector C6, Sector II.

Sector III

Sector III was located on the south side of the D-shaped structure within Vegachayuq Moqo, and was aligned with a possible access route to the platform, as well as with possible habitation zones (Ochatoma et al. 2012). Excavations within Sector III covered an area of 350m², and were conducted in 2x2m excavation units. The investigators opened Sector III with the intention of defining the walls of the architectural features located within the sector (Ochatoma et al. 2012). Sector III contained 189 obsidian artifacts, or 30.10% of the total obsidian sample. However, this sector was the smallest of all sectors excavated, suggesting that obsidian from Sector III is relatively underrepresented within the entire assemblage. Obsidian was found within sub-sectors A8-B8-A9, C9, D7-D8, D9, E10 and F (see Table 7.2).

Sub-sectors A8 and B8 produced only one obsidian artifact from within *capas* B-D, but all material for these layers was co-mingled during collection and inventory (see Table 7.10). *Capa* B pertained to a floor, 2-4cm thick, that extended through adjacent sub-sectors (A9 and A10) and was composed of diatomaceous earth. The floor was white and cream in color and cultural material found included a multipurpose stone tool and a concentration of Huari style ceramics. *Capa* C was divided into two distinct levels, relating to the delimitation of a wall running through the sector. *Capa* C1 contained a concentration of angular stones of varying sizes and inclusions of volcanic rock. This level was a semi-compact, dark brown sediment. *Capa* C2 similarly contained stones of varying sizes, but was a semi-compact, light brown sediment. *Capa* D was located within a different architectural space of the sub-sector, and produced ceramics associated with the Chakipampa A ceramic style. Sub-sector A9 was an extension of sub-sectors A8 and B8 and had a similar stratigraphic composition. While

sub-sector A9 did not produce much cultural material, it lay adjacent to sub-sector A10, where excavators found a collection of 15 copper metal artifacts within *Capa* D, including five *tupus* of varying sizes.

	B	D	Total			
Count	1 (33.33%)	2 (66.67%)	3 (100%)			
Table 7.10. Obsidian count by <i>capa</i> , sub-sector A8-B8-A9, Sector III.						

Sub-sector C9 contained obsidian material within *capas* A, B, C, and E (see Table 7.11). *Capa* A was a semi-compact, dark brown sediment and contained roots extending into the layer from the surface. Within *Capa* A were cultural materials associated with Chakipampa, Huamanga, Aqo Wayqo, Okros, Caja and Huarpa ceramic styles, as well as animal bones, carbon and plaster of both green and red colors that was associated with a wall running through the sub-sector. *Capa* B, a floor composed of white, diatomaceous earth, also had remains of plaster of both green and red colors, similar to those found in *Capa* A. Within *Capa* B were several intrusions, one of which contained ceramics of both Huarpa and Chakipampa styles as well as burned animal bone. *Capa* C was a compacted layer lying under the floor of *Capa* B. It was a dark brown sediment with a medium-fine matrix and was associated with a late Huarpa-phase wall. *Capa* C lay directly above *Capa* D which was a layer of intentional fill. Under the fill was *Capa* E, a floor of diatomaceous, white earth with dark brown and black mineral inclusions. Sub-sector D9 was an extension of sub-sector C9 and had a similar stratigraphic profile (see Table 7.12).

A
 B
 C
 E
 N/A
 Total

 Count
 3 (27.27%)
 1 (9.09%)
 4 (36.37%)
 1 (9.09%)
 2 (18.18%)
 11 (100%)

 Table 7.11. Obsidian count by capa, sub-sector C9, Sector III.
 Sector III.
 Sector III.
 Sector III.

	A	В	D	E	Total	
Count	2 (1.65%)	1 (0.83%)	16 (1.65%)	102 (14.05%)	121 (100%)	
Table 7.12. Obsidian count by <i>capa</i> , sub-sector D9, Sector III.						

Sub-sectors D7 and D8 contained obsidian artifacts from both *Capas* B and C, however, material from these two sub-sectors were co-mingled during collections and inventory (see Table 7.13). *Capa* B was a semi-compact layer of a light brown color and was likely intentional fill (Ochatoma et al. 2012). Cultural material recovered from *Capa* B consisted of ceramics of Huarpa, Chakipampa, Aqo Wayqo, and Huamanga ceramic styles, with limited numbers of Kumunsenqa, Caja, Okros, Huari, Viñaque, and Totora ceramic styles. In addition, *Capa* B also contained spondylus, animal bones, and lithic material. *Capa* C was a white, compact floor measuring 10-12cm in thickness. Most of the floor had been destroyed by intrusions; only 30% of the original surface remained. Within *Capa* C, cultural material found included large pieces of spondylus. *Capa* D lay just under the floor of *Capa* C, and also consisted of a white, diatomaceous earth.

	В	С	D	Total
Count	15 (78.95%)	3 (15.79%)	1 (5.26%)	19 (100%)
Table 7.13. Obsidian count by <i>capa</i> , sub-sector D7-D8, Sector III.				

Sub-sector E10 contained material from three *capas*: C, F and J (see Table 7.14). *Capa* C was defined by a wall, 80cm thick, that extended through units 10 and 11. Cultural material within *Capa* C consisted of ceramic fragments and animal bones as well as three fragments of spondylus. *Capa* D was a dark brown floor and contained cultural material including ceramic fragments, lithics, animal bones as well an an intrusion of filled earth, containing nodules, flakes and worked stone. *Capa* F was a light brown sediment with a semi-compact texture and, similar to *Capa* D, contained ceramics, animal bone, obsidian, as well as some bronze metal fragments. *Capa* J was not presented with context in the *informe*, and so no context for the layer is presented here.

	С	F	J	Total		
Count	2 (9.09%)	13 (59.10%)	7 (31.81%)	22 (100%)		
Table 7.14. Obsidian count by <i>capa</i> , sub-sector E10, Sector III.						

Chronology

Due to varying depths and extents of excavation units, as well as the geographical placement and delineation of sub-sectors and sectors, it is difficult to assess frequency variations in obsidian within and across these contexts. It is, however, possible to explore frequency of obsidian artifacts from Vegachayuq Moqo within and across time periods. One difficulty in assessing temporal phases in association with obsidian artifacts (in general and for this dissertation) is the fact that almost the entire obsidian assemblage (with the exception of one projectile point) is non-diagnostic. Therefore, in order to explore chronology, it is essential to have intact excavation contexts that are well-documented in order to make temporal associations based on relative dating techniques. Not all *capas* from the 2012 excavation season were associated with diagnostic material or assigned to a relative occupation phase, but those that were provide a starting point. All of the associations for chronology provided here are established from ceramic typology and chronology determined by excavators and investigators during the 2012 field and lab seasons (Ochatoma et al. 2012; Ochatoma et al. 2015).

Much of the ceramic chronology for Middle Horizon ceramics builds upon the work of Dorothy Menzel (1967). Menzel (1967) based her seriation on south-coast (Ica) ceramic

sequences and divided the Middle Horizon into four distinct phases: 1) Phase 1, the emergence of the empire 2) Phase 2, the consolidation of the empire and 3) Phases 3 and 4, the collapse. The accuracy of her chronology has been brought into question, and scholars continue to discuss and debate the dates for specific ceramic styles, with many noticing that there are often regional differences in the ceramic sequence, making absolute dating difficult (Knobloch 2005; Isbell 2004; Griesz and Makowski 2010; Vaughn et al. 2014). For the purposes of this dissertation, and because temporal contexts within the excavation were often mixed and difficult to accurately associate, three general time periods will be examined: 1) Huarpa, dating to the Early Intermediate Period; 2) Wari A, dating to the transitional phase from Huarpa to Wari at the beginning of the Middle Horizon; and 3) Wari B, the height of Wari expansion dating to the Middle Horizon. In many instances *capas* contained material from more than one of the above time periods, and so both were considered within the analysis. For example, sub-sector C9, *capa* B, was both Huarpa and Wari A (see Table 7.15).

According to Ochatoma et al. (2015), the sector of Vegachayuq Moqo predates the Wari Empire, having been previously occupied by the Huarpa during the Early Intermediate Period. This was confirmed by the many architectural spaces that were associated with Huarpa occupations underlying Wari structures. Ochatoma et al. (2015) suggest that Huarpa occupations were associated with floors of diatomaceous earth and were usually covered intentionally by a layer of imported red sand (see Figure 7.2). Ceramic material associated with this early Huarpa phase are Huarpa, Cruz Pata and Kumunsenqa ceramic styles (Isbell 2004; Ochatoma et al. 2015). The transition between Huarpa and Wari (here called Wari A) is more difficult to assess, due in large part to frequent inter-associations between multiple ceramic styles within assemblages that are attributable to both Early Intermediate Period and

Middle Horizon time periods (for example, Huarpa ceramics). Ceramic styles that suggest this transitional Wari A phase are Chakipampa A, Okros, Caja and Huarpa ceramic styles (Isbell 2004; Ochatoma et al. 2015). The expansion and consolidation phases of the Wari Empire (here called Wari B) are characterized by Chakipampa, Viñaque, Huamanga, Atarco, Aqo Wayqo, Okros, Caja, and (limited) Huarpa ceramic styles. In addition, Ochatoma et al. (2015) note the presence of green and red plaster was associated with the expansion and consolidation phase of the Empire (Wari B).

Table 7.15 presents associated temporal contexts for the obsidian analyzed in this dissertation. These temporal phases have been categorized based on on 1) ceramic style, 2) the presence of intentional red fill, and 3) the presence of red or green plaster within a specific *capa*. The time periods presented (and the combinations thereof), Huarpa, Wari A and Wari B, are best approximations. To note, layers lying above *capas* of known temporal association were not assigned a time period, as agricultural activity and bioturbation has disturbed more recent contexts within the sector. Layers lying below *capas* of a known date, however, were approximated and made note of (see Table 7.15).

Table 7.16 presents the number of obsidian artifacts that pertain to each specific time period. (If an artifact was dated to possible two time periods it is included in the count for each). Of the dateable assemblage, 368 artifacts (56.09%) date to the Huarpa occupation, 210 date to the Wari A expansion phase (32.01%) and 78 date to the Wari B consolidation phase (11.89%). Because younger time periods (primarily Wari B) are found in the upper layers of the excavation, these contexts are often disturbed, leading to an inability to confidently assign artifacts to a time period. This leads to an underrepresentation of artifacts from later time periods. In other words, even through Huarpa accounts for 56% of the assemblage, and

Wari B only 11.89%, Wari B likely is underrepresented in the analysis and more of the

obsidian pertains to Wari than accounted for here.

	Temporal Phase	Count	Diagnostic Material		
A (C9)	WB	3 (0.69%)	C, HM, AW, O, CA, H, red/green plaster		
A (D9)	WB	2 (0.46%)	C, HM, AW, O, CA, H, red/green plaster		
B (A6)	WB	3 (0.69%)	С		
B (A8-B8-A9)	WA, WB	1 (0.23%)	Н		
B (C9)	H, WA	1 (0.23%)	H, C, diatomaceous earth		
B (D7-D8)	H, WA, WB	15 (3.46%)	H, C, AW, HM, K, CA, O, V, T, sandy fill		
B (D9)	H, WA	1 (0.23%)	H, C, diatomaceous earth		
С (Аб)	WA, WB	43 (9.93%)	C, H, K, O, CA, HM, H, sandy fill		
C (B4)	H, WA	10 (2.31%)	H, K, C, sandy fill		
C (B5-B6)	H, WA	1 (0.23%)	H, K, C, sandy fill		
C (C9)	H, WA	4 (0.92%)	H, H wall, sandy fill		
C (D7-D8)	H, WA	3 (0.69%)	Sandy fill		
D (A5)	WA, WB	11 (2.54%)	H, V, C, sandy fill		
D (A6)	H, WA	11 (2.54%)	H, C, O, K, sandy fill		
D (A8-B8-A9)	WA	2 (0.46%)	С		
D (B4)	Н	8 (1.85%)	Sandy fill		
D (B5-B6)	Н	20 (4.61%)	Sandy fill		
D (C5)	Н	11 (2.54%)	Sandy fill		
D (C6)	H, WA	74 (17.1%)	H, Sandy fill		
D (D7-D8)	Н	1 (0.23%)	Diatomaceous earth		
D (D9)	H, WA	16 (3.69%)	Sandy fill		
E (A5)	H, WA	10 (2.31%)	H, C, sandy fill		
E (B4)	H	17 (3.92%)	Sandy fill		
E (B5-B6)	H	9 (2.08%)	Sandy fill		
E (C5)	Н	6 (1.38%)	Sandy fill		
<i>E (C6)</i>	H, WA	7 (1.61%)	H, sandy fill		
<i>E (C9)</i>	H	1 (0.23%)	Diatomaceous earth		
E (D9)	H	102 (23.56%)	Diatomaceous earth		
G (B4)	H	5 (1.15%)	Below <i>capa</i> of known association		
G (C6)	Н	4 (0.92%)	H		
<i>H (B4)</i>	H	13 (3%)	Below <i>capa</i> of known association		
<i>J (B4)</i>	H	2 (0.46%)	Below <i>capa</i> of known association		
<i>K (B4)</i>	H	2 (0.46%)	Below <i>capa</i> of known association		
<i>M (B4)</i>	H	4 (0.69%)	Below <i>capa</i> of known association		
N (B4)	H	3 (0.69%)	Below <i>capa</i> of known association		
P (B4)	Н	8 (1.85%)	Below <i>capa</i> of known association		
Total	lion against here to	433 (100%)	and some (Salt sector noted in normatheress)		

Table 7.15. Obsidian count by temporal context and *capa*. (Sub-sector noted in parentheses.) (C=Chakipampa, HM=Huamanga, AQ=Aqo Wayqo, O=Okros, CA=Caja, H=Huarpa, V=Viñaque, T=Totora, K=Kumunsenqa; H=Huapa, WA=Wari A, WB=Wari B).

	Count
Huarpa	368 (56.09%)
Wari A	210 (32.01%)
Wari B	78 (11.89%)
Total	656 (100%)

Table 7.16. Obsidian count by temporal context.

	Count
Huarpa	215 (49.65%)
Huarpa, Wari A	138 (31.87%)
Wari A	2 (0.46%)
Wari A, Wari B	55 (12.70%)
Wari B	8 (1.84%)
Huarpa, Wari A, Wari B	15 (3.46%)
Total	433 (100%)

Table 7.17. Obsidian count by temporal context, grouped.

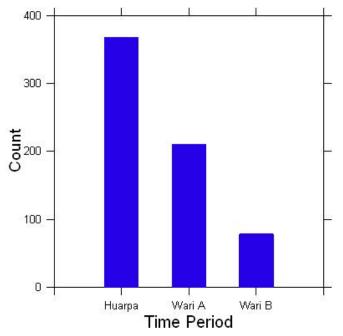


Figure 7.4. Graph of obsidian by time period.

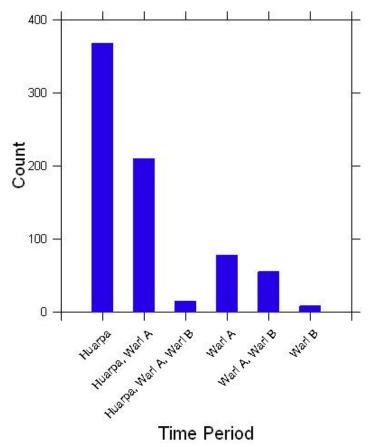


Figure 7.5. Graph of obsidian count by time period (grouped).

II. Results: Attributes

All obsidian artifacts analyzed for this dissertation were inventoried, and attributes (such as artifact type, dimension, weight, and artifact features) were recorded. Similar to the basic statistics presented above for contextual information of the obsidian, this section addresses basic statistics for artifact attributes, exploring each within the total assemblage as well as within specific temporal contexts. Analysis progresses from a more general description of artifact type, and is followed by a narrower focus on flakes and projectile points. Most emphasis is placed on the examination of flakes, as they comprise 57.48% of the assemblage (n=361) (see Table 7.18).

Artifact Type

Each obsidian artifact was categorized into the following artifact types: 1) biface (non-projectile); 2) core; 3) flake; 4) fragment; 5) point; and 6) uniface. Within the sampled artifacts, 22 (3.5%) were bifaces, 1 (0.16%) was a core, 361 were flakes (57.47%), 218 were fragments (34.71%), 1 (0.16%) was a nodule, 24 (3.82%) were points and 1 (0.16%) was a uniface (see Table 7.18). "Flakes", as a general category, represents both flake tools (expedient) and debitage (production debris). Debitage and expedient tools are produced by the same processes and so are analyzed here as one category. "Fragments" represent broken tools (formal and expedient), broken debitage, as well as material affected by wear, discard processes and decay. Fragment pieces are difficult to identify, and so are considered one category. Formal tools were classified as "uniface" or "biface".

	Biface	Core	Flake	Fragment	Nodule	Point	Uniface	Total
Count	22	1	361	218	1	24	1	628
	(3.5%)	(0.16%)	(57.48%)	(34.71%)	(0.16%)	(3.82%)	(0.16%)	(100%)
Table 7.18. Artifact count by type.								

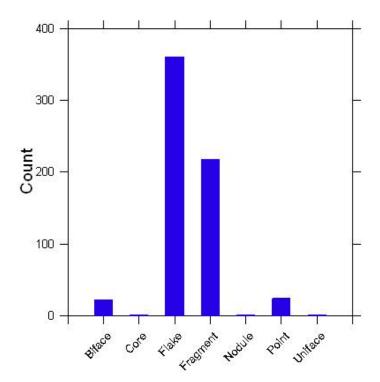


Figure 7.6. Graph of artifact type.

Artifact Type and Sector

A chi-square test was conducted to look at the relationship between the raw frequencies of artifact type and sector ($H_o =$ no relationship). The results do not support the null hypothesis, and instead show a relationship between between artifact type and sector (value=38.78, df=3.78, p<0.0001). However, due to the absence of some artifacts resulting in zero values within the contingency table, and because the sample size is relatively large with variation in counts between sectors, there is a possibility that the chi-square test will provide a false positive correlation. Furthermore, the test only shows that a relationship between the two variables exists, and not what the nature of that relationship is. (For additional tables see Appendix 2.2 and 2.3). Nonetheless, a notable difference in assemblage composition between sectors does exist. For example, within each sector flakes are the dominant artifact type. And within Sector I, flakes make up 55% of the assemblage (n=11). Both Sectors II and III, also have a similar proportion of flakes within the assemblage at 56.56% (n=237) and 59.79% (n=113), respectively. One notable difference in assemblage composition between the sectors is the absence of bifaces and projectile points in Sector I, and their presence in Sectors II and III (see Table 7.19).

	Sector I	Sector II	Sector III
Biface	0 (0%)	13 (3.10%)	9 (4.76%)
Core	0 (0%)	1 (0.24%)	0 (0%)
Flake	11 (55%)	237 (56.56%)	113 (59.79%)
Fragment	8 (40%)	154 (36.75%)	56 (29.63%)
Nodule	0 (0%)	1 (0.24%)	0 (0%)
Point	0 (0%)	13 (3.10%)	11 (5.82%)
Uniface	1 (5%)	0 (0%)	0 (0%)
Total	20 (100%)	419 (100%)	189 (100%)

Table 7.19. Artifact types by sector assemblage.

Artifact Type and Sub-sector

In addition to looking at artifact type by sector, it is also possible to do so by subsector and *capa*. A Pearson chi-square test was conducted to test the relationship between artifact type and sub-sector ($H_o =$ no relationship). The results do not support the null hypothesis and show a relationship between the two variables (value=109.989, df=72, p<0.003). Similar to the chi-square test conducted for sector, there are many cells within the contingency table with a value of zero, and therefore, the results of the chi-square test may be a false positive correlation. In general, flakes are the most common artifact type within each sub-sector. Only sub-sector A5 (n=46, 57.5%), and C9 (n=6; 54.55%) have more fragments than any other artifact type. Bifaces have the highest proportional representation in subsector C5 (n=2; 11.76%), despite the fact that sub-sector C6 has a greater biface frequency within the total assemblage (n=7) (Table 7.20). Points have the highest proportional representation in sub-sector D9 (n=8, 6.61%). (For additional tables see Appendix 2.4 and 2.5).

	Biface	Core	Flake	Frag	Nodule	Point	Uni	Total
A4-B4	0 (0%)	0 (0%)	11 (55%)	8 (40%)	0 (0%)	0 (0%)	1 (5%)	20 (100%)
A5	1 (1.25%)	0 (0%)	29 (36.25%)	46 (57.5%)	0 (0%)	4 (5%)	0 (0%)	80 (100%)
<i>A6</i>	2 (3.22%)	0 (0%)	34 (54.84%)	24 (38.71%)	0 (0%)	2 (3.22%)	0 (0%)	62 (100%)
B 4	0 (0%)	0 (0%)	54 (67.5%)	21 (26.25%)	1 (1.25%)	4 (5%)	0 (0%)	80 (100%)
<i>B5-B6</i>	1 (2.78%)	0 (0%)	16 (44.44%)	18 (50%)	0 (0%)	1 (2.78%)	0 (0%)	36 (100%)
<i>C5</i>	2 (11.76%)	0 (0%)	8 (47.06%)	8 (41.18%)	0 (0%)	0 (0%)	0 (0%)	17 (100%)
<i>C6</i>	7 (5.15%)	1 (0.74%)	91 (66.91%)	35 (25.74%)	0 (0%)	2 (1.47%)	0 (0%)	136 (100%)
A8- B8-A9	0 (0%)	0 (0%)	2 (66.67%)	1 (33.33%)	0 (0%)	0 (0%)	0 (0%)	3 (100%)
С9	0 (0%)	0 (0%)	5 (45.45%)	6 (54.55%)	0 (0%)	0 (0%)	0 (0%)	11 (100%)
D7- D8	1 (5.26%)	0 (0%)	16 (84.21%)	2 (10.53%)	0 (0%)	0 (0%)	0 (0%)	19 (100%)
D9	8 (6.61%)	0 (0%)	68 (56.20%)	37 (30.58%)	0 (0%)	8 (6.61%)	0 (0%)	121 (100%)
E10	0 (0%)	0 (0%)	14 (63.64%)	8 (36.36%)	0 (0%)	0 (0%)	0 (0%)	22 (100%)
N/A	0 (0%)	0 (0%)	13 (61.90%)	5 (23.81%)	0 (0%)	3 (14.29%)	0 (0%)	21 (100%)

Table 7.20. Artifact type by sub-sector assemblage.

Artifact Type and Time Period

As has been discussed previously, each *capa* has been assigned to a temporal context based on association with diagnostic artifacts within the layer. Therefore, I provide here only the results of artifact-type by time period (Tables 7.21 and 7.22). (For tables relating to individual *capa* see Appendix 2.6). A chi-square test was conducted to test the relationship between artifact type and time period (H_o = no relationship). The results support the null

hypothesis and suggest that artifact type and time period are not related (value=13.551, df=25, p<0.969). While not statistically significant, some notable patterns are still present within the results. For all time periods, flakes are the primary artifact type (>50%). The Huarpa-Wari A transitional phase contains the greatest proportion of bifaces across time periods (n=6; 4.35%). Despite low sample sizes, the Wari A/B and Wari B expansion and consolidation phases contain proportionally more projectile points when compared to earlier time periods. For example, projectile points (n=3) comprise 16.07% of the total assemblage for the Wari A/B and Wari B time periods. In comparison, projectile points (n=11) comprise 5.89% of the total assemblage for Huarpa and Huarpa/Wari A time periods. (For additional tables see Appendix 2.7 and 2.8).

	Biface	Core	Flake	Frag	Nodule	Point	Total
Huarpa	9	0 (0%)	133	64	1	8	215
	(4.19%)		(61.86%)	(29.76%)	(0.46%)	(3.72%)	(100%)
Huarpa, Wari	6	1	80	48	0 (0%)	3	138
A	(4.35%)	(0.72%)	(57.97%)	(34.78%)		(2.17%)	(100%)
Wari A	0 (0%)	0 (0%)	2 (100%)	0 (0%)	0 (0%)	0 (0%)	2 (100%)
Wari A, Wari	1	0 (0%)	31	21	0 (0%)	2	55
В	(1.82%)		(56.37%)	(38.18%)		(3.57%)	(100%)
Wari B	0 (0%)	0 (0%)	4 (50%)	3	0 (0%)	1	8
				(37.5%)		(12.5%)	(100%)
Huarpa, Wari	1	0 (0%)	12 (80%)	2	0 (0%)	0 (0%)	15
A, Wari B	(6.67%)			(13.33%)			(100%)

Table 7.21. Artifact type by time period assemblage.

	Biface	Core	Flake	Frag	Nodule	Point
Huarpa	9	0 (0%)	133	64	1	8 (57%)
	(52.94%)		(50.76%)	(46.38%)	(100%)	
Huarpa, Wari	6	1	80	48	0 (0%)	3
A	(35.29%)	(100%)	(30.53%)	(34.78%)		(21.42%)
Wari A	0 (0%)	0 (0%)	2	0 (0%)	0 (0%)	0 (0%)
			(0.76%)			
Wari A, Wari	1	0 (0%)	31	21	0 (0%)	2
В	(5.88%)		(11.83%)	(15.21%)		(14.29%)
Wari B	0 (0%)	0 (0%)	4	3	0 (0%)	1
			(1.53%)	(2.17%)		(7.14%)
Huarpa, Wari	1	0 (0%)	12	2	0 (0%)	0 (0%)
A, Wari B	(5.88%)		(4.58%)	(1.45%)		
Total	17	1	262	138	1	14
	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)
т 11 7 00 т.	· 11		1.1			

Table 7.22. Time period by artifact type assemblage.

Flake Size-Grade

Flakes recovered from Vegachayuq Moqo included both expedient flake tools and debitage. Following Catherine Bencic's (2016) study of the obsidian assemblage at Conchopata, flakes were measured by length, width and thickness (in mm) and assigned to one of four possible size-grades based on the maximum dimension of the artifact: 1) < 6.35mm; 2) 6.35–12.7mm; 3) 12.7–25.4mm; and 4) >25.4mm (Table 24). The majority of the flakes (n=197; 54.57%) fell into the third size-grade (12.7–25.4mm), while only two flakes (0.55%) measured less than 6.35mm. The low quantity of flakes measuring less than 6.35mm matches the pattern identified by Bencic (2016) at Conchopata and is likely the result of an underrepresentation of small flakes due to field methods of excavation and screening (Bencic 2016). First, during the excavation process some material does not pass through a screen, meaning that material has to be caught by the naked eye to be recorded, and small flakes less than 6.35mm are difficult to detect. And second, even when material is screened, the screens are rarely set with a grid small enough to catch material less than 6.35mm in size.

In general, flakes (both expedient flake tools and debitage) tend to decrease in size with increased levels of tool production (Bencic 2016). In other words, larger quantities of smaller-sized flakes indicate late-stage reduction activities. Bencic (2016) suggests that "on-site" tool production is indicated when the majority of flakes measure between 6.35mm–12.7mm. As Table 7.23 shows, only 3.6% (n=13) of the flakes from Vegachayuq Moqo fall within this size-grade category. Following Bencic (2016), this suggests that most obsidian production was occurring outside of Vegachayuq Moqo. This is a pattern that is also found at the neighboring site of Conchopata (Bencic 2016).

 < 6.35mm</th>
 6.35–12.7mm
 12.7–25.4mm
 > 25.4mm
 Total

 Count
 2 (0.55%)
 13 (3.60%)
 197 (54.57%)
 149 (41.27%)
 361 (100%)

 Table 7.23. Flakes by size-grade.

	Length (mm)	Thickness (mm)	Width (mm)	Weight (g)
Minimum	6.11	3.60	0.95	0.01
Maximum	59.39	51.30	22.67	9.50
Median	19.78	19.35	4.90	1.50
Mean	21.22	20.35	5.54	2.17
Std.	8.61	8.32	3.16	2.00
Deviation				

Table 7.24. Basic statistics for flakes.

Flake Size-Grade and Sector

A chi-square test was conducted to test the relationship between flake size-grade and sector ($H_o =$ no relationship). The results do not support the null hypothesis, suggesting that there is a relationship between the two variables (value=67.140, df=6, p<0.0001). This may suggest that in-situ tool production was occurring in distinct spaces within Vegachayuq Moqo, although the results may reflect the low sample size for flakes measuring less than

6.35mm as well as the considerable variation in sample sizes across the sectors. In general, flakes measuring 12.7-25.4mm are the most common size-grade within each assemblage, suggesting a limited amount of in-situ tool production across sectors at the site (see Table 7.25). And although sample size is low, Sector I contains the only flakes measuring less than 6.35mm, although this may be due to excavation/screening procedures (For additional tables see Appendix 2.9 and 2.10).

	Sector I	Sector II	Sector III
< 6.35mm	2 (18.18%)	0 (0%)	0 (0%)
6.35–12.7mm	1 (9.09%)	10 (4.22%)	2 (1.77%)
12.7–25.4mm	5 (45.45%)	132 (55.70%)	60 (53.10%)
> 25.4mm	3 (27.27%)	95 (40.08%)	51 (45.13%)
Total	11 (100%)	237 (100%)	113 (100%)

Table 7.25. Flake size-grade by sector.

Flake Size-Grade and Sub-Sector

Results by sub-sector provide a point of comparison to those produced by sector. A chi-square test to explore the relationship between the variables ($H_o =$ no relationship), does not support the null hypothesis and suggests a relationship between flake size-grade and sub-sector (value=118.276, df=36, p<0.0001). For flakes measuring less than 12.7mm, most are found within sub-sector B4 (Sector II) (Table 7.26). This contradicts the above results suggesting that Sector I was the location for tool production and calls into question the accuracy of exploring size-grade by excavation context due to varying sample sizes. In general, however, most sub-sectors are dominated by flakes measuring greater than 12.7mm, suggesting that limited in-situ tool production was occurring, and was likely not restricted to specialized areas within the site. This confirms the work conducted by Stone (1983) who

found no evidence for specialized production locations at the site of Huari. (For additional tables see Appendix 2.11 and 2.12).

	< 6.35mm	6.35–12.7mm	12.7–25.4mm	> 25.4mm	Total
A4-B4	2 (18.18%)	1 (9.09%)	5 (45.45%)	3 (27.27%)	11 (100%)
A5	0 (0%)	0 (0%)	20 (68.97%)	9 (31.03%)	29 (100%)
A6	0 (0%)	0 (0%)	24 (70.59%)	10 (29.41%)	34 (100%)
B 4	0 (0%)	8 (14.81%)	28 (51.85%)	18 (33.33%)	54 (100%)
B5-B6	0 (0%)	0 (0%)	7 (43.75%)	9 (56.25%)	16 (100%)
<i>C5</i>	0 (0%)	0 (0%)	2 (25%)	6 (75%)	8 (100%)
<i>C6</i>	0 (0%)	2 (2.20%)	48 (52.75%)	41 (45.05%)	91 (100%)
A8-B8-A9	0 (0%)	0 (0%)	2 (100%)	0 (0%)	2 (100%)
С9	0 (0%)	0 (0%)	2 (40%)	3 (60%)	5 (100%)
D7-D8	0 (0%)	0 (0%)	10 (62.5%)	6 (37.5%)	16 (100%)
D9	0 (0%)	0 (0%)	31 (45.59%)	37 (54.41%)	68 (100%)
<i>E10</i>	0 (0%)	2 (14.29%)	11 (78.57%)	1 (7.14%)	14 (100%)
N/A	0 (0%)	0 (0%)	7 (53.85%)	6 (46.15%)	13 (100%)

Table 7.26. Flake size-grade by sub-sector.

Flake Size-Grade and Time Period

Of the total flakes analyzed, only 262 were assigned to known temporal contexts. Those that were not able to be classified accurately due to a lack of contextual data are excluded from the analysis presented here. A chi-square test ($H_o =$ no relationship) confirms the null hypothesis, suggesting that there is no relationship between size-grade and time period (value=9.71, df=10, p<0.446). This suggests that the production of expedient flake tools at the site (and limited production of more formal tools) was a pattern that pre-dated the Middle Horizon. Only a slight quantity (n=10) of flakes measuring less than 12.7mm were found in Huarpa and Huarpa/Wari A contexts and were not present in later Wari A and Wari A/B contexts (Table 7.27). (For more tables see Appendix 2.13 and 2.14).

	< 6.35mm	6.35–12.7mm	12.7–25.4mm	> 25.4mm	Total
Huarpa	0 (0%)	7 (5.26%)	63 (47.37%)	63 (47.37%)	133 (100%)
Huarpa, Wari	0 (0%)	3 (3.75%)	42 (52.5%)	35 (43.75%)	80 (100%)
A					
Wari A	0 (0%)	0 (0%)	2 (100%)	0 (0%)	2 (100%)
Wari A, Wari	0 (0%)	0 (0%)	22 (70.97%)	9 (29.03%)	31 (100%)
В					
Wari B	0 (0%)	0 (0%)	2 (50%)	2 (50%)	4 (100%)
Huarpa, Wari	0 (0%)	0 (0%)	8 (66.67%)	4 (33.33%)	12 (100%)
A, Wari B					

Table 7.27. Flake size-grade by time period.

Cortex

The cortex, or exterior weathered surface of the obsidian, is often examined to make inferences about the production phase and intended form of an artifact or assemblage (Bencic 2016). In general, earlier production phases for activities such as core preparation and/or blank production are indicated by an assemblage of flakes with greater amounts of cortex (Bencic 2016). However, cortex alone is not enough to determine either production phase or intended form, and it is often looked at in conjunction with flake size. Cortex measurements were examined for 358 flakes, and categorized into one of four groups: 1) 100% cortex; 2) 50-99% cortex; 3) 1-49% cortex; and 4) 0% cortex. Most of the flakes presented with zero amounts of cortex (n=277; 77.3%) (Table 7.28). Unsurprisingly, none of the flakes had 100% cortex, as this is an impossibility. Because cortex is more prevalent during earlier stages of core preparation and blank production activities, the fact that only 2.23% (n=8) of all analyzed flakes presented with more than 50% cortex, suggests that it is unlikely that early production phases were occurring within Vegachayuq Moqo.

Cortex and Size-Grade

Within the assemblage, the greatest presence of cortex (> 50%) was found on flakes measuring larger than 12.7mm (n=8; 2.23%). In total, 81 flakes (22.63%) displayed some amount of cortex (> 1%). Of all flakes that do contain cortex, 35 (9.78%) measured 12.7-25.4mm and 46 (12.85%) measured greater than 25.4mm (Table 7.29). A chi-square test (value=16.315, df=6, p<0.012) suggests that there may be a loose relationship between the amount of cortex present on flakes and the size of the flake. The relatively sizable amount of flakes larger than 12.7mm that present cortex (though not in a quantity nor the size-grade to suggest systematic on-site formal tool production), does suggest the use of expedient tools and the availability of raw material that requires little to no modification (Bencic 2016: 167). This pattern in cortex and cortex/size-grade is also seen at the site of Conchopata (Bencic 2016). (For additional tables see Appendix 2.15).

 0% Cortex
 1–49%
 50–99%
 100%
 Total

 Cortex
 Cortex
 Cortex
 Cortex

 Count
 277 (77.3%)
 73 (20.39%)
 8 (2.23%)
 0 (0%)
 358 (100%)

 Table 7.28. Cortex present on flake artifacts.

	0% Cortex	1–49%	50-99%	100%	Total
		Cortex	Cortex	Cortex	
< 6.35mm	2 (0.56%)	0 (0%)	0 (0%)	0 (0%)	2 (0.56%)
6.35-	13 (3.63%)	0 (0%)	0 (0%)	0 (0%)	13 (3.63%)
12.7mm					
12.7–	159 (44.41%)	29 (8.10%)	6 (1.68%)	0 (0%)	194 (54.19%)
25.4mm					
> 25.4mm	103 (28.77%)	44 (12.29%)	2 (0.56%)	0 (0%)	149 (41.62%)
Total	277 (77.37%)	73 (20.39%)	8 (2.23%)	0 (0%)	358 (100%)

Table 7.29. Cortex present on flake artifacts by size-grade.

Cortex and Sector, Sub-Sector and Time Period

A chi-square test ($H_o =$ null relationship) was conducted for the variables of cortex and sector, and the test does not support the null hypothesis (value=12.810, df=4, p<0.0008). This suggests that cortex and sector may be loosely related. As seen in Table 7.30, the sample size within each sector may skew the results. Of note, however, is that most flakes with no cortex were found in Sector II (n=188; 80.34%) and Sector I was evenly split between flakes with no cortex and flakes with up to 49% cortex (n=5; 45.45%). A chi-square test ($H_o =$ no relationship) confirms the null hypothesis and suggests there is no relationship between cortex and sub-sector (value=38.464, df=24, p<0.031).

	0% Cortex	1–49%	50-99%	100%	Total
		Cortex	Cortex	Cortex	
Sector I	5 (45.45%)	5 (45.45%)	1 (9.09%)	0 (0%)	11 (100%)
Sector II	188 (80.34%)	39 (16.67%)	7 (2.99%)	0 (0%)	234 (100%)
Sector III	84 (74.34%)	29 (25.66%)	0 (0%)	0 (0%)	113 (100%)
Table 7 20 C	artay by gastar				

Table 7.30. Cortex by sector.

	0% Cortex	1-49% Cortex	50-99% Cortex	100% Cortex	Total
A4-B4	5 (45.45%)	5 (45.45%)	1 (9.09%)	0 (0%)	11 (100%)
A5	18 (62.07%)	8 (27.59%)	3 (10.34%)	0 (0%)	29 (100%)
A6	26 (76.47%)	8 (23.53%)	0 (0%)	0 (0%)	34 (100%)
<i>B4</i>	1 (50%)	1 (50%)	0 (0%)	0 (0%)	2 (100%)
<i>B5-B6</i>	44 (84.62%)	6 (11.54%)	2 (3.85%)	0 (0%)	52 (100%)
<i>C5</i>	11 (68.75%)	5 (31.25%)	0 (0%)	0 (0%)	16 (100%)
<i>C6</i>	6 (75%)	2 (25%)	0 (0%)	0 (0%)	8 (100%)
A8-B8-A9	79 (86.81%)	10 (10.99%)	2 (2.20%)	0 (0%)	91 (100%)
С9	4 (80%)	1 (20%)	0 (0%)	0 (0%)	5 (100%)
D7-D8	15 (93.75%)	1 (6.25%)	0 (0%)	0 (0%)	16 (100%)
D9	47 (69.12%)	21 (30.88%)	0 (0%)	0 (0%)	68 (100%)
<i>E10</i>	12 (85.71%)	2 (14.29%)	0 (0%)	0 (0%)	14 (100%)
N/A	9 (75%)	3 (25%)	0 (0%)	0 (0%)	12 (100%)

Table 7.31. Cortex by sub-sector.

A chi-square test examining the relationship between cortex and time period ($H_o = no$ relationship) confirms the null hypothesis and suggests that there is no relationship between the variables (value=10.131, df=10, p<0.429). 81.25% (n=65) of the flakes from Huarpa/Wari A contexts present with zero cortex, suggesting greater levels of reduction and/or later production activities; in comparison, only 67.74% (n = 21) of the flakes from Wari A/Wari B contexts present with zero cortex (Table 7.32). In conjunction, the greatest proportion of flakes with up to 49% cortex are found in Wari A/Wari B contexts, suggesting lower levels of reduction during this time period. (For additional tables see Appendix 2.16-2.20). In general, however, the results suggest overall minimal levels of later stage production processes (Bencic 2016).

	0% Cortex	1-49% Cortex	50-99% Cortex	100% Cortex	Total
Huarpa	103 (78.62%)	27 (20.61%)	1 (0.76%)	0 (0%)	131 (100%)
Huarpa, Wari	65 (81.25%)	11 (13.75%)	4 (5%)	0 (0%)	80 (100%)
A					
Wari A	1 (50%)	1 (50%)	0 (0%)	0 (0%)	2 (100%)
Wari A, Wari	21 (67.74%)	9 (29.03%)	1 (3.23%)	0 (0%)	31 (100%)
В					
Wari B	3 (75%)	1 (25%)	0 (0%)	0 (0%)	4 (100%)
Huarpa, Wari	11 (91.67%)	1 (8.33%)	0 (0%)	0 (0%)	12 (100%)
A, Wari B					

Table 7.32. Cortex by time period.

Terminations, Striking Platforms and Flake Scars

Flake termination refers to the shape of the distal end of the detached flake (struck off of the objective piece). In flintknapping, especially with a homogenous material like obsidian, a feathered termination is ideal and shows that the force of the strike traveled through the objective piece at optimum speed and distance. Most other types of terminations (hinged, step, and overshot) are considered errors and often result in unusable and/or broken cores, tools and objective pieces (Odell 2004; Bencic 2016). Because of this, termination is a useful indicator for the technical skill of the producer. More highly skilled tool-makers should create a much greater number of feathered terminations than less-skilled producers. 358 flakes were analyzed for termination (see Table 7.33), of those 193 (53.91%) flakes presented with feathered terminations while 165 (46.09%) presented with hinged, stepped, or overshot terminations. Because there is a relatively high proportion of flakes with terminations other than feathered, it suggests that the obsidian producers at Vegachayuq Mogo were not highly-skilled in biface or projectile point production techniques (Bencic 2016). Bencic (2016) found a similar pattern at the neighboring site of Conchopata. This pattern, coupled with striking platform and flake size, suggest a pattern of expedient tool production and use at the site. Parry and Kelly outline several key features of expedient tool production/core technology: 1) flaking techniques do not control for form of the flake, requiring little technical training or practice; 2) there is no distinction between "waste" and "tool"; and 3) tools are rarely modified, and are generally discarded after initial use (Parry and Kelly 1987: 287).

	Feathered	Hinged, Stepped, Overshot	Total		
Count	193 (53.91%)	165 (46.09%)	358 (100%)		
Table 7.33. Flake terminations.					

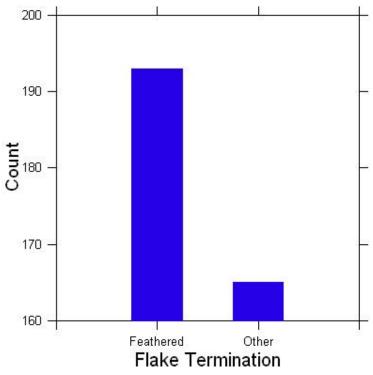


Figure 7.7. Graph of flake termination.

Flake Termination by Sector, Sub-Sector, and Time Period

Variations in the proportional frequency of terminations by context may also allow insight into varying production zones within the site. A chi-square test ($H_o =$ no relationship) confirms the null hypothesis and suggests that there is no relationship between sector and flake termination (value=4.40, df=8, p<0.819). In general, feathered terminations make up just over half of the assemblage in Sectors II and III, while Sector I shows a greater proportion of hinged, stepped or overshot terminations (Table 7.34). As Sector I also contains material with relatively higher proportions of cortex, it may suggest that it was a location for expedient tool production, though not significantly different than Sectors II and III. Similarly, a chi-square test ($H_o =$ no relationship) confirms the null hypothesis and suggests there is not a relationship between sub-sector and termination (value=59.157, df=48, p<0.130). The assemblage is relatively split between feathered and other termination types across sub-sectors with the exception of sub-sector C5, where 75% of the assemblage (n=6) is feathered terminations (Table 7.35).

Flake terminations are also relatively evenly distributed across time periods, and a chi-square test ($H_o =$ no relationship) confirms the null hypothesis and suggests that time period and termination are also not related variables (value=21.539, df=20, p<0.366). One notable pattern is a small decrease in the frequency of feathered terminations through time, possibly suggesting that technical skill at lithic production decreased over time, although this result is not statistically significant. (For additional tables see Appendix 2.21-2.23).

	Feathered	Hinged, Stepped, Overshot	Total
Sector I	4 (36.36%)	7 (63.64%)	11 (100%)
Sector II	126 (53.85%)	108 (46.15%)	234 (100%)
Sector III	63 (55.75%)	50 (44.25%)	113 (100%)
T 11 7 24 D	1 1 7	1 .	

Table 7.34. Flake termination by sector.

	Feathered	Hinged, Stepped, Overshot	Total
A4-B4	4 (36.36%)	7 (63.63%)	11 (100%)
A5	15 (57.69%)	11 (42.31%)	26 (100%)
<i>A6</i>	18 (52.94%)	16 (47.06%)	34 (100%)
B 4	30 (55.56%)	24 (44.44%)	54 (100%)
<i>B5-B6</i>	7 (43.75%)	9 (56.25%)	16 (100%)
<i>C5</i>	6 (75%)	2 (25%)	8 (100%)
<i>C6</i>	45 (49.45%)	46 (50.55%)	91 (100%)
A8-B8-A9	1 (50%)	1 (50%)	2 (100%)
С9	2 (40%)	3 (60%)	5 (100%)
D7-D8	11 (68.75%)	5 (31.25%)	16 (100%)
D9	35 (51.47%)	33 (48.53%)	68 (100%)
<i>E10</i>	8 (57.14%)	6 (42.86%)	14 (100%)
N/A	11 (84.62%)	3 (23.08%)	13 (100%)

Table 7.35. Flake termination by sub-sector.

	Feathered	Hinged, Stepped, Overshot	Total
Huarpa	76 (57.14%)	57 (42.86%)	133 (100%)
Huarpa, Wari A	40 (50%)	40 (50%)	80 (100%)
Wari A	1 (50%)	1 (50%)	2 (100%)
Wari A, Wari B	13 (41.94%)	18 (58.06%)	31 (100%)
Wari B	2 (50%)	2 (50%)	4 (100%)
Huarpa, Wari	7 (58.33%)	5 (41.67%)	12 (100%)
A, Wari B			

Table 7.36. Flake termination by time period.

Flake Striking Platform

In addition to flake termination the striking platform can also reveal information about tool production techniques. The striking platform refers to the location on the objective piece where force is applied to remove detached pieces during production processes. Complex platforms are generally associated with tool production, while flat and cortical platforms are less likely to be the result of formal tool production. The striking platform was analyzed for 297 flakes; those for which the platform was difficult to accurately identify were not included in the analysis (see Table 7.37). Abraded platforms were also not included in the sample due to the difficulty in differentiating between intentional and natural abrasion (Bencic 2016). Of the flakes analyzed, only 154 (51.85%) presented with complex platforms. Because half of the flakes did not present with complex platforms (and instead with cortical or flat), it is unlikely that biface production was the primary objective of producers and consumers of obsidian at Vegachayuq Moqo, though it appears that it did occur to some extent. This is a similar to pattern to that found at Conchopata, where Bencic (2016) found that 44% of the flakes within the sample presented with a complex platform, suggesting that producers at Conchopata were not intending to make bifaces or projectile points.

	Flat	Complex	Cortical	Total	
Count	110 (37.03%)	154 (51.85%)	33 (11.11%)	297 (100%)	
Table 7.37. Flake striking platform.					

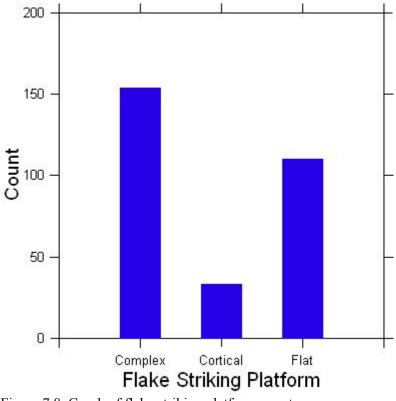


Figure 7.8. Graph of flake striking platform count.

Striking Platform by Sector, Sub-sector and Time Period

A chi-square test was conducted to test the relationship between the variables ($H_o =$ no relationship). The results confirmed the null hypothesis and suggested that there is no relationship between striking platform and sector (value=20.550, df=10, p<0.024). Within Sector II, 57.65% (n=113) presented with complex platforms. In Sector III, 42.86% (n=39) had complex platforms and in Sector I only 20% had complex platforms (n=2) (Table 7.38). Because Sector I contains the fewest amount of complex platforms as well as the most

stepped, hinged or overshot terminations, it suggests that more expedient tool production was occurring in this sector. However, results are not statistically significant, suggesting no variation in production type across the sectors.

A chi-square test was also conducted to look at striking platform and sub-sector (H_0 = no relationship), and the results confirm the null hypothesis and suggest there is no relationship between the variables (value=83.739, df=60, p<0.023) (Table 7.39). Similar to other examinations of time period in relation to flake feature, it appears that there is also no relationship between the striking platform and time period (value=18.630, df=25, p<0.815). This suggests that production type followed a pattern that pre-dated the Middle Horizon occupation of the site. (For additional tables see Appendix 2.24-2.26). Parry and Kelly (1987) attribute emergent expedient core technologies as being linked to shifting settlement patterns. Through comparative analyses, they argue that expedient core technologies appear to be concurrent with the settlement of populations into large, nucleated, permanent villages (Parry and Kelley 1987: 297). This might attest to the pattern of expedient tool use and production at Huari predating the middle Horizon to the Huarpa period.

	Flat	Complex	Cortical	Total
Sector I	7 (70%)	2 (20%)	1 (10%)	10 (100%)
Sector II	63 (32.14%)	113 (57.65%)	20 (10.20%)	196 (100%)
Sector III	40 (43.96%)	39 (42.86%)	12 (13.19%)	91 (100%)

Table 7.38. Flake striking platform by sector.

	Flat	Complex	Cortical	Total
A4-B4	7 (70%)	2 (20%)	1 (10%)	10 (100%)
A5	6 (27.27%)	12 (54.55%)	4 (18.18%)	22 (100%)
<i>A6</i>	9 (34.62%)	13 (50%)	4 (15.38%)	26 (100%)
B 4	5 (12.20%)	30 (73.17%)	6 (14.63%)	41 (100%)
<i>B5-B6</i>	5 (31.25%)	7 (43.75%)	4 (25%)	16 (100%)
<i>C5</i>	4 (50%)	2 (25%)	2(25%)	8 (100%)
<i>C6</i>	32 (40.51%)	47 (59.49%)	0 (0%)	79 (100%)
A8-B8-A9	1 (50%)	1 (50%)	0 (0%)	2 (100%)
<i>C</i> 9	2 (33.33%)	2 (33.33%)	2 (33.33%)	6 (100%)
D7-D8	3 (15.79%)	8 (42.11%)	8 (42.11%)	19 (100%)
D9	27 (41.54%)	19 (29.23%)	19 (29.23%)	65 (100%)
<i>E10</i>	3 (15.79%)	8 (42.11%)	8 (42.11%)	19 (100%)
N/A	6 (50%)	3 (25%)	3 (25%)	12 (100%)
T 11 7 20 D	1 1 1 0 1	1		

Table 7.39. Flake platform by sub-sector.

	Flat	Complex	Cortical	Total
Huarpa	37 (33.94%)	55 (50.46%)	17 (15.60%)	109 (100%)
Huarpa, Wari A	31 (44.93%)	35 (50.72%)	3 (4.35%)	69 (100%)
Wari A	1 (50%)	1 (50%)	0 (0%)	2 (100%)
Wari A, Wari B	6 (24%)	13 (52%)	6 (24%)	25 (100%)
Wari B	2 (50%)	1 (25%)	1 (25%)	4 (100%)
Huarpa, Wari A,	1 (11.11%)	6 (66.67%)	2 (22.22%)	9 (100%)
- Wari B				

Table 7.40. Flake platform by time period.

Flake Scars

Flake scars represent those additional flakes taken off of the surface of the flake either prior to or after its detachment from the objective piece. More heavily produced tools (such as bifaces and projectile points), as well as flakes taken off from a heavily worked core, tend to have the most flake scars. Most flakes in the assemblage presented with zero flake scars (n = 103, 28.77%) and only 74 flakes (20.67%) had greater than five flake scars (Table 7.41). Flakes with zero flake scars suggest expedient tool production or early-phase production processes. Due to the results presented for cortex, platform and termination, it is likely that producers at Vegachayuq Moqo were producing expedient tools. Furthermore, the majority

of flakes with more than five flakes scars were measured larger than 12.7mm, larger than would be expected for formal tool production. A chi-square test suggests a relationship between flake size-grade and flake scars (value=26.298, df=9, p<0.002), further confirming that flake scars at Vegachayuq Moqo are more representative of expedient tool production than early-phase production activities (Parry and Kelly 1987).

	0 Flake	1 Flake Scar	2-5 Flake	> 5 Flake	Total
	Scars		Scars	Scars	
Count	103 (28.77%)	98 (27.37%)	83 (23.18%)	74 (20.67%)	358 (100%)
Table 7.41	. Flake Scars				

	0 Flake	1 Flake	2-5 Flake	> 5 Flake	Total
	Scars	Scar	Scars	Scars	
< 6.35mm	2 (0.56%)	0 (0%)	0 (0%)	0 (0%)	2 (0.56%)
6.35–12.7mm	2 (0.56%)	6 (1.68%)	5 (0.14%)	0 (0%)	13 (3.63%)
12.7–25.4mm	67 (18.72%)	52 (14.53%)	46 (12.85%)	29 (8.10%)	194 (54.19%)
> 25.4mm	32 (8.93%)	40 (11.17%)	32 (8.93%)	45 (12.57%)	149 (41.62%)
Total	103 (28.77%)	98 (27.37%)	83 (23.18%)	74 (20.67%)	358 (100%)

Table 7.42. Flake scars by size-grade.

Flake Scars Sector, Sub-sector and Time Period

A chi-square test ($H_o =$ no relationship) was conducted to examine the relationship between flake scars and sector. The results confirm the null hypothesis and suggest that there is no relationship between the two variables (value=10.861, df=6, p<0.093). However, it may be notable that within Sector I, 63.64% of the assemblage is comprised of flakes with zero flake scars (Table 7.43). This is in comparison to Sectors II and III where approximately 27% of the assemblage is flakes with zero flake scars. Although Sector I has a small sample size (likely leading to the statistical insignificance), this does match the expedient tool production suggested in Sector I (greater cortex, hinged/stepped/overshot terminations and flat/cortical platforms). Again, the results are too similar across sectors to be of statistical significance. A chi-square test ($H_o =$ no relationship) examining the relationship between sub-sector and flake scars, does not however, support the null hypothesis (value=78.670, df=36, p<0.0001). This may be due to a more even sample size distribution among the sub-sectors (in comparison to by sector).

A chi-square test ($H_o =$ no relationship) examining flake scars and time period confirms the null hypothesis and suggests there is no relationship between the variables (value=28.561, df=15, p<0.018). As seen in previous results, it appears that production techniques, intended tools as well as technical skill are relatively consistent from the Huarpa occupation through the Wari occupation in the Middle Horizon. The only pattern of note may be the slightly greater proportion of flakes with zero flake scars during the Middle Horizon (Table 7.45), suggesting that Middle Horizon occupation of the site was producing relatively more expedient tools over formal tools than during the earlier Huarpa period.

	0 Flake	1 Flake	2-5 Flake	> 5 Flake	Total
	Scars	Scar	Scars	Scars	
Sector I	7 (63.64%)	2 (18.18%)	2 (18.18%)	0 (0%)	11 (100%)
Sector II	65 (27.78%)	62 (26.50%)	57 (24.36%)	50 (21.37%)	234 (100%)
Sector III	31 (27.43%)	34 (30.09%)	24 (21.24%)	24 (21.24%)	113 (100%)
T 11 T 10 T 1					

Table 7.43. Flake scars by sector.

	0 Flake Scars	1 Flake Scar	2-5 Flake Scars	> 5 Flake Scars	Total
A4-B4	7 (63.63%)	2 (18.18%)	2 (18.18%)	0 (0%)	11 (100%)
A5	8 (27.59%)	13 (44.83%)	5 (17.24%)	3 (10.34%)	29 (100%)
<i>A6</i>	14 (41.18%)	10 (29.41%)	6 (17.65%)	4 (11.76%)	34 (100%)
B 4	8 (15.38%)	11 (21.15%)	19 (36.54%)	14 (26.92%)	52 (100%)
<i>B5-B6</i>	3 (18.75%)	2 (12.5%)	3 (18.75%)	8 (50%)	16 (100%)
<i>C5</i>	5 (62.5%)	3 (37.5%)	0 (0%)	0 (0%)	8 (100%)
С6	26 (28.57%)	21 (23.08%)	24 (26.37%)	20 (21.98%)	91 (100%)
A8-B8-A9	1 (50%)	1 (50%)	0 (0%)	0 (0%)	2 (100%)
С9	3 (60%)	2 (40%)	0 (0%)	0 (0%)	5 (100%)
D7-D8	5 (31.25%)	2 (12.5%)	6 (37.5%)	3 (18.75%)	16 (100%)
D9	16 (23.53%)	23 (33.82%)	9 (13.24%)	20 (29.41%)	68 (100%)
<i>E10</i>	1 (7.14%)	5 (35.71%)	8 (57.14%)	0 (0%)	14 (100%)
N/A	6 (50%)	3 (25%)	1 (8.33%)	2 (16.67%)	12 (100%)

Table 7.44. Flake scars by sub-sector.

	0 Flake Scars	1 Flake Scar	2-5 Flake Scars	> 5 Flake Scars	Total
Huarpa	29 (22.14%)	38 (29.01%)	28 (21.37%)	36 (27.48%)	131 (100%)
Huarpa, Wari A	27 (33.75%)	15 (18.75%)	21 (26.25%)	17 (21.25%)	80 (100%)
Wari A	1 (50%)	1 (50%)	0 (0%)	0 (0%)	2 (100%)
Wari A, Wari B	14 (45.16%)	9 (29.03%)	4 (12.90%)	4 (12.90%)	31 (100%)
Wari B	2 (50%)	2 (50%)	0 (0%)	0 (0%)	4 (100%)
Huarpa, Wari A, Wari B	5 (41.67%)	1 (8.33%)	5 (41.67%)	1 (8.33%)	12 (100%)

Table 7.45. Flake scars by time period.


Projectile Points

As seen in Table 7.18, projectile points (n=24) comprise 3.82% of the artifact assemblage. Eight of the projectile points were found associated with Huarpa contexts while six were found in Middle Horizon contexts, and three pertain to contexts dating to the consolidation phase of the Wari Empire. Because most of the projectile points found were broken (all but one), it is difficult to look at dimensional attributes or diagnostic features of the body or base; the base is the most diagnostic part of the projectile point, and without it it

is difficult to define chronological associations. Only three points (0340, 0561 and 0562) have intact bases and none of these were hafted. Two were straight bases (0340, 0562) and both came from different sectors (II and III), sub-sectors (A5 and D9) and temporal contexts (N/A and Huarpa). One point had a convex base (0561) and was found in sector III, sub-sector D9. This is also the only complete point, and represents Vining (2005)'s "type D", or Wari style point (Table 7.46, Figure 5.3). Its association with Huarpa contexts further shows the difficulty in assigning temporal phases to non-diagnostic obsidian material based on excavation context.

	Sector	Sub-sector	Time Period	Thickness (mm)	Body	Base
0026	2	B4	Huarpa	5.84	N/A	N/A
0036	2	B4	Huarpa	N/A	N/A	N/A
0064	2	B4	Huarpa	5.11	N/A	N/A
0069	2	B4	N/A	5.45	N/A	N/A
0165	2	C6	N/A	2.7	N/A	N/A
0200	2	C6	Huarpa, Wari A	7.24	N/A	N/A
0281	2	A6	Wari A, Wari B	N/A	N/A	N/A
0282	2	A6	Wari A, Wari B	4.47	N/A	N/A
0287	2	B5-B6	N/A	2.09	N/A	N/A
0338	2	A5	N/A	N/A	N/A	N/A
0339	2	A5	N/A	N/A	N/A	N/A
0340	2	A5	N/A	N/A	N/A	Straight
0389	2	A5	N/A	N/A	N/A	N/A
0493	3	N/A	N/A	4.78	N/A	N/A
0505	3	D9	Huarpa, Wari A	5.26	N/A	N/A
0506	3	D9	Huarpa, Wari A	6.71	N/A	N/A
0508	3	D9	Wari B	3.69	N/A	N/A
0519	3	N/A	N/A	4.41	N/A	N/A
0520	3	N/A	N/A	4.35	N/A	N/A
0530	3	D9	Huarpa	4.94	N/A	N/A
0553	3	D9	Huarpa	N/A	N/A	N/A
0554	3	D9	Huarpa	4.56	N/A	N/A
0561	3	D9	Huarpa	4.56	Lanceolate	Convex
0562	3	D9 atila Dainta	Huarpa	5.83	N/A	Straight

Table 7.46. Projectile Points

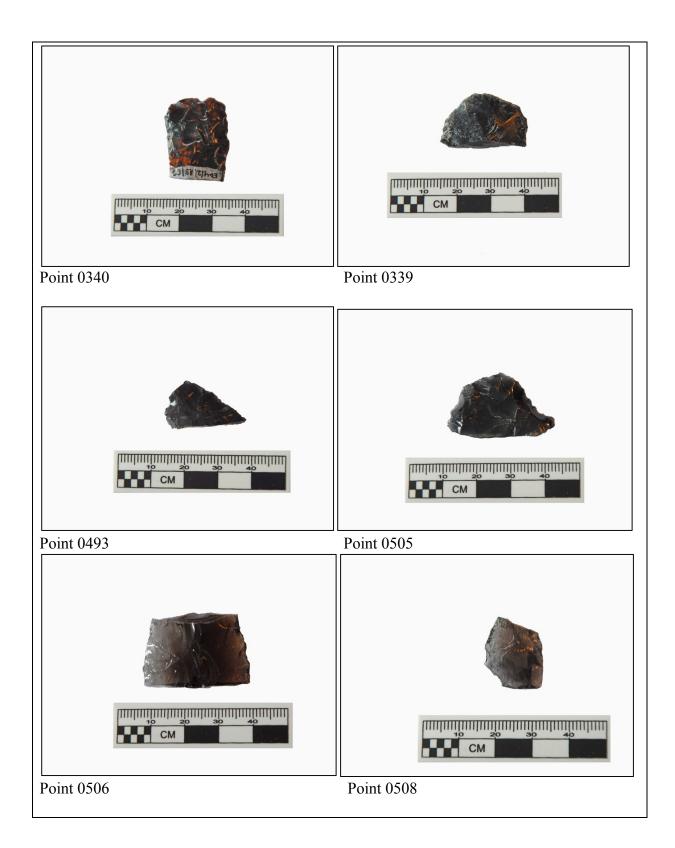


Figure 7.9. Projectile points, images taken by the author.

III. Summary

While a more detailed discussion the results (coupled with the results for the PXRF analysis) can be found in Chapter 9, a preliminary summary of the results in presented here. The three sectors of Vegachayuq Moqo produced different amounts of obsidian material, however this is likely due to varying excavation sizes and not differential production within the site. Sectors II and III produced a relatively similar amount of material (around 48% each) while Sector I produced around only 2.83% of the total obsidian from the 2012 excavation season. The limited sample size from Sector I makes drawing spatial conclusions on obsidian use and production at the site difficult. In her 1983 dissertation, Jane Stone (1983) found no evidence for specialized production locations at the site, and no evidence for specialized production locations at the site of Conchopata as well (Bencic 2016), suggesting that it may be more important to look at production and consumption by sub-sector and time period. This chapter explored artifact attribute variables of artifact type, flake size-grade, cortex, termination, striking platform, and flake scars.

The results show a general pattern for greater amounts of flakes (expedient tools and debitage) within the Vegachayuq Moqo than any other artifact type. This pattern is consistent across all sectors, sub-sectors and time periods (n=361; 57%). Bifaces and points comprise a relatively low portion of the total assemblage (n=46; 7%). The presence of bifaces and projectile points within the sample stays fairly consistent through time, with a slightly greater representation of projectile points within the Wari A and Wari A/B assemblages. In general, however, it appears that occupants at the site of Huari were not producing bifaces, projectile points or other formal tools in situ. Because flake size can serve as a general indicator for

production activity, the relative paucity of flakes measuring less than 12.7mm, and the abundance of flakes measuring over 25.4mm suggests that limited bifacial production was occurring at Vegachayuq Moqo, and what production was occurring was either early phase production activities or largely expedient in nature. The relative absence of cortex on flakes within the assemblage suggests that production was expedient in nature. Only 2% of the flakes had more than 50% cortex, suggesting that limited early phase production activities were occurring in-situ, and therefore, the large size of the flakes found in the assemblage are likely the result of expedient production. This result matches those of Stone's (1983) dissertation work at the site of Huari, and those of Bencic (2016) at the Wari site of Conchopata. A comparison of flake-size across time period suggests that this pattern of expedient tool production (and limited or no bifacial production) pre-dates the Wari, Middle Horizon occupation of the site.

The expedient nature of the material produced and used at Vegachayuq Moqo is also related to the technical skill of the producers (Parry and Kelly 1987). The flake termination, or the shape of the distal end of a detached flake, can be an indicator for the technical skill of the producer, with feathered terminations created from more precise production techniques, particularly so for obsidian which has a homogenous, conchoidal fracture pattern making it one of the most easily produced and predictable materials to work with. At the site of Vegachayuq Moqo, just over half of the assemblage is characterized by feathered termination, much lower than would be expected for more highly-skilled producers (Bencic 2016). Although feathered terminations are slightly more prevalent during the Huarpa occupation of the site (57%), there are appears to be no statistical difference in termination type across time periods, suggesting that the technical skill of producers at the site

(producing expedient tools) pre-dates the Wari occupation. The striking platform adds to the picture of Huari producers/consumers as ordinary producers, making expedient tools for likely personal consumption. Complex striking platforms indicate an intent to produce bifacial tools, and at Vegachayuq Moqo only 50% of the flakes have complex platforms, again, too low to suggest widespread biface/projectile point production. This further confirms that producers at Vegachayuq Moqo were not intending to produce bifacial tools and not succeeding, they were instead intending to produce expedient tools, for which high levels of technical skill is not necessary.

The patterns presented here very closely follow those seen at the Wari site of Conchopata (Bencic 2016), and may signify what Klarich et al. (2017) have termed "cavalier crafting". In other words, individuals at the site of Huari were producing expedient tools to be used on an individual/household basis, and were not taking great care in the type of tool, or the resuse of the tool. Bencic (2016) suggests this may be due to a relative ubiquity of obsidian at the site, and a perception by occupants at Huari that obsidian was a renewable, widely available resource. This is in direct contrast to what might be assumed, based on the relatively limited nature of obsidian sources in general. Chi-square tests examining attribute variables and time period, all confirmed the null hypothesis suggest that there was no relationship between the variables. In other words, the pattern of obsidian production, consumption at the site appears to pre-date the Middle Horizon, suggesting that the Wari occupants of the site were following an established pattern of obsidian use that pre-dated the empire, and the Wari political economy.

CHAPTER 8

OBSIDIAN SOURCING RESULTS

The obsidian data forming the basis of this dissertation were not only analyzed by lithic attributes (as seen in Chapter 7), but also by elemental analysis with the use of portable x-ray fluorescence (PXRF). PXRF analysis of the data explores the composition of trace elements within the obsidian sample, which can be used to determine obsidian source-type. As discussed in Chapter 5, obsidian is produced in a singular volcanic event, leaving a unique signature of trace elements within all obsidian from that specific location, or sourcetype. Looking at obsidian source-types present within the sample of artifacts from Vegachayuq Moqo, and subsequently exploring patterned variation in the use of source-types across the site, can illuminate aspects of a Wari political economy. This analysis uses PXRF to determine obsidian source-type from 505 sampled artifacts. Each artifact underwent PXRF analysis three times (180 seconds each), with the elemental reading taken from three different locations on the artifact to ensure accuracy of results (for a more detailed discussion on methods see Chapter 6). The trace element signature from each artifact was then compared to known source-types (acquired from the author's own data collected from UC Berkeley), to produce a confident source-type for each sample. The results were then compiled with the attribute results in Chapter 7 to provide a more nuanced picture of production, consumption and use of obsidian at Vegachayuq Moqo.

I. Portable X-Ray Fluorescence

The artifacts sampled for PXRF analysis derive from the same dataset addressed in the previous chapter (Chapter 7). Of the 628 total artifacts, only 505 were analyzed using PXRF. Those samples that were omitted include artifacts measuring less than 5mm in thickness (inconsistent reading of elements at varying depths), and those with permanent catalogue and inventory marks obscuring the surface of the artifact (compromised integrity of the elemental signature). (For more information on sampling procedure see Chapter 6).

Of the 505 artifacts analyzed for elemental composition using PXRF, 16 (3.16%) were from Sector I, 333 (65.81%) were from Sector II, and 157 (31.03%) were from Sector III (Table 8.1). This ratio across sectors is very similar to that seen in the attribute analysis in Chapter 7 (Table 7.1), confirming that the artifacts analyzed using PXRF form a representative sample of the entire collection. Further confirming the representative sample are the ratios of the artifacts analyzed using PXRF across sub-sector (Table 8.2), which are also very similar to those seen in the attribute analysis. The artifacts analyzed using PXRF also represent a similar sample across time periods, however Wari A (early expansion phase) and Wari B (later consolidation phase) are slightly more represented (19.51% in comparison to 12.7%) (see Table 8.3). This is likely due to differences in the size of the artifacts recovered from later these temporal contexts. In addition, bifaces and projectile points are represented in slightly higher numbers in the PXRF analysis, likely due to the larger size of bifaces and points when compared to flakes and fragments (Table 8.4).

	Sector I	Sector II	Sector III	Total
Count	16 (3.16%)	333 (65.81%)	157 (31.03%)	506 (100%)
Table 8.1. PXRF sample by sector.				

Sub-sector A4-B4 16 (3.16%) Sub-sector A5 58 (11.46%) Sub-sector A6 45 (8.89%) Sub-sector A8-B8-D9 3 (0.59%) Sub-sector B4 67 (13.24%) Sub-sector B5-B6 29 (5.73%) Sub-sector C5 12 (2.37%) Sub-sector C6 117 (23.12%) Sub-sector D7-D8 16 (3.16%) Sub-sector D7-D8 16 (3.16%) Sub-sector E10 15 (2.96%) Sub-sector N/4 16 (3.16%)		Count
Sub-sector A6 45 (8.89%) Sub-sector A8-B8-D9 3 (0.59%) Sub-sector B4 67 (13.24%) Sub-sector B5-B6 29 (5.73%) Sub-sector C5 12 (2.37%) Sub-sector C6 117 (23.12%) Sub-sector C7 10 (1.98%) Sub-sector D7-D8 16 (3.16%) Sub-sector E10 15 (2.96%)	Sub-sector A4-B4	16 (3.16%)
Sub-sector A8-B8-D9 3 (0.59%) Sub-sector B4 67 (13.24%) Sub-sector B5-B6 29 (5.73%) Sub-sector C5 12 (2.37%) Sub-sector C6 117 (23.12%) Sub-sector D7-D8 16 (3.16%) Sub-sector D9 102 (20.16%) Sub-sector E10 15 (2.96%)	Sub-sector A5	58 (11.46%)
Sub-sector B4 67 (13.24%) Sub-sector B5-B6 29 (5.73%) Sub-sector C5 12 (2.37%) Sub-sector C6 117 (23.12%) Sub-sector C9 10 (1.98%) Sub-sector D7-D8 16 (3.16%) Sub-sector E10 15 (2.96%)	Sub-sector A6	45 (8.89%)
Sub-sector B5-B6 29 (5.73%) Sub-sector C5 12 (2.37%) Sub-sector C6 117 (23.12%) Sub-sector C9 10 (1.98%) Sub-sector D7-D8 16 (3.16%) Sub-sector E10 102 (20.16%)	Sub-sector A8-B8-D9	3 (0.59%)
Sub-sector C5 12 (2.37%) Sub-sector C6 117 (23.12%) Sub-sector C9 10 (1.98%) Sub-sector D7-D8 16 (3.16%) Sub-sector D9 102 (20.16%) Sub-sector E10 15 (2.96%)	Sub-sector B4	67 (13.24%)
Sub-sector C6117 (23.12%)Sub-sector C910 (1.98%)Sub-sector D7-D816 (3.16%)Sub-sector D9102 (20.16%)Sub-sector E1015 (2.96%)	Sub-sector B5-B6	29 (5.73%)
Sub-sector C9 10 (1.98%) Sub-sector D7-D8 16 (3.16%) Sub-sector D9 102 (20.16%) Sub-sector E10 15 (2.96%)	Sub-sector C5	12 (2.37%)
Sub-sector D7-D8 16 (3.16%) Sub-sector D9 102 (20.16%) Sub-sector E10 15 (2.96%)	Sub-sector C6	117 (23.12%)
Sub-sector D9102 (20.16%)Sub-sector E1015 (2.96%)	Sub-sector C9	10 (1.98%)
Sub-sector E10 15 (2.96%)	Sub-sector D7-D8	16 (3.16%)
	Sub-sector D9	102 (20.16%)
Sub-sector N/A 16 (3.16%)	Sub-sector E10	15 (2.96%)
Sub-Sector 14/11 10 (5.10/0)	Sub-sector N/A	16 (3.16%)
Total 506 (100%)	Total	506 (100%)

Table 8.2. PXRF sample by sub-sector.

	Count		
Huarpa	176 (34.85%)		
Huarpa, Wari A	118 (23.37%)		
Huarpa, Wari A, Wari B	13 (2.57%)		
Wari A	2 (0.40%)		
Wari B	5 (0.99%)		
Wari A, Wari B	40 (19.51%)		
Total	506 (100%)		
Table 8.3. PXRF sample by time period.			

	Count
Biface	22 (4.35%)
Core	1 (0.20%)
Flake	264 (52.17%)
Fragment	194 (38.34%)
Nodule	1 (0.20%)
Point	23 (4.55%)
Uniface	1 (0.20%)
Total	506 (100%)

Table 8.4. PXRF sample by artifact type.

Sourcing Results

The 505 sampled artifacts were all analyzed by their concentrations in parts per million (ppm) of trace elements (for a more detailed discussion on PXRF analysis see Chapter 6). In the Andes, scholars are primarily concerned with the trace elements rubidium (Rb), strontium (Sr), manganese (Mn), iron (Fe), zirconium (Zr) and niobium (Nb) (Craig et al. 2010; Kellett et al. 2013; Burger et al. 2015). The results from the PXRF analysis were then examined against a comparative data collection of known source-types from seven sources: Quispisisa, Alca, Chivay, Jampatilla, Puzolana, Potreropampa, and Lisahuacho. (All comparative data samples were collected by the author at the Archaeological Lab at UC Berkeley using the same Bruker III Tracer and following the same sampling procedure as conducted for all data from Vegachayuq Moqo). The source-types found to be present in the data sample from Vegachayuq Moqo were Quispisisa (n=485, 96.42%), Alca (n=17, 3.38%) and Puzolana (n=1, 0.20%). (Three data points were not assigned to a source-type as they could not be done so confidently). Figure 8.1 shows the distribution of sources by the trace elements of rubidium (Rb) and strontium (Sr). Figure 8.2 shows the distribution of the sample by rubidium (Rb) and zirconium (Zr) (note the change in slope, or ratio of the elements, for the Puzolana source-type). Figure 8.3 shows the distribution of rubidium (Rb) and niobium (Nb) (again note the change in slope of the Puzolana source). By comparing the distribution of the samples across multiple element ratios, the sample is confidently sourced within a 95% confidence interval.

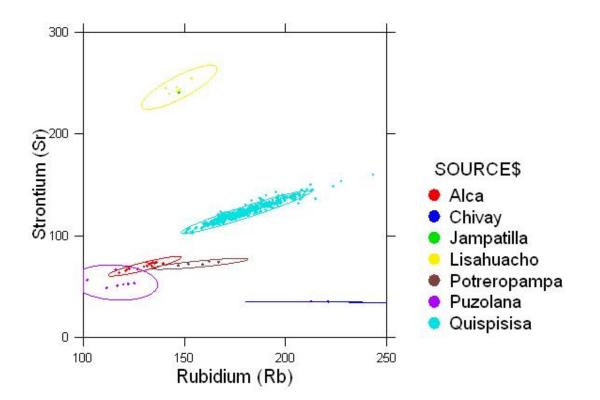


Figure 8.1. Sourcing Results, comparing elemental concentrations in parts per million (ppm) of rubidium (Rb) and strontium (Sr).

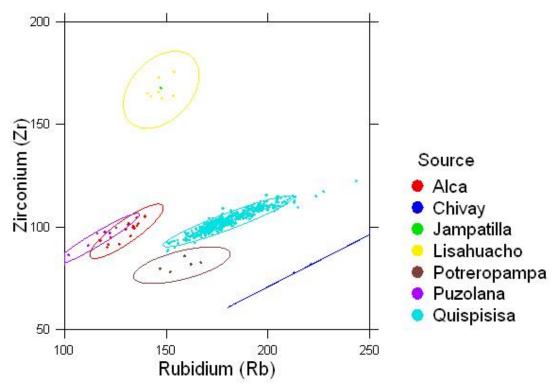


Figure 8.2. Sourcing Results comparing elemental concentrations in parts per million (ppm) of rubidium (Rb) and zirconium (Zr).

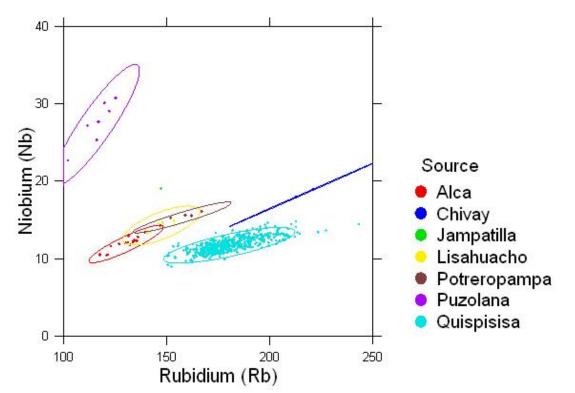


Figure 8.3. Sourcing Results, comparing elemental concentrations in parts per million (ppm) of rubidium (Rb) and niobium (Nb).

The presence of Quispisisa obsidian at Vegachayuq Moqo, comprising over 96% of the sample, is not altogether surprising, and matches the sourcing results from the neighboring site of Conchopata, where over 99% of the obsidian was sourced to Quispisisa (Burger et al. 2016). It also confirms the previous analyses undertaken by Burger et al. (2000), Burger and Glascock (2000), and Burger and Asaro (1977), which show Quispisisa obsidian uniformly dominating assemblages from sites in the central to northern highlands during the Middle Horizon. The presence of Alca obsidian within the sample at Vegachayuq Moqo (comprising just 3% of the sample), deviates from the sourcing results seen at Conchopata, where no obsidian from Alca is present within the sample (Burger et al. 2016). Because the site of Huari is the capital of the Wari Empire, this may account for the presence of Alca obsidian at Vegachayuq Moqo, and its absence at Conchopata. Alca was a dominant source-type in the Cuzco and Arequipa regions and during the Middle Horizon, Alca obsidian is noted to be found in the Wari heartland and farther north (Burger et al. 2000). Its presence within northern samples is likely due to increased movement of peoples and/or Wari investment and control in the Cuzco and Arequipa regions or even of the source itself (Jennings and Glascock 2002; Burger et al. 2000). The singular nodule from Puzolana is not unexpected, as Puzolana is the closest source in geographical proximity to Huari (and is found at 1% at Conchopata) and was used more heavily in the Ayacucho valley prior to the Middle Horizon (Burger et al. 2016). It is notable, however, that it is found in very limited numbers both at Vegachayuq Moqo (n=1) and at Conchopata (n=1) during the Middle Horizon, suggesting an unprecedented influx of Quispisisa obsidian in the region during this time that would have replaced use of the Puzolana source.

II. PXRF Results- Context

Sector

The results from the PXRF analysis indicate that obsidian from Vegachayuq Moqo derived from three distinct obsidian sources (Quispisisa, Alca and Puzolana). Therefore, it is possible to explore variation in source-types by site context and artifact attributes. This section approaches patterns in source-type by context. Most of the obsidian artifacts in the PXRF sample were found in Sector II (n=320, 63.24%), and were sourced to the Quispisisa source-type (Table 8.5). In fact, Quispisisa is the dominant source-type across all sectors (Table 8.6). In comparison, Alca source-type obsidian is found only in Sectors II and III and comprises 3% (n=10) and 4.46% (n=7) of each sector assemblage, respectively (Table 8.6).

Puzolana obsidian is only found in Sector II and comprises 0.30% of the sample (n=1). Despite the greater presence of Quispisisa obsidian in comparison to Alca and Puzolana, there is relatively little variation in the percentage of source-types across sectors (see Table 8.6), suggesting there is no relationship between source-type and sector. A chi-square test (H_o = no relationships) confirms the null hypothesis and suggests that there is no relationship between the variables of source-type and sector (value=1.893, df=6, p<0.929). (For additional tables see Appendix 3.1).

	Sector I	Sector II	Sector II	Total
Alca	0 (0%)	10 (1.97%)	7 (1.38%)	17 (3.36%)
Puzolana	0 (0%)	1 (0.20%)	0 (0%)	1 (0.20%)
Quispisisa	16 (3.16%)	320 (63.24%)	149 (29.45%)	485 (95.85%)
N/A	0 (0%)	2 (0.40%)	1 (0.20%)	3 (0.59%)
Total	16 (3.16%)	333 (65.81%)	157 (31.03%)	506 (100%)
	((

Table 8.5. Source-type by sector.

	Sector I	Sector II	Sector II
Alca	0 (0%)	10 (3.00%)	7 (4.46%)
Puzolana	0 (0%)	1 (0.30%)	0 (0%)
Quispisisa	16 (100%)	320 (96.10%)	149 (94.90%)
N/A	0 (0%)	2 (0.60%)	1 (0.64%)
Total	16 (100%)	333 (100%)	157 (100%)

Table 8.6. Source-type by sector assemblage.

Subsector

Similar to the results exploring source-type and sector, there appears to be little to no relationship between source-type and sub-sector. A chi-square test ($H_o =$ no relationship) confirms the null hypothesis and suggests that there is no relationship between the variables (value=19.515, df=36, p<0.989). Quispisisa obsidian is not only present in every sub-sector, but is the predominant source-type in each (see Table 8.7). In comparison, Alca source-type

obsidian is only found in five of the 12 sub-sectors, and represents less than 9% of each of those corresponding assemblages (see Table 8.7). Quispisisa reaches its greatest representation in sub-sectors A4-B4, A8-B8-D9, B5-B6, C9 and E10, where it is the only source-type present, comprising 100% of the assemblage (Table 8.8). Alca has the greatest amount of material in sub-sector D9 (n=6), but is found in greater proportions in sub-sector C5 (8.33%). Puzolana's only artifact is found in sub-sector B4 and represents 1.49% of the sub-sector's assemblage (Table 8.8). Overall, however, there is no relationship between sub-sector and source-type. (For additional tables by sub-sector and *capa* see Appendix 3.2 and 3.3).

	Alca	Puzolana	Quispisisa	N/A	Total
A4-B4	0 (0%)	0 (0%)	16 (3.16%)	0 (0%)	16 (3.16%)
A5	3 (0.59%)	0 (0%)	55 (10.87%)	0 (0%)	58 (11.46%)
A6	0 (0%)	0 (0%)	44 (8.70%)	1 (0.20%)	45 (8.89%)
A-B8-D9	0 (0%)	0 (0%)	3 (0.59%)	0 (0%)	3 (0.59%)
B 4	1 (0.20%)	1 (0.20%)	65 (12.85%)	0 (0%)	67 (13.24%)
<i>B5-B6</i>	0 (0%)	0 (0%)	29 (5.73%)	0 (0%)	29 (5.73%)
<i>C5</i>	1 (0.20%)	0 (0%)	11 (2.17%)	0 (0%)	12 (2.37%)
<i>C6</i>	4 (0.79%)	0 (0%)	112 (22.13%)	1 (0.20%)	117 (23.12%)
С9	0 (0%)	0 (0%)	10 (1.98%)	0 (0%)	10 (1.98%)
D7-D8	1 (0.20%)	0 (0%)	15 (2.97%)	0 (0%)	16 (3.16%)
D9	6 (1.19%)	0 (0%)	95 (18.77%)	1 (0.20%)	102 (20.16%)
<i>E10</i>	0 (0%)	0 (0%)	15 (2.97%)	0 (0%)	15 (2.97%)
N/A	(0.20%)	0 (0%)	15 (2.97%)	0 (0%)	16 (3.16%)
Total	17 (3.36%)	1 (0.20%)	485 (95.85%)	3 (0.59%)	506 (100%)

Table 8.7. Source-type by sub-sector.

Sub-sector	Alca	Puzolana	Quispisisa	N/A	Total
A4-B4	0 (0%)	0 (0%)	16 (100%)	0 (0%)	16 (100%)
A5	3 (5.17%)	0 (0%)	55 (94.83%)	0 (0%)	58 (100%)
<i>A6</i>	0 (0%)	0 (0%)	44 (97.78%)	1 (2.22%)	45 (100%)
A-B8-D9	0 (0%)	0 (0%)	3 (100%)	0 (0%)	3 (100%)
B 4	1 (1.49%)	1 (1.49%)	65 (97.01%)	0 (0%)	67 (100%)
B5-B6	0 (0%)	0 (0%)	29 (100%)	0 (0%)	29 (100%)
<i>C5</i>	1 (8.33%)	0 (0%)	11 (91.67%)	0 (0%)	12 (100%)
<i>C6</i>	4 (3.42%)	0 (0%)	112 (95.73%)	1 (0.85%)	117 (100%)
<i>C</i> 9	0 (0%)	0 (0%)	10 (100%)	0 (0%)	10 (100%)
D7-D8	1 (6.25%)	0 (0%)	15 (93.75%)	0 (0%)	16 (100%)
D9	6 (5.88%)	0 (0%)	95 (93.14%)	1 (9.80%)	102 (100%)
<i>E10</i>	0 (0%)	0 (0%)	15 (100%)	0 (0%)	15 (100%)
<i>N/A</i>	1 (6.25%)	0 (0%)	15 (93.75%)	0 (0%)	16 (100%)

Table 8.8. Source-type by sub-sector assemblage.

Time Period

Across temporal contexts, Quispisisa is the predominant obsidian source-type found at Vegachayuq Moqo. Quispisisa obsidian represents 96.42% of the PXRF sample in general, a percentage that is relatively consistent across each time period (Table 8.10). Alca is seen in smaller frequencies in general, but its presence in the later and smaller Wari B assemblages suggests its use during the Middle Horizon. In general, obsidian from earlier time periods is more represented in the entire sample due to excavation methods, but Alca appears to become increasingly popular at the transition to the Middle Horizon, during the transition from Huarpa in the EIP to the Wari Empire (Table 8.10). In fact, 63.64% (n=7) of all Alca material found at Vegachayuq Moqo, while limited, dates to this transition phase or later. The single Puzolana sample is found in contexts associated with the Huarpa occupation, consistent with the results found by Burger et al. (2016) at Conchopata and in the Ayacucho valley in general. Despite these patterns, a chi-square test ($H_0 =$ no relationship) confirms the null hypothesis and suggests that there is no significant relationship between obsidian sourcetype and time period at the Vegachayuq Moqo (value=9.974, df=15, p<0.821). This is notable because elsewhere in the Ayacucho valley and other Wari hinterland regions, Quispisisa obsidian has been thought to increase significantly at the onset the Middle Horizon (Burger et al. 2000, Burger et al. 2016). It appears that at Vegachayuq Moqo, Quispisisa obsidian is used relatively consistently through time, and that Wari use of Quispisisa obsidian follows a pattern established prior to the Middle Horizon (For additional tables see Appendix 3.4).

	Alca	Puzolana	Quispisisa	N/A	Total
Huarpa	4 (1.13%)	1 (0.28%)	170 (48.02%)	1 (0.28%)	176 (49.72%)
Huarpa, Wari A	6 (1.69%)	0 (0%)	111 (31.36%)	1 (0.28%)	118 (33.33%)
Huarpa, Wari A,	0 (0%)	0 (0%)	13 (3.67%)	0 (0%)	13 (3.67%)
Wari B					
Wari A	0 (0%)	0 (0%)	2 (0.56%)	0 (0%)	2 (0.55%)
Wari B	1 (0.28%)	0 (0%)	4 (1.13%)	0 (0%)	5 (1.41%)
Wari A, Wari B	0 (0%)	0 (0%)	40 (11.30%)	0 (0%)	40 (11.30%)
Total	11	1 (0.28%)	340 (96.05%)	2 (0.56%)	354 (100%)
	(3.11%)				

Table 8.9. Source-type by time period.

	Alca	Puzolana	Quispisisa	N/A	Total
Huarpa	4 (2.27%)	1 (0.57%)	170 (96.59%)	1 (0.57%)	176 (100%)
Huarpa,	6 (5.08%)	0 (0%)	111 (94.07%)	1 (0.85%)	118 (100%)
Wari A					
Huarpa,	0 (0%)	0 (0%)	13 (100%)	0 (0%)	13 (100%)
Wari A, Wari					
В					
Wari A	0 (0%)	0 (0%)	2 (100%)	0 (0%)	2 (100%)
Wari B	1 (20%)	0 (0%)	4 (80%)	0 (0%)	5 (100%)
Wari A, Wari	0 (0%)	0 (0%)	40 (100%)	0 (0%)	40 (100%)
В					

Table 8.10. Source-type by time period assemblage.

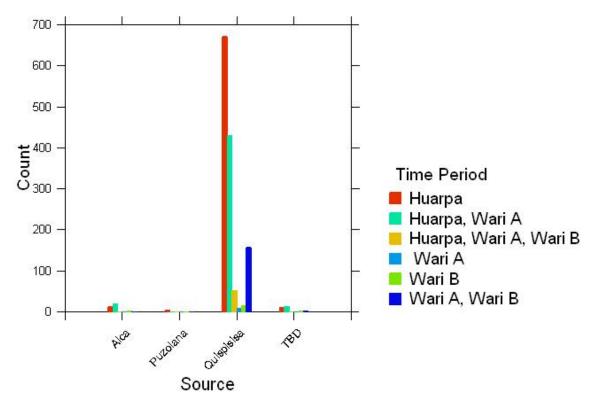


Figure 8.4. Graph of obsidian source results and time period.

III. PXRF Results – Attributes

Artifact Type

In Chapter 7, artifacts were grouped into six morphological categories: 1) biface; 2) core; 3) flake; 4) fragment; 5) point; and 6) uniface. As discussed previously the PXRF sample is representative of the total sample from Vegachayuq Moqo, with a slight over-representation of bifaces and projectile points, due to their larger size (material less than 5mm in thickness, which was removed from the sample, is overwhelmingly flakes and fragments). While there appears to be no relationship between context within Vegachayuq Moqo and source-type, there is a relatively strong relationship between artifact type and source-type as seen in a chi-square test ($H_0 =$ no relationship). The results do not support the

null hypothesis and suggest a relationship between the variables (value=514.958, df=18, p<0.0001). This indicates that artifacts were intentionally (for a multitude of purposes or motives discussed in Chapter 9) produced from different obsidian source-types.

As has been the pattern, Quispisisa is the most predominant source-type for all artifacts and used exclusively for bifaces, unifaces and cores (Table 8.11). There are no nodules that derive from Quispisisa, but more notably, projectile points are the lowest represented artifact type produced from Quispisisa obsidian (n=201; 86.86%); in comparison, Quispisisa obsidian comprises over 85% of the assemblage for non-projectile bifaces, cores, flakes and fragments. Projectile points, in comparison, are the greatest represented artifact type produced from Alca source-type obsidian, even with the limited sample size (n=2, 8.70%). In fact, projectile points represent only 5.06% of the Quispisisa obsidian assemblage while projectile points represent 11.76% of the Alca obsidian assemblage at Vegachayuq Moqo. And while sample sizes are very different between the two sources, these ratios may still indicate differential use of obsidian from both sources. Alca obsidian is traveling over 500km in distance to reach Huari, so the fact that it is even present at Huari (while not at Conchopata) indicates investment into the Alca source, and differential access to material from Alca within the Wari heartland (Burger et al. 2016). Puzolana obsidian is found exclusively as one unmodified nodule, a paucity that is very different from earlier sites within the Ayacucho valley (Burger et al. 2016; Burger et al. 2000). (For additional tables see Appendix 3.5).

	Alca	Puzolana	Quispisisa	N/A	Total
Biface	0 (0%)	0 (0%)	22 (4.35%)	0 (0%)	22 (4.35%)
Core	0 (0%)	0 (0%)	1 (0.20%)	0 (0%)	1 (0.20%)
Flake	8 (1.58%)	0 (0%)	255 (50.40%)	1 (0.20%)	264 (52.17%)
Fragment	7 (1.38%)	0 (0%)	186 (36.76%)	1 (0.20%)	194 (38.34%)
Nodule	0 (0%)	1 (0.20%)	0 (0%)	0 (0%)	1 (0.20%)
Point	2 (0.40%)	0 (0%)	20 (3.95%)	1 (0.20%)	23 (4.54%)
Uniface	0 (0%)	0 (0%)	1 (0.20%)	0 (0%)	1 (0.20%)
Total	17 (3.36%)	1 (0.20%)	485 (95.85%)	3 (0.59%)	506 (100%)

Table 8.11. Source-type by artifact type.

	Alca	Puzolana	Quispisisa	N/A	Total
Biface	0 (0%)	0 (0%)	22 (100%)	0 (0%)	22 (100%)
Core	0 (0%)	0 (0%)	1 (100%)	0 (0%)	1 (100%)
Flake	8 (3.03%)	0 (0%)	255 (96.59%)	1 (0.38%)	264 (100%)
Fragment	7 (3.61%)	0 (0%)	186 (95.88%)	1 (0.52%)	194 (100%)
Nodule	0 (0%)	1 (100%)	0 (0%)	0 (0%)	1 (100%)
Point	2 (8.70%)	0 (0%)	20 (86.96%)	1 (4.35%)	23 (100%)
Uniface	0 (0%)	0 (0%)	1 (100%)	0 (0%)	1 (100%)

Table 8.12. Source-type by artifact type assemblage.

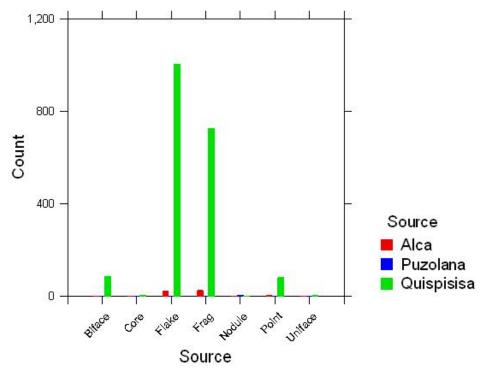


Figure 8.5 Graph of artifact type and obsidian source results.

Flake Size-Grade

As discussed in Chapter 7, the majority of flakes within the total sample from Vegachayuq Moqo measure greater than 12.7mm in maximum dimension, suggesting a relative lack of in-situ formal tool production (Bencic 2016). Because the PXRF sample does not include flakes measuring less than 5mm in thickness, only two flakes were analyzed using PXRF that measured less than 12.7mm. This may affect the accuracy of a chi-square test examining flake size-grade because there is an artificially greater amount of larger flakes. That said, there appears to be no statistical relationship between source-type and flake sizegrade based on a chi-square test (value=2.67, df=4, p<0.615). Quispisisa obsidian represents the overwhelming majority of flakes of any size (96.59%). Within the Quispisisa assemblage, there is a relatively equal representation of flakes measuring smaller than 25.4mm and those measuring larger than 25.4mm (Table 8.13). In comparison, 75% of Alca flakes measure greater than 25.4mm. While not statistically significant, this pattern may still suggest that greater amounts of in-situ tool production were occurring with Quispisisa source-type obsidian, while Alca was was arriving to the site in completed form. This is further supported by the fact that in the attribute analysis (Chapter 7), only sub-sectors E10, C6, B4 and A4-B4 contained flakes measuring less than 12.7mm (suggesting in-situ tool production). Of these four sub-sectors, three of them were entirely composed of Quispisisa obsidian (see Table 8.7). (For additional tables see Appendix 3.6).

	Alca	Puzolana	Quispisisa	N/A	Total
6.35–12.7mm	0 (0%)	0 (0%)	2 (0.76%)	0 (0%)	2 (0.76%)
12.7–25.4mm	2 (0.76%)	0 (0%)	122 (46.21%)	0 (0%)	124 (46.97%)
>25.4mm	6 (2.27%)	0 (0%)	131 (49.62%)	1 (0.38%)	138 (52.27%)
Total	8 (3.03%)	0 (0%)	255 (96.59%)	1 (0.38%)	264 (100%)

Table 8.13. Source-type by flake size-grade.

	Alca	Puzolana	Quispisisa	N/A
6.35–12.7mm	0 (0%)	0 (0%)	2 (0.78%)	0 (0%)
12.7–25.4mm	2 (25%)	0 (0%)	122 (47.84%)	0 (0%)
>25.4mm	6 (75%)	0 (0%)	131 (51.37%)	1 (100%)
Total	8 (100%)	0 (0%)	255 (100%)	1 (100%)
T 11 0 1 1 0	1 01 1			

Table 8.14. Source-type by flake size-grade assemblage.

Cortex

In Chapter 7, cortex was explored for all flakes as an indicator for production phase activities and/or intended form of tools produced at the site. The results (when combined with flake size-grade) led to the conclusion that obsidian at Vegachayuq Moqo was being produced expediently, from material requiring little to no modification (a pattern also seen at Conchopata) (Bencic 2016). The PXRF sample explored the presence of cortex on both flakes and fragments, with the intent of exploring the nature of tool production and/or use at Vegachayuq Moqo (n=461). A chi-square test (H_0 = no relationship) does not support the null hypothesis and suggests that there is a relationship between cortex and obsidian sourcetype (value=465.010, df=9, p<0.0001). In general, the majority of flakes presented with zero to 49% cortex. Quispisisa material was comprised of 358 (80.81%) artifacts with zero cortex, with 19.19% of the assemblage characterized by some amount of cortex (Tables 8.14 and 8.15). This suggests some degree of raw material being worked at the site. In comparison, 100% of the Alca material presents with zero cortex, suggesting that Alca source-type obsidian was brought into Vegachayuq Moqo in a reduced form, perhaps as a movable core or blank. This makes sense based on the physical distance (500km) that Alca had to travel to reach the site of Huari. The only artifact from Puzolana, a nodule, presents with 100% cortex and it is the only object of its kind in the sample. Puzolana is the closest source to the site of Huari. (For additional tables see Appendix 3.7).

	Alca	Puzolana	Quispisisa	N/A	Total
0% Cortex	15 (3.25%)	0 (0%)	358 (77.66%)	2 (0.43%)	375 (81.34%)
1–49% Cortex	0 (0%)	0 (0%)	78 (16.92%)	0 (0%)	78 (16.92%)
50–99% Cortex	0 (0%)	0 (0%)	7 (1.52%)	0 (0%)	7 (1.52%)
100% Cortex	0 (0%)	1 (0.22%)	0 (0%)	0 (0%)	1 (0.22%)
Total	15 (3.25%)	1 (0.22%)	443 (96.10%)	2 (0.43%)	461 (100%)

Table 8.15. Source-type by cortex.

	Alca	Puzolana	Quispisisa	<i>N/A</i>
0% Cortex	15 (100%)	0 (0%)	358 (80.81%)	2 (100%)
1-49% Cortex	0 (0%)	0 (0%)	78 (17.61%)	0 (0%)
50–99% Cortex	0 (0%)	0 (0%)	7 (1.58%)	0 (0%)
100% Cortex	0 (0%)	1 (100%)	0 (0%)	0 (0%)
Total	15 (100%)	1 (100%)	443 (100%)	2 (100%)

Table 8.16. Source-type by cortex assemblage.

Flake Termination

Flake terminations, as discussed in Chapter 7, can be used to approximate the skill of the flintknapper. Feathered terminations show the greatest degree of technical control, accuracy, and skill, while hinged, stepped, or overshot terminations are generally considered errors in production due to misapplied force or incorrect striking angle. A chi-square test (H_o = no relationship) confirms the null hypothesis and suggests no significant relationship between flake termination and obsidian source-type (value=5.546, df=8, p<0.986). However, there are still several notable observations. First, there is a greater presence of feathered flakes within the Alca source-type assemblage than hinged, stepped, or overshot (see Table 8.17). And second, within the Alca assemblage, 87.5% (n=7) of the flakes have a feathered termination, while only 50.20% (n=126) of the Quispisisa source-type flakes have a feathered termination (Table 8.18). This suggests that obsidian from Alca may have been produced by more highly-skilled workers (Bencic 2016). Coupled with the information on flake size-grade and cortex, it is also possible that most Alca obsidian was produced elsewhere by highly

skilled workers, and then brought into Vegachayuq Moqo in a more complete form. (For additional tables see Appendix 3.8).

	Alca	Puzolana	Quispisisa	N/A	Total
Feathered	7 (2.69%)	0 (0%)	126 (52.31%)	1 (0.38%)	134 (51.54%)
Hinged, Stepped,	1 (0.38%)	0 (0%)	125 (48.08%)	0 (0%)	126 (48.46%)
Overshot					
Total	8 (3.08%)	0 (0%)	251 (96.54%)	1 (0.38%)	260 (100%)

Table 8.17. Source-type by flake termination.

	Alca	Puzolana	Quispisisa	N/A			
Feathered	7 (87.5%)	0 (0%)	126 (50.20%)	1 (100%)			
Hinged, Stepped,	1 (12.5%)	0 (0%)	125 (49.80%)	0 (0%)			
Overshot							
Total	8 (100%)	0 (0%)	251 (100%)	1 (100%)			
T_{1}							

Table 8.18. Source-type by flake termination assemblage.

Flake Striking Platform

The striking platform, as discussed in Chapter 7, can be examined as an indicator for the intended form of produced objects. Complex platforms are typically associated with bifacial or other forms of formal tool production, while flat and cortical platforms are more strongly associated with expedient tools. A chi-square test (H_o = no relationship) does not support the null hypothesis and suggests that there is a relationship between striking platform and obsidian source-type (value=40.122, df=10, p<0.0001). Similar to other attributes examined in this chapter, the variation in striking platforms lies in the differing treatments given to Alca and Quispisisa obsidian within Vegachayuq Moqo. For example, 100% (n=6) of the artifacts from Alca presented with complex striking platforms, while only 48.60% of the artifacts (n=104) from Quispisisa had complex striking platforms (see Table 8.20). This suggests that obsidian from Alca was produced with the intention of forming points, bifaces or other formal tools. Furthermore, when coupled with the data from artifact type and flake termination, addressed in this chapter and Chapter 7, it appears that material from Alca was produced by more highly skilled workers with the sole intention of projectile point or biface production, while Quispisisa was used more informally and expediently and produced by the general population at Vegachayuq Moqo. This is echoed in the data from Conchopata, where Bencic (2016) found that material produced at Conchopata suggested a ubiquitous presence of Quispisisa obsidian that could be expediently worked and then discarded by non-skilled workers. (For additional tables see Appendix 3.9).

	Alca	Puzolana	Quispisisa	N/A	Total		
Flat	0 (0%)	0 (0%)	80 (36.20%)	0 (0%)	80 (36.20%)		
Complex	6 (2.71%)	0 (0%)	104 (47.06%)	1 (0.45%)	111 (50.23%)		
Cortical	0 (0%)	0 (0%)	30 (13.57%)	0 (0%)	30 (13.57%)		
Total	6 (2.71%)	0 (0%)	214 (96.83%)	1 (0.45%)	221 (100%)		
Table 8 10. Source type by striking platform							

Table 8.19. Source-type by striking platform.

	Alca	Puzolana	Quispisisa	N/A
Flat	0 (0%)	0 (0%)	80 (37.38%)	0 (0%)
Complex	6 (100%)	0 (0%)	104 (48.60%)	1 (100%)
Cortical	0 (0%)	0 (0%)	30 (14.02%)	0 (0%)
Total	6 (100%)	0 (0%)	214 (100%)	1 (100%)

Table 8.20. Striking platform by source-type assemblage.

Flake Scars

Flake scars, as discussed in Chapter 7, represent the location where a flake was struck off of the objective piece. In Chapter 7, the attribute analysis explored flake scars present on flakes in order to explore production phase activities, as generally more heavily worked flakes represents later-stage production and/or more heavily produced artifacts and tools. The PXRF analysis presented here explores the presence of flake scars on both flakes and fragments, as both are the result of production techniques. A chi-square test ($H_0 = no$ relationship) confirms the null hypothesis and suggests that there is no relationship between the variables. However, the Alca source-type assemblage is dominated by flakes and fragments with more than five flake scars (n=10, 66.67%), while the Quispisisa assemblage consists of only 36.34% (n=161) flakes and fragments with more than five flake scars (Tables 21 and 22). This appears to indicate that Alca obsidian at Vegachayuq Moqo was more heavily worked (For additional tables see Appendix 3.10).

	Alca	Puzolana	Quispisisa	N/A	Total
0 Flake Scars	1 (0.22%)	1 (0.22%)	107 (23.21%)	1 (0.22%)	110 (23.86%)
1 Flake Scar	2 (0.43%)	0 (0%)	83 (18.00%)	1 (0.22%)	86 (18.66%)
2-5 Flake Scars	2 (0.43%)	0 (0%)	92 (19.96%)	0 (0%)	94 (20.39%)
> 5 Flake Scars	10 (2.17%)	0 (0%)	161 (34.92%)	0 (0%)	171 (37.09%)
Total	15 (3.25%)	1 (0.22%)	443 (96.10%)	2 (0.43%)	461 (100%)

Table 8.21. Source-type by flake scar.

	Alca	Puzolana	Quispisisa	N/A
0 Flake	1 (6.67%)	1 (100%)	107 (24.15%)	1 (50%)
Scars				
1 Flake	2 (13.33%)	0 (0%)	83 (18.74%)	1 (50%)
Scar				
2-5 Flake	2 (13.33%)	0 (0%)	92 (20.77%)	0 (0%)
Scars				
> 5 Flake	10 (66.67%)	0 (0%)	161 (36.34%)	0 (0%)
Scars				
Total	15 (100%)	1 (100%)	443 (100%)	2 (100%)

Table 8.22. Flake scars by source-type assemblage.

Projectile Points

Projectile points comprise 3.82% of the total artifact assemblage at Vegachayuq Mogo, and all but one was able to be analyzed using PXRF. (The one omitted was done so due to inventory markers comprising the elemental integrity of the sample). All of the 23 analyzed projectile points were sourced to either Alca (n=2, 8.70%) or Quispisisa (n=20, 86.96%). Despite the very low sample size of Alca points (and Alca artifacts in general), the fact that 2 of only 23 projectile points were sourced to Alca is meaningful. Quispisisa, in general, represents over 96% of the total artifact assemblage, but only 86% of the projectile points. The two points from Alca (0506, 0508) did not have an intact body or base in order to make an accurate typological identification, but they were assigned to a time period based on their excavation context -0506 to the transition phase between Huarpa and the early Middle Horizon, and 0508 to the expansion and consolidation phase of Wari (see Table 8.23). Both points were found in the same excavation context (different capas), in Sector 3, sub-sector D9, along with six other points sourced to Quispisisa. Alca points' association with Middle Horizon temporal contexts suggests that imperial processes may have been involved with the movement of Alca obsidian to the site of Huari.

	Source	Sector	Sub-sector	Time Period	Body	Base
0026	Quispisisa	2	B4	Huarpa	N/A	N/A
0036	Quispisisa	2	B4	Huarpa	N/A	N/A
0064	Quispisisa	2	B4	Huarpa	N/A	N/A
0069	Quispisisa	2	B4	N/A	N/A	N/A
0200	Quispisisa	2	C6	Huarpa, Wari A	N/A	N/A
0281	Quispisisa	2	A6	Wari A, Wari B	N/A	N/A
0282	Quispisisa	2	A6	Wari A, Wari B	N/A	N/A
0287	Quispisisa	2	B5-B6	N/A	N/A	N/A
0338	Quispisisa	2	A5	N/A	N/A	N/A
0339	Quispisisa	2	A5	N/A	N/A	N/A
0340	Quispisisa	2	A5	N/A	N/A	Straight
0389	Quispisisa	2	A5	N/A	N/A	N/A
0493	Quispisisa	3	N/A	N/A	N/A	N/A
0505	Quispisisa	3	D9	Huarpa, Wari A	N/A	N/A
0506	Alca	3	D9	Huarpa, Wari A	N/A	N/A
0508	Alca	3	D9	Wari II	N/A	N/A
0519	Quispisisa	3	N/A	N/A	N/A	N/A
0520	Quispisisa	3	N/A	N/A	N/A	N/A
0530	Quispisisa	3	D9	Huarpa	N/A	N/A
0553	Quispisisa	3	D9	Huarpa	N/A	N/A
0554	Quispisisa	3	D9	Huarpa	N/A	N/A
0561	Quispisisa	3	D9	Huarpa	Lanceolate	Convex
0562	Quispisisa	3	D9	Huarpa	N/A	Straight
T 1 1 0 00	D	• ,				

Table 8.23. Projectile Points.

IV. Summary

This chapter addressed the results from the PXRF analysis conducted on a sample of 505 obsidian artifacts (sampled from the total 608 artifacts) from Vegachayuq Moqo. (A more detailed discussion of both attribute and PXRF analysis follows in Chapter 9). The most salient result to emerge from the PXRF analysis is the presence of three distinct obsidian source-types within the sample from Vegachayuq Moqo. Quispisisa comprises

96.42% of the assemblage, Alca comprises 3.38% of the assemblage and Puzolana comprises only 0.20% of the assemblage. When compared with the data from the neighboring site of Conchopata, several distinctions emerge. First, Quispisisa obsidian is the dominant sourcetype at both Huari and Conchopata, but represents over 99% of the sample at Conchopata (Burger et al. 2016). Second, the only non-Quispisisa obsidian at Conchopata is one artifact produced from Puzolana-type obsidian. And third, while Alca is present at Huari, there are no Alca obsidian artifacts at Conchopata. Considering that Conchopata is an imperial Wari site, not far from the Huari capital, the absence of Alca material is salient. The Alca source lies over 500km from the Huari capital, and it would have taken a considerable effort to move. In addition, Quispisisa obsidian is found in the Cuzco and Arequipa regions (near the Alca source) during the Middle Horizon, so it is unsurprising that Alca obsidian would have also been present in the obsidian political economy during the Middle Horizon (Burger et al. 2000).

While chi-square tests suggest there is not a significant relationship between sourcetype and time period, it is notable that during the Middle Horizon, Alca source-type obsidian increases in its representation in the sample from Vegachayuq Moqo (see Table 8.10). However, this pattern may be the due less to temporal context than to the type of artifacts being produced and consumed with the different source-types. It may be more important, therefore, what type of artifact consumed and less when it was consumed. Chi-square tests did suggest source-type was significantly related to the stage of artifact production and the intended artifact. First, there is a strong relationship between artifact type and obsidian source-type (see Table 8.11). Quispisisa source-type obsidian is used primarily for bifaces, unifaces and cores while Alca source-type obsidian (however small of a sample size) is

composed of primarily projectile points. Only 5.06% of the Quispisisa assemblage is projectile points while 11.76% of the Alca assemblage is projectile points. The projectile points themselves were found in contexts spanning the Huarpa occupation of the site through the consolidation of the Wari Empire (Wari B). However, the Alca flakes were only found in contexts associated with Wari (transition phase and consolidation phase), and may suggest that Alca was moving into the Wari heartland through imperial processes.

Other artifact attributes that attest to the skill level of the producers at Vegachayuq Moqo, as well as the type of tool being manufactured (such as cortex and striking platform), were also seen to have significant relationships with obsidian source-types. Cortex is often explored as a marker for the production phase and/or desired tool type and the results from the PXRF and attribute analysis suggest that obsidian at Vegachayuq Moqo was often produced in an expedient manner. Most artifacts in the sample presented with zero cortex, however Quispisisa obsidian showed 80.81% of material with zero cortex, while 100% of the Alca material had zero cortex (Tables 8.14 and 8.15). This suggests that the material being expediently worked at the site was likely Quispisisa source-type obsidian, while Alca was brought into Vegachayuq Moqo as a blank or completed tool. At Conchopata, Bencic (2016) found that Quispisisa obsidian (composing 99% of the sample) was utilized for expedient tools (not formal or bifacial tools), and was produced by less than highly-skilled craftsman and utilized and discarded frequently due to its ubiquitous presence.

The idea of "cavalier crafting" (Klarich et al. 2017) is further supported by the relationship between striking platform and source-type, seen as indicators for the type of objects being produced. While complex platforms are more strongly associated with formal tools (primarily bifaces and projectile points), flat and cortical platforms are more strongly

associated with expedient tools. 100% of the flakes from the Alca source-type presented with complex striking platforms while only 48.60% of the Quispisisa flakes had complex striking platforms (see Table 8.20). This suggests a very different intent for obsidian production, and therefore consumption, between the Quispisisa and Alca obsidian sources. Most likely, Quispisisa was intended for expedient production while Alca was brought into the site of Huari as a completed tool.

What appears at Vegachayuq Moqo is a pattern of local obsidian use consistent with other sites in the Ayacucho valley. Quispisisa obsidian appears to be ever-present, and is treated accordingly (Bencic 2016; Stone 1983). It dominates the obsidian assemblage at over 96%, and similar to Conchopata, the producers and users of Quispisisa obsidian at Huari appear to be using the material in an expedient and non-renewable fashion. Burger and Asaro (1977) also found that Quispisisa represented 96% of the sample at Huari, and Stone (1983) suggested that there was very little production of imported material in earlier periods. The Quispisisa source is relatively close to Huari (less than 100km), and may have been provided to residents of the capital for their own needs and produced, consumed, and discarded as such.

Alca obsidian, however, tells a different story. Flake terminations suggest that it was produced by highly-skilled workers, and the two projectile points coupled with the presence of entirely complex striking platforms on flakes, suggests that Alca material was carefully manufactured with the intention of producing a biface or projectile point. The differing treatments of the two source-types may reflect distance (Alca is over 500km away in comparison to Quispisisa at 100km) and the difficulty in transporting raw nodules over that distance. Or perhaps it represents a difference in associated value, with Alca having an

increased value as an object brought back by those who traveled to the Cuzco or Arequipa hinterlands. A similar pattern is seen in the use of Quispisisa in more distance hinterlands (Burger et al. 2000), where it is found as more formalized and specialized projectile points or bifaces. Because there are projectile points at Huari made from Quispisisa (most, in fact), it appears that the pattern might simply represent a more utilitarian facet of the political economy, with obsidian from a local source (brought in for consumption) and produced by local residents. At increasing distances, the obsidian is treated more thoughtfully, likely due to the nature of the travel (who is traveling) as well as the knowledge that the material came from a nonlocal source.

CHAPTER 9

DISCUSSION: OBSIDIAN NETWORKS AND IMPERIAL PROCESSES

The results from the previous chapters are presented here in discussion with other obsidian sourcing studies, lithic studies, as well as Wari imperial studies within the central and southern Peruvian highlands. The data analyzed in this dissertation build upon previous sourcing work done in the region by Burger and Asaro (1977), Burger et al. (2000), and Burger et al. (2016), as well as on lithic analysis conducted at the site of Huari (Stone 1983) and Conchopata (Bencic 2016), while contributing original sourcing research for the largest sample of obsidian sourced from the site of Huari (n=505). Overall, several general patterns are present within the dataset in relation to both obsidian exchange networks and the differential use of Quispisisa and Alca obsidian within the Wari heartland. First, the results from the data support the idea presented by Burger et al. (2000) for a regional separation in obsidian exchange networks. The research presented in this dissertation suggests that these networks predate the Middle Horizon and that the widespread use of Quispisisa obsidian during the Middle Horizon is best understood as the intensification and/or formalization of previously-utilized exchange networks. The only regions which appear to experience radical changes in obsidian source consumption during the Middle Horizon are Cusco, and secondarily Apurímac. Second, the results of this dissertation confirm that Quispisisa is the preferred, and most ubiquitous, obsidian source within the Wari heartland. In addition, the results show that Quispisisa was produced and consumed in an expedient manner at the site of Huari, similar to results found by Bencic (2016) at the site of Conchopata. Formal tools were generally produced outside of Wari imperial sites. And finally, the results show the

presence of Alca obsidian at the site of Huari, in contrast to its absence at the site of Conchopata. Alca appears at Huari more often as formal and finished tools, in contrast to the expedient use of Quispisisa. This suggests that, similar to how Quispisisa is consumed at sites within the southern obsidian exchange network, the central highland obsidian exchange network used material from distant locations more conservatively, and more formally, than the more closely available Quispisisa source.

I. Obsidian Exchange Networks Prior to, and During, the Middle Horizon

Within the sampled material from Vegachayuq Moqo, 96.42% (n=485) of the obsidian is from the Quispisisa source, while 3.38% (n=17) is from the Alca source and 0.20% (n=1) is from the Puzolana source. These results are very much consistent with the other obsidian sourcing study conducted on samples of obsidian from Huari (Burger and Asaro 1977). Burger and Asaro (1977) analyzed 53 obsidian samples from the site of Huari using both Neutron Activation Analysis (NAA) and x-ray fluorescence (XRF) and found that 96% (n=51) of the sample could be sourced sourced to Quispisisa, 2% (n=1) to Potreropampa and 2% (n=1) to Alca. The neighboring Wari site of Conchopata was also dominated by Quispisisa source-type obsidian, comprising 99% of the sample (n=92) (Burger et al. 2016). This dissertation suggests that the overwhelming presence of Quispisisa at the sites of Huari and Conchopata follows a pattern within the Ayacucho Valley that pre-dates the Middle Horizon and Wari influence in the region. In addition to the sample from Huari, Burger and Asaro (1977) analyzed 65 obsidian artifacts from seven pre-Middle Horizon sites within the Ayacucho Valley, and found that 94% of the samples could be sourced to Quispisisa. A

second study conducted by Burger et al. (2016) analyzed 80 obsidian artifacts from nine pre-Middle Horizon sites within the Ayacucho Valley and found that 81% of the samples could be sourced to Quispisisa, while 19% was attributed to the Puzolana obsidian source.

In general, it appears that even though Quispisisa obsidian comprises over 96% of obsidian assemblage during the Middle Horizon, this reliance pre-dates the rise of the Wari Empire, suggesting that the presence of Quispisisa within the region is a continuation, or possibly a formalization, of obsidian distribution channels established prior to the Middle Horizon. The relative lack of Puzolana material during the Middle Horizon (19% to less than 2%), may suggest that distribution channels became more formalized under Wari control, with individuals and communities exercising less individual agency over obsidian extraction and acquisition. This may be confirmed by the relative decrease in the overall use of obsidian throughout the Andes in the following Late Intermediate Period. In the Jauja region in the north highlands, obsidian stops being imported into the region from any source, and instead populations begin to reuse the obsidian material they already have (Russell 1988). This is in direct contrast to use at Vegachayuq Moqo and Conchopata, where obsidian (at least from Quispisisa) is readily discarded after use. Also during the Late Intermediate Period in Andahuaylas, populations suddenly begin sourcing obsidian from the Lisahuacho source, a source that was relatively absent in assemblages throughout prehistory, suggesting a major shift in extractive and distribution channels (Kellett et al. 2013). While these studies indicate that obsidian was still used after the collapse of the Wari Empire, it appears that the transportation of obsidian was linked to a political and economic landscape formalized and/or facilitated/controlled by the Wari, which falls out of operation after the end of the Middle Horizon (Russel 1988; Ogburn 2011).

The consumption of Quispisisa obsidian within the Ayacucho Valley, as mentioned above, has a long history; MacNeish et al. (1980) found evidence of Quispisisa obsidian in the Ayacucho region dating to approximately 15,000 BP. The Quispisisa source is the largest source in the central highlands (and northernmost within Peru) and lies approximately 100km south of the present-day city of Ayacucho, roughly a three to four-day journey. Not only is Quispisisa the largest source in the region, but it is also the highest quality source, dating to a relatively recent volcanic event approximately 2.5 million years ago (Castillo et al. 1993). In addition to its recent formation, the size of the nodules at the Quispisisa source is much larger when compared to other sources within the region, reaching up to 35cm in maximum dimension (Tripcevich and Contreras 2011). (For comparison, nodules from Jampatilla and Puzolana rarely measure over 5-10cm in maximum dimension). The obsidian from Quispisisa, while predominantly black, does occasionally have a red hue, perhaps an aesthetic feature that may have distinguished it from other sources (Tripcevich 2007). The above attributes of the Quispisisa source are very likely the primary reasons for its extensive presence throughout the central and northern Andes both prior to, and during, the Middle Horizon. The mechanisms by which it made its way (and in what quantity), were more subjective.

Most research on trade and exchange networks in the Andes focus on the role of craft products and exchange systems in relation to the rise and institutionalization of power (Vaughn 2006; Goldstein 2000; Levine et al. 2013). One common approach is to explore the role of prestige goods within burgeoning power relationships, whether in the form of spondylus from Ecuador, feathers from the Amazon, or obsidian from one of three major obsidian sources (Quispisisa, Alca, and Chivay). Trade and exchange networks, and the long-

term existence and transformation of them, is not unique to the Andes and has been proposed to stem, in part, from a demand for "relatively common place items that were unavailable locally" (Smith 1999: 61; Tripcevich 2010). Despite obsidian's relatively limited natural occurrence, it is one of the most widely utilized resources within the prehistory of the Andes, with obsidian found at locations far from obsidian sources by 13,000 BC. This widespread and early use of such a (geographically) limited material, would have necessitated the formation of exchange relationships, perhaps along geographic zones corresponding to obsidian sources as well as along vertical systems of exchange and Andean avllu practices of up and down-the-line exchange (Eerkens et al. 2010; Tripcevich 2007). Following Burger et al. (2000), the data for this dissertation (in conjunction with other obsidian sourcing studies) confirm the existence of two distinct obsidian exchange networks: 1) the central highlands (including Ayacucho, the Southern Nasca Region, Sondondo and possibly Apurímac); and 2) the southern (including Cusco, Moquegua, Arequipa and the Titicaca Basin). The central highlands obsidian network was focused around the Quispisisa source, while the southern network was focused around the sources of Alca and Chivay. Communities within these networks would generally preferenced locally available sources (those in closest proximity), and supplemented their local deposits with imports from higher quality sources within their corresponding networks. During the Middle Horizon, this system changes.

Central Highlands Obsidian Network

The Ayacucho Valley was not the only region within the central highlands and northern Andes that was consuming Quispisisa obsidian prior to the Middle Horizon (see Figure 9.1). By 13,000 BP Quispisisa obsidian had made its way north to Jauja-Huancayo and southwest to Acarí (Burger and Glascock 2000; Tripcevich and Contreras 2011). By 6,500 BP there is evidence of Quispisisa on the central coast and in the Southern Nasca Region (Quilter 1989; Burger and Asaro 1978; Vaughn and Glascock 2005). During the Early Horizon, Quispisisa dominated the obsidian assemblage at the site of Chavín de Huantar, located over 590km away from the source (Burger and Glascock 2000; Burger and Mendieta 2002). The distances at which obsidian was traveling prior to the Middle Horizon are no less impressive than the distances it was traveling during the Middle Horizon, suggesting the movement of Quispisisa obsidian was likely facilitated by interregional interactions and exchange networks dating to as early as 13,000 BP. Based on previous obsidian sourcing studies, it is likely that one major interaction network connected Ayacucho, Sondondo and the Southern Nasca Region (and possibly Apurímac) through the exchange of resources from different ecozones, including obsidian from Quispisisa (Figure 9.1). While these networks likely encompassed the northern Andes as well (based on early dates for obsidian consumption presented above), there has been relatively little sourcing work done on northern obsidian assemblages (likely due to the absence of northern obsidian sources).

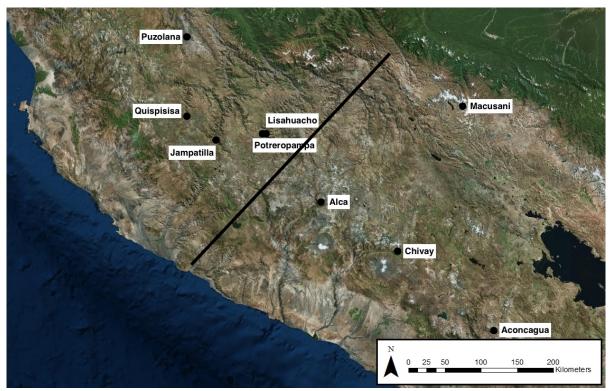


Figure 9.1. Map of Central Highlands Obsidian Network (north of dividing line).

Within the Southern Nasca Region (SNR), obsidian from Quispisisa is the dominant source-type throughout prehistory (the only region apart from Ayacucho where this is the case) (Eerkens et al. 2010). This is likely due to the fact that Quispisisa is the closest obsidian source to the SNR, as there are no locally available sources at coastal elevations. Apart from Quispisisa, the SNR relied on obsidian from other local Ayacucho and Apurímac sources (Potreropampa, Jampatilla and Lisahuacho). The presence of obsidian from highland sources would have necessitated travel into, or exchange with, highland communities, perhaps through transhumance or *ayllu* exchange systems of vertical ecology. And in the SNR, exchange appears to have been happening exclusively with the central highlands network. It has also been suggested that Quispisisa obsidian may have been flowing into the SNR through llama trade caravans (Eerkens et al. 2010; Vaughn 2006). The connection between llama caravans, pastoralism and obsidian has also been presented by Nicholas Tripcevich

(2007), and would have been a likely relationship due to the unique vertical ecology of the Andes, in which camelid pastureland and obsidian sources both lie within the *puna* ecozone. It follows that camelid trade caravans would have facilitated the movement of obsidian not only to the SNR, but across the Andes.

Another region which was part of the central highland obsidian exchange network was the Sondondo Valley. During the Middle Horizon, the Sondondo region was not only the location of a Wari administrative center (Jincamocco), but a roadway connecting the Ayacucho heartland to the SNR (Schreiber and Edwards 2014). This is further confirmed by the presence of Wari administrative sites within the SNR, such as Pataraya (Edwards 2010). It is very likely that, just as Inca roadways were often placed overtop pre-existing Wari roadways, Middle Horizon pathways were also placed overtop pre-existing earlier routes. And because obsidian was traveling outside of Ayacucho as early as 13,000 BP, there is reason to suspect a long history of travel within and between Ayacucho, Sondondo and the SNR. Furthermore, Sondondo is located only 48km from the Quispisisa source, only one to two days of travel (Schreiber, in press). Across all time periods, 47% of the obsidian within Sondondo was from Quispisisa and 42% was derived from the local Jampatilla source (Burger and Asaro 1979). The only obsidian within Sondondo sourced to outside of Ayacucho was from the Alca obsidian source, and was found exclusively at the Wari administrative center of Jincamocco. The importation of obsidian from Alca is likely due to widening exchange networks in the Middle Horizon as a result of imperial processes, and is discussed later in this chapter.

The final region within the central highland network is Apurímac. It provides an interesting point of departure when compared to the other regions previously discussed. As

Burger et al. (2000) note, Apurímac was an active participant in southern exchange networks during the Initial Period and Early Horizon, particularly at the site of Waywaka in Andahuaylas (Burger et al. 2000; Grossman 1972). Simultaneously, the region also relied on Quispisisa obsidian during these periods, although in much smaller percentages (\sim 5%) than in Sondondo, the SNR or Ayacucho (Kellett et al. 2013). However, the Potreropampa and Lisahuacho sources (located within Apurímac) are considered to be central highland obsidian sources (Kellett et al. 2013; Burger et al. 2006), and prior to the Middle Horizon, Potreropampa obsidian is found solely in regions within the central highland exchange network (e.g., SNR, Acarí, and Ayacucho). In sum, prior to the Middle Horizon, Andahuaylas participated both within a southern and central highlands exchange network. During the Middle Horizon, however, Apurímac securely enters the central highland network, as suggested by a significant increase in the percentage of Quispisisa obsidian consumed in relation to a decrease in the consumption of the local Potreropampa and Lisahuacho sources (Kellett et al. 2013). One reason for this shift may be Apurímac's location between the Ayacucho heartland and the Cusco region, which will be discussed later in this chapter.

Southern Obsidian Network

Within the southern obsidian exchange network, first illuminated by Burger et al. (2000), lies the Cusco, Arequipa, Moquegua and Titicaca Basin regions centered around the obsidian sources of Alca and Chivay (Figure 9.2). Prior to identification, Alca was generically known as the "Cusco-type" source (Burger et al. 1998), while Chivay was known as the "Titicaca-type" source (Burger et al. 2000). Both sources produce nodules of a similar

size to Quispisisa, ranging up to approximately 30cm in maximum dimension. And similar to Quispisisa, Alca and Chivay were fully utilized beginning around 13,000 BP. By 13,000 BP Alca is found on the southernmost coast of Peru at sites like Quebrada Jaguay (Sandweiss et al. 1998; Jennings and Glascock 2002) and Chivay obsidian was primarily used within the Titicaca Basin, where around 90% of the obsidian used in prehistory is estimated to be from the Chivay source (Tripcevich 2007). In 2000, Burger et al. illuminated the connections between the sources and the exchange relations between the regions of Cusco, Arequipa, Moquegua and the Titicaca Basin prior to the Middle Horizon. Burger et al. (2000) also noted that obsidian exchange networks were often not overlapping with ceramic or other iconographic exchange networks (which appeared to have a wider and more uniform distribution, especially during Andean horizons). The fact that obsidian and ceramic acquisition, production, and consumption were not conducted through overlapping networks throughout prehistory, further confirms the need to understand craft products and resources both individually and within historically specific contexts.

Figure 9.2. Map of Southern Obsidian Network (south of dividing line).

During the Middle Horizon, the Moquegua region does not appear to substantially alter its consumption of southern exchange network obsidian sources. Despite the presence of the Wari administrative center at the site of Cerro Baul, only 8% of the obsidian within the Cerro Baul assemblage is soured to Quispisisa, the remainder of the obsidian is heavily sourced from Chivay and Alca (Williams et al. 2012; Burger et al. 2000). Unlike other Wari administrative centers within the central highlands network (e.g., Jincamocco and Pataraya), the low reliance on Quispisisa obsidian in Moquegua, in comparison to the continued use of Alca and Chivay, suggests Cerro Baul's and Moquegua's continuity within the southern obsidian exchange network and encompassed regions. This may be further supported by archaeological evidence for a connection between Cerro Baul and the Tiwanaku state (who heavily preferenced obsidian from the Chivay source) (Burger et al. 2000). Smaller Middle Horizon, Wari, sites within the Moquegua Valley such as Cerro Mejia and Mejia Ladera, have greater amounts of Quispisisa obsidian than at Cerro Baul (20% and 30%, respectively), but still less than other regions within the central highlands network (100% in the SNR; 47% in Sondondo) (Williams et al. 2012; Burger and Asaro 1979; Eerkens et al. 2010). Therefore, it appears that while Alca and Chivay were dominant in Moquegua prior to the Middle Horizon, they remain so after Wari expansion and consolidation as well. This may be the result, not of a lack of Wari investment or control in the area, but of an imperial formalization of pre-existing exchange networks. As will be discussed below, the empire commonly utilized pre-existing local infrastructure and tailored its control/investment in regions based on pre-existing local, administrative and economic infrastructure (Schreiber 1992). It follows that a formalization of a pre-existing obsidian exchange network would have been a part of Wari political economic strategy. For the most part, Moquegua, the Titicaca Basin, and Arequipa appear to continue to preference the Alca and Chivay sources during the Middle Horizon. The Cusco region, however, tells a different story.

The Cusco region presents an example of a region that prior to the Middle Horizon was firmly participating within southern obsidian exchange network, heavily dependent upon Alca obsidian. Prior to the Middle Horizon, approximately 87% of the obsidian assemblage in the Cusco region was from the Alca obsidian source (Burger et al. 2000). However, by the Middle Horizon, Cusco appears to have radically changed its obsidian consumption, relying more on Quispisisa (41%) and from a greater diversity of sources, dropping its consumption of Alca to 28% (Burger et al. 2000). This may be, in part, due to the establishment of the Wari administrative outpost of Pikillacta, and the colonial site of Huaro within the region. Pikillacta lies approximately 275km from the site of Huari, and had an obsidian assemblage dominated exclusively by obsidian from the Ayacucho and Apurímac regions

(Quispisisa=89%; Potreropampa=11%) (Burger and Asaro 1977; Burger et al. 2000). Furthermore, the Wari colonial outpost of Huaro also was dominated by Quispisisa obsidian at 60% (Skidmore 2014). The Cusco region's general increase in the presence of Quispisisa obsidian and other central highland obsidian network sources, and concurrent decrease in the use of Alca, suggests a change in the economic interaction networks and obsidian distribution channels during the Middle Horizon, most likely as a result of Wari imperial processes. One such process may have been the introduction of roadways from the Cusco region to Huari through the Department of Apurímac, specifically through Andahuaylas. This may also account for the change in obsidian consumption during the Middle Horizon at sites within Andahuaylas, such as Waywaka (Grossman 1983; Kellett et al. 2013), that see an increase in Ayacucho sources during the Middle Horizon. Cusco may have been purposefully brought under/into Wari control, or perhaps sites like Pikillacta and Huaro were (settler) colonial administrative sites, with residents bringing with them their own obsidian procurement networks.

Imperial Processes

The expansion of empires brings with it the development or intensification of infrastructural projects (such as roadways and agricultural terracing), the construction of administrative and colonial outposts, population growth, and increased communication between regions. As a natural process of empire, distant regions enter into new relationships fostered by increased travel, cosmopolitanism, and movement facilitated by roadways. And with travel, comes the increased movement of goods, people and services. During the Middle Horizon, obsidian exchange appears to formalize, for the most part, within previously

utilized interaction spheres. For example, within the Ayacucho Valley, Sondondo, the Southern Nasca Region, and Apurímac, the use of Quispisisa, which was relatively extensive both prior to and during the Middle Horizon, begins to take the place of locally available sources (Burger et al. 2000; Burger et al. 2016). A similar pattern is seen in the southern exchange network as well, where Chivay and Alca become more prevalent in comparison to local sources. As obsidian networks began to widen during the Middle Horizon, as a result of the Wari empire expanding and incorporating new territories, it appears that obsidian use became patronized by the empire and was formalized along pre-existing obsidian exchange networks. This is most clearly seen in the expansion of the central highland obsidian network to incorporate the Cusco region. Imperial involvement in obsidian exchange is also seen in the presence of distant sources in limited quantities within Wari administrative sites, such as Alca source-type obsidian at the site of Huari, and the presence of Quispisisa at the site of Cerro Baul. Differential consumption of obsidian source-types within Wari sites throughout the empire will be discussed later in this chapter.

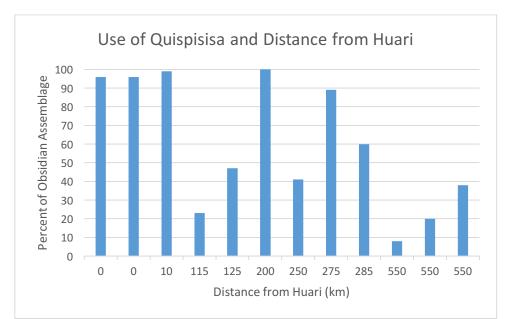


Figure 9.3 Graph Showing Percentage of Obsidian Assemblage of Quispisisa over distance. The Middle Network (275 and 285 are Cusco, and 200 is SNR, shows that its more about networks than it is about distance).

Because Wari was a territorially extensive empire, with a program of imperialism that was malleable and dependent upon pre-existing sociopolitical and economic organizations of hinterland regions, obsidian would have been a relatively easy commodity to transport and manage, as obsidian was often moved as prepared blanks or, in the case of more distant sources, as finished products (see Chapters 7 and 8; Vining 2005; Williams et al. 2012). The wealth finance model suggests that for territorially extensive empires, the transportation of prestige or low transport cost/high value products is an effective way to consolidate power and foster relationships without infrastructural investment (Costin and Earle 1989). One possibility is that obsidian during the Middle Horizon was operating in a similar manner, with Quispisisa obsidian and Alca obsidian acquiring value accrued over distance traveled, which was then represented in their scarcity outside of their established networks. Items within a wealth finance model or prestige-goods model are often limited resources, acquiring value through their rarity (in raw material, production, knowledge, etc.). For obsidian, this

rarity (of distant source) would have been in contrast to ubiquitous local resources and seen in the consequently differential treatment of source-types within and across sites. As Jennings and Glascock (2002) state, formal control of any obsidian source would have been difficult without massive infrastructural investment (none of which is seen at either Quispisisa or Alca) (Tripcevich and Contreras 2011). The value of distant obsidian within a Wari political economy, therefore, wouldn't have been derived from specialized sources, but through the difficulty in acquiring it over long distances.

Wealth finance systems are typically characterized by non-local material, tightly controlled distribution and control within one or more levels of the production or consumption of the product. Furthermore, prestige goods are often associated with distribution through limited channels (Ekholm 1972). For example, the Wari Empire appears to have facilitated and/or controlled the distribution of obsidian to both local and distant regions. At the site of Conchopata, obsidian comprises nearly half of all stone tools, 99% of which was from the Quispisisa source. It was formally produced outside of the site and expediently produced in-situ, further confirming controlled obsidian production and distribution channels during the Middle Horizon. And while wealth finance systems typically assume to relate to prestige, or high-status goods, Cobb (1996) asserts that utilitarian items may also function within a wealth finance model. As will be discussed later in this chapter, the treatment of Alca and Quispisisa obsidian is different not only in relation to the use of obsidian at the site of Huari, but in comparison to the varying consumption patterns between the site and its neighbor, Conchopata. As Stein (1998) suggests, one of the best ways to explore political economy is to look at regional variation in "nodes of power", through the differential/asymmetric movements of labor, goods and the like (in this case obsidian) within

an empire. As obsidian exchange networks changed, and the ways in which obsidian was consumed and used within those networks also changed, it may be possible to explore one element of a Wari political economy.

II. Obsidian at Huari

Obsidian in the Andes has often been considered to operate within the context of either a prestige or ritual good (Giesso 2003; Castillo 2000; Burger and Asaro 1977) or as a utilitarian, domestic resource. Prestige goods are often associated with limited distribution or rarity, are non-local in origin, and difficult to fake (i.e., require skilled labor) (Ekholm 1972). In exploring obsidian at the capital of the Wari Empire, this dissertation may be able to explore obsidian use at the site as symbolic of a larger imperial program, as capitals often invest in symbols of national or imperial identity, are centers for control, are often more cosmopolitan than other cities, and furthermore can be studied, as Sinopoli (1994) suggests, as "an artifact of empire" (Rapoport 1993; Sinopoli 1994: 293).

The obsidian studied for this dissertation derive from contexts within the Vegachayuq Moqo sector at the site of Huari (Ochatoma et al. 2015). The sector is most widely known for the presence of the largest Wari D-shaped temple in the empire, spanning 30 meters in diameter. Smaller D-shaped temples that echo the one at Huari are found at other imperial sites throughout Wari territory (such as Conchopata and Pikillacta). The temple, in conjunction with impressive architectural features found within the sector, have led to the interpretation of Vegachayuq Moqo as a seat of power within the capital, and within the empire (Ochatoma et al. 2012). Because Vegachayuq Moqo was a seat of imperial power,

with architectural symbolic of power and Wari imperialism, then perhaps obsidian within the sector is also representative of Wari political economy and/or imperial processes, or can be interpreted as symbolic of imperial power. One avenue to addressing obsidian within a Wari political economy is to explore the consumption of and access to obsidian as a resource. Differential access to goods is often a material reflection of economic power relations, and the legitimation of the political and economic organization of such power (Costin and Earle 1989).

Within the sector of Vegachayuq Moqo, the majority of the obsidian assemblage was comprised of flakes and flake tools (57%), while only 3.5% of the assemblage was bifaces and 3.8% was projectile points. The size of the flakes and flake tools, with most measuring greater than 12.7mm in maximum dimension, suggest that most obsidian production was occurring outside of the Vegachayuq Moqo sector (Bencic 2016). In her dissertation, Stone (1983) found a lack of evidence indicating intensive lithic production at the site of Huari in general, which may further suggest that minimal production was occurring both within the sector and the site. The limited presence of cortex, or the exterior surface of the obsidian, further confirms that it was unlikely that early production phases were occurring within the sector of Vegachayuq Moqo, and by extrapolation, the site (Stone 1983). What few flakes did present with cortex measured larger than 12.7mm in maximum dimension, which according to Bencic (2016), suggests the production of expedient tools and a relatively abundant presence of raw material requiring little modification. Flake terminations on flakes and flake tools at Vegachayuq Moqo were relatively split between feathered and other forms of terminations (e.g., hinged, stepped, overshot), suggesting that the production of material at Vegachayuq Moqo was conducted by individuals who were not highly-skilled in biface or

projectile point production techniques, further confirming the production of expedient and utilitarian tools. Flake platform type also contributes to a picture of expedient tool use at the site of Huari, with an assemblage relatively split between complex platforms (associated with biface/point production) and flat and cortical platforms (associated with expedient tool production). If bifaces and points were being produced at the site, we would expect a higher percentage of terminations and platforms to be feathered and complex, respectively (Bencic 2016). This data and interpretation echoes the pattern found by Bencic (2016) at the imperial Wari site of Conchopata, where she considered the primary (albeit limited) production occurring in-situ to be expedient, from a relatively abundant or ubiquitous supply. Bencic (2016) suggests that flintknappers at Conchopata were producing expedient tools rather carelessly, without regard for scarcity or limited demand.

The results from the data analyzed for this dissertation can now confirm Stone's (1983) interpretation, and extend this interpretation to the site of Huari, where obsidian appears to have been used for expedient tools, rather than formal tools (bifaces/points), and was produced by individuals without a high level of technical skill. The use of obsidian in this manner has also been called "cavalier crafting", and was identified by Klarich et al. (2017) at the Formative period sites of Pukara and Taraco in the Lake Titicaca Basin. Klarich et al. (2017) suggest that "cavalier crafting" conveys an abundance of material for the producers, and perhaps, an elite status due to the nature of that abundance. Their works also corresponds to research conducted by Tripcevich (2007), in which he suggests a transition in the "function" of obsidian from a status marker during the Archaic period, into a relatively abundant and widely distributed medium by the Late Formative period. While this research has mostly been done within the southern obsidian exchange network, it provides a possible

analogy for the consumption and use of obsidian within the central highlands as well. The abundance and production of obsidian at Vegachayuq Moqo predates the Wari Empire and the Middle Horizon, suggesting that the empire merely continued a pre-existing pattern of obsidian exploitation and use formed during the Early Intermediate Period Huarpa occupation of the site. Parry and Kelly (1987) suggest that expedient technologies are often linked to settlement patterns and the movements of populations into large, nucleated, permanent villages (Parry and Kelly 1987: 297), further supporting the idea that Wari obsidian exploitation and technology was developed during the Early Intermediate Period in the Ayacucho Valley.

The production of expedient tools and the possible cavalier attitude with which obsidian was consumed and discarded does not necessarily, however, remove obsidian from the realm of prestige good or high-value item within a wealth finance political model for the Wari Empire. Tripcevich (2010) suggests that obsidian may have continued to operate within multiple arenas, and the presence of "exotic" or distant obsidian may have been a signal of alliances, exchange relationships, and in the case of the Middle Horizon, perhaps imperial processes and interregional interactions. Klarich et al. (2017) even go so far as to state that "the ability to waste becomes an important signifier of political and economic status" (Klarich et al. 2017: 157). Because obsidian at both Huari and the neighboring site of Conchopata appear to demonstrate a cavalier attitude towards obsidian production and consumption, any difference between the sites may provide a sample of how power was distributed within the heartland and within two of the most important sites within the Wari Empire. This will be discussed later in this chapter.

Sourcing Results: Quispisisa vs. Alca

Within the sector of Vegachayuq Moqo and Huari, 96% of the obsidian assemblage was sourced to Quispisisa, 3% was sourced to Alca and less than 1% was sourced to Puzolana. As discussed in the previous section, this confirms the work conducted at the site of Huari by Burger and Asaro in 1977, and provides a point of comparison to obsidian analyzed from the site of Conchopata in 2016 (Burger et al. 2016). While the differential use of obsidian source-type within the sector of Vegachayuq Moqo does not appear to be statistically significant overall, there is a pattern in the different artifact types produced from each of the two sources (Quispisisa and Alca). For example, Quispisisa obsidian accounts for over 95% of both flakes and fragments, but only 86% of the projectile points. In comparison, Alca obsidian accounts for less than 4% of both flakes and fragments, but over 8.5% of the projectile points. This may suggest that Alca obsidian was being brought to the site of Huari as a finished tool or a prepared blank. Further contributing to this idea, is the fact that none of the Alca obsidian at Vegachayuq Moqo presented with cortex, while 20% of the Quispisisa obsidian presented with cortex. Because cortex can serve as a general indicator for first-stage reduction processes (Bencic 2016), this may indicate that Alca obsidian was being brought to the site, as stated above, as a formal, finished tool or a prepared blank. On the other hand, the Quispisisa obsidian being produced at Huari was expedient.

The terminations on Alca source-type flakes suggest a higher level of technical skill involved in the production of Alca obsidian, in comparison to material produced from Quispisisa. For example, over 87% of the Alca flakes presented with feathered terminations (indicating high technical skill), while only 50% of the Quispisisa flakes presented with feathered terminations. Due to the relatively fewer amount of Alca flakes and production

debris in relation to finished projectile points, it is likely that Alca obsidian was arriving at the site of Huari as a completed projectile point, produced by individuals with high levels of technical proficiency. The presence of production debris, however limited, does suggest that this was not the only way Alca was consumed at the site. It simply suggests that when Alca arrived at Huari, it was more likely to be in the form of a finished product, than was material from Quispisisa. Furthermore, 100% of the Alca material presented with a complex striking platform, indicating that the intended artifact produced from Alca obsidian was likely a biface, or in this case a projectile point. In comparison, less than 50% of the Quispisisa material presents with a complex platform, suggesting that bifaces or projectiles points were not the intended result for objects made from Quispisisa obsidian. This differential treatment of Alca and Quispisisa material within the site of Huari suggests a different value placed on Alca obsidian in comparison to Quispisisa obsidian.

As mentioned previously, the value placed on an object may subside within the distance it has traveled. For example, at the site of Cerro Baul, most Quispisisa obsidian is brought into the site as a completed tool, similar to how Alca is consumed at Huari (Vining 2005; Williams et al. 2012). This suggests that the pattern found at Huari is less about a primary importance placed on Alca obsidian over Quispisisa obsidian, but reflects value acquired over distance traveled and the extra cost necessary to transport material from Alca over 500km (over a 15 days walking), in comparison to the travel from Quispisisa, close to 100km (closer to three days walking). Considering the energy expenditure, food required, and camelids necessary for transport, it is not surprising that Alca material would have been prepared, at the very least, into more easily transported blanks. Its use as a projectile point over expedient tools may reflect the value acquired over distance, just as Quispisisa appears

to acquire the same value when traveling to the southern regions of the empire. One way to explore the significance of Alca at the site of Huari, is to explore the presence of Alca at other Wari sites within the central highlands obsidian network.

III. The Imperial Heartland: Huari vs. Conchopata

The capital of the Wari Empire, Huari, lies less than 10km (~2 hrs walking) from the site of Conchopata. Conchopata is known for being not only a large-scale center for ceramic production, specifically polychrome vessels displaying elaborate Wari imperial iconography, but also for being a possible "second city" to the Wari capital (Isbell 2004). Not only does the site have the archaeological features of an urban core, such as dense architecture, plazas, and patios, but also burials identified in 2004 suggested residents of the site may have been members of the elite (Isbell 2004). Furthermore, the D-shaped structure at Conchopata echoes the one within the Vegachayuq Moqo at Huari, perhaps as a symbol of empire (Wolf 2012). Because of these features, the assumption that residents at Conchopata may have been utilizing obsidian in a similar manner to individuals at Huari was tested by Burger et al. (2016). The authors found, however, that the use of obsidian at Conchopata was more expedient, and more limited in source-type diversity than expected.

The obsidian assemblages, in general, are quite similar between the sites of Conchopata and Huari. At Conchopata only 5% of debitage was smaller than 12.7mm, and at Huari just over 4% of the flakes measured less than 12.7mm (Bencic 2016). This suggests that most of the obsidian production was occurring outside of both Conchopata and Huari. In addition, only 21% of the flakes at Conchopata measuring larger than 25.4mm presented with

a cortical surface, which would suggest that very limited amounts of early-phase tool production were occurring at the site. At the site of Huari, only 13% of flakes larger than 25.4mm presented with cortex, also suggested very limited amounts of early-phase tool production. This led Bencic (2016) to the conclusion that individuals at Conchopata were only producing expedient and flake tools at the site, and that any completed bifaces and projectile points present would have been produced elsewhere. Based on similar morphological assemblage attributes between Huari and Conchopata, it is likely that the same expedient tool production was occurring at Huari, with more technically laborious bifaces and projectile points being produced elsewhere.

Further confirming the nature of expedient tool production at both sites is the presence, or relative lack thereof, of feathered terminations and complex platforms on flakes at both sites. Feathered terminations suggest technical skill of the producer while complex platforms suggest the desired product is bifacial in nature (biface or projectile points) (Bencic 2016). At Conchopata 56% of the flakes, and at Huari 50% of the flakes, had feathered terminations. Similarly, at Conchopata only 44% of the flakes present with complex platforms, and at Huari less than 50% have complex platforms. These similar attribute assemblages between the two sites suggest a relatively equal treatment of obsidian at both Huari and Conchopata. The cavalier attitude with which obsidian is produced and consumed, and its use in likely domestic or utilitarian contexts, suggests its relative ubiquity for residents at both Conchopata and Huari.

Differential Source use at Conchopata and Huari

Where the two Wari heartland sites begin to differ is in the consumption of obsidian sources from outside of the central highlands obsidian network. Unlike at the site of Huari, where 96% of the assemblage is Quispisisa and 3% is Alca, the site of Conchopata is composed of over 99% Quispisisa source-type obsidian (Burger et al. 2016). There is no Alca material present at the site of Conchopata, which is surprising for a site less than 10km in distance from the imperial capital, even more so for one that has been proposed to be a "second city" (Isbell 2004). Burger et al. (2016) suggest that the lack of source diversity at Conchopata likely resulted from a relatively lesser degree of cosmopolitanism within the site of Conchopata when compared to Huari. The fact that Huari has a greater degree of source diversity in comparison with Conchopata, may therefore not be surprising. As the capital of the Wari Empire, it would likely import a wide array of materials from distant regions, as a symbolic and actualized center for control and imperialism (Rapoport 1993). Differential access to goods and resources is one avenue through which to address political economy and the manifestation of power and legitimacy. The differential consumption and/or access to obsidian from Alca at both Huari and Conchopata may allude to different roles for each city within the Wari Empire and perhaps even to status, power and/or identity of residents within the two cities.

Alca is not only found at Huari, but is also found at other sites within the central highlands interaction network during the Middle Horizon. Sites like Jincamocco and Pikillacta, both Wari administrative centers in Sondono and Cusco, respectively, have Alca obsidian in relatively equal numbers to those found at the site of Huari. The presence of Alca obsidian at administrative imperial sites (in contrast to Wari secondary sites within region

(i.e., Pikillacta vs. Huaro in Cusco, Huari vs. Conchopata in Ayacucho) may suggest a greater cosmopolitanism, or perhaps increased interregional travel, communication, and interaction between the different obsidian exchange networks within administrative sites as compared to more residential or secondary sites. In addition, Quispisisa obsidian appears to be consumed at southern administrative sites, such as Cerro Baul, in a similar fashion to how Alca is consumed at northern administrative sites, suggesting that it is not the specific obsidian source that is important, but rather that its presence and/or value is a result of a relatively natural effect of widened interactions, exchange and trade networks operating through, and/or facilitated by, Wari imperial processes. Likely smaller regional colonial sites (such as Huaro, Cerro Mejia) as well as the site of Conchopata, were acquiring their obsidian from Wari imperial networks secondarily to primary sites and regional administrative centers. While this is one possible interpretation, more sourcing work with larger sample sizes would need to occur at a greater number of sites within the empire.

IV. Concluding Remarks

In sum, it may be useful to explore differences in the political economic role of both Alca and Quispisisa obsidian within the Wari Empire (and at Huari) through six aspects of a political economic system: 1) producers- including specialization, labor, compensation and skill; 2) means of production- including raw materials, tools and knowledge; 3) organizationincluding spatial, social and temporal dimensions; 4) objects- including function and use; 5) distribution- including transportation and oversight; and 6) consumers- including use and refuse (Costin 1991). Within the Ayacucho heartland, there appears to be differential production of Alca and Quispisisa source-type obsidian. The dataset does not suggest specialized projectile point or biface types for each source, but rather the fact that a material is obsidian appears to be more important (Burger et al. 2000). This may be further confirmed by the relatively similar aesthetic appearances of Alca and Quispisisa—only rare blue or red obsidian may be visually sourced and those are limited or nonexistent within the sample from Huari. At the sites of Conchopata and Huari, only expedient tool production is occurring insitu, likely by non-specialists, while bifaces and projectile points are produced elsewhere. The cavalier attitude with which obsidian is treated may suggest the ubiquity of source material from Quispisisa in contrast to the limited availability of Alca, which appears to acquire value over the distance it travels.

As mentioned previously, material from Alca and Quispisisa is rather similar in nature. Both are high-quality obsidian sources that produce nodules that can reach up to 30cm in length, the largest of any sources in the Andes (apart from Chivay). While the tools necessary for producing obsidian artifacts are not restricted, the knowledge of flintknapping, especially to produce bifaces and projectile points, appears to have a limited distribution within the empire. Because artifacts are not being heavily produced at Conchopata and Huari, and because Alca material appears to have been fashioned by more highly skilled flintknappers, it appears to confirm that the knowledge for biface production may have be somewhat limited, either in geographic or social scope. This doesn't necessarily mean that it is a valued or highly lucrative knowledge base, or that it is conducted by elite or honored members (or even members) of the empire. It may be that certain areas within a site or region are active locations for production (although it is not likely within an administrative site, since Stone's (1983) dissertation at Huari found no evidence of specialized production

location within the site, or did Conchopata). In any case, there is evidence for specialized or at least limited knowledge of skilled biface and projectile point production within the empire.

Following a discussion of the limited evidence for specialized production knowledge, it appears that production locations were found primarily outside of administrative or colonial Wari sites. This may correspond to the presence of "doughnut quarries" at the Quispisisa source, suggesting either long-term minimal extractive activities, or short-term high-intensity extraction (Tripcevich and Contreras 2013). While Quispisisa has been used throughout prehistory, there is evidence for increased extraction and distribution during the Middle Horizon (Burger et al. 2000). Considering that two of the closest Wari sites to the Quispisisa source are Huari and Conchopata, and there is minimal evidence of early-phase production occurring in-situ at either site, it is likely that artifacts are being reduced and/or produced at a closer distance to the source and transported in as smaller and more workable/manageable blanks. Tripcevich and Contreras (2011) suggested that this production may be occurring at the site of Marcamarca near Huanca Sancos.

Within imperial contexts, Alca and Quispisisa obsidian vary in their consumption patterns within Huari and Conchopata and other hinterland Wari sites. At Huari, Alca is more likely to be found as a completed projectile point while Quispisisa is found primarily in the form of expedient tools. As discussed previously, this may be due to the value that Alca acquired through distance, travel, and source scarcity, in comparison to the ubiquity of the local Quispisisa source. This consumption pattern is echoed in the southern obsidian exchange network where Quispisisa obsidian is more often found as completed tools, and reserved for select areas within Cerro Baul (Vining 2005). The transport of Alca and Quispisisa obsidian may have been conducted through trade/exchange networks, or through

the travel of select individuals to different administrative zones/regions within the empire. In general, Alca obsidian presents a case for interregional interaction at the site of Huari, and a possible, relative lack of interregional interaction at the site of Conchopata.

Conchopata and Huari are located less than 100k from the site of Quispisisa, approximately three days travel by foot. While transporting nodules of obsidian would have been a task (made less so through the fashioning of smaller blanks), Quispisisa was still preferred to the closer (less than 10km distant), more locally available Puzolana obsidian source. This suggests that the distribution/acquisition of obsidian was not an individual endeavor, but a more collective, community or imperially-based distribution program. If Wari wanted to collect larger amounts of obsidian, it would make more sense to intensify collection at the larger, higher-quality source of Quispisisa rather than smaller, lesser quality source of Puzolana. For an individual, travel to the closer, local source would have been more efficient. Because Conchopata obsidian presents with lesser degree of source diversity than Huari, it suggests that Huari was in greater communication/interaction with the distribution networks and the source locations themselves. Alca lies over 500km (approximately a 15 day trip by foot), accounting for the even further reduction of material of Alca from blank to finished projectile point. Because Alca was not moving in large quantities from the source, distribution may be less of an import request from the capital to the hinterlands, and more a byproduct of increased interregional interaction.

The cavalier attitude with which individuals at Conchopata and Huari produced and consumed Quispisisa obsidian suggests a frame of mind that regarded obsidian from Quispisisa as disposable, and ubiquitous. Ultimately, the consumers of obsidian at Wari imperial sites within the Wari empire (both in the central exchange network and southern

exchange network) were not the producers of obsidian. More highly skilled bifaces and projectile points (consumed at sites like Conchopata and Huari) were made elsewhere, and likely obsidian repositories for material that could be fashioned more expedient by residents for more daily activities, were present at Wari administrative and colonial sites. Ultimately, more sourcing work needs to be conducted at both imperial, and non-imperial Middle Horizon sites throughout the Andes in order to further our understanding of how obsidian moved through the Middle Horizon as a resource, and product of imperial processes.

CHAPTER 10

FINAL THOUGHTS, FUTURE RESEARCH

This dissertation has explored the role of obsidian as an object operating within the political economy of the Wari Empire. Drawing on original research conducting lithic and PXRF analysis on a sample of 628 obsidian artifacts from the site of Huari, this dissertation has sought to merge original research with previous studies to develop a more complete picture of Wari involvement in obsidian exchange networks and in-situ consumption practices during the Middle Horizon. As discussed in Chapter 9, several patterns emerged that contribute to a greater understanding of Wari political economy and interregional interactions. First, the data support the idea presented by Burger et al. (2000) that there were two different obsidian exchange networks in prehistory, the southern and the central highlands networks. Both networks tended to rely heavily on obsidian from within their own regions, Chivay and Alca in the south, and Quispisisa in the central highlands. The site of Huari, the imperial capital to the Wari Empire, was no exception.

Beginning in the Early Intermediate Period Huarpa occupation of the site of Huari, obsidian consumption was derived primarily from the Quispisisa source, a pattern that continues into the Middle Horizon. Wari political economy, at least as it pertains to obsidian, was developed directly from pre-existing Huarpa obsidian extraction, production and consumption patterns. The greatest change and/or manipulation of the obsidian political economy by the Wari Empire appears to have been the integration of Cusco into the central highlands obsidian network during the Middle Horizon, bringing the Cusco region closer to the heart of Ayacucho, and perhaps in doing so, moving Cusco further from Tiwanaku or

other southern influences. While obsidian was arguably not the reason that the Wari sought to keep Cusco close, or vice versa, the shift in obsidian consumption illuminates the close relationship between the two regions and provides a glimpse into how Wari political economy may have been used to distribute resources to hinterland areas, or perhaps how resource distribution was fundamental in maintaining connections to distant regions within the empire. Understanding the intersecting relationships between regions and resources (specifically obsidian), as they are managed through culturally, historically, and regionally specific populations has been one goal of this dissertation.

The second major pattern demonstrated by the research relates to consumption practices at the site of Huari. This dissertation conducted PXRF analysis on the the largest obsidian dataset from the site of Huari, and found that the Wari were relying predominantly on Quispisisa obsidian within the sector of Vegachayuq Moqo, followed by Alca and then Puzolana. This pattern is in contrast to the consumption practices at the neighboring imperial site of Conchopata, which was almost exclusively Quispisisa, with an absence of Alca obsidian. Burger et al. (2016) argue that the lack of source diversity at Conchopata may have been due to be a lack of cosmopolitanism at the site. This may suggest that the capital at Huari was involved in greater interregional interaction, and either hosted and/or sent individuals to far reaching corners of the empire who brought resources with them. Alternatively, Alca obsidian may have been a desired commodity, whose exclusive access was restricted to the Wari capital. This seems less likely as Alca is also found at other Wari sites in the central highlands network, such as Jincamocco and Pikillacta.

Another result, which gives insight into consumption practices at the capital, was the lithic analysis that confirmed the expedient production and consumption of Quispisisa

obsidian at the site of Huari. This supports the pattern Burger et al. (2016) found at the site of Conchopata, which they suggested was due to the ubiquitous presence of Quispisisa obsidian at the site. Most likely, Quispisisa obsidian was being brought into Huari and Conchopata as easily workable pieces (either reduced blanks or smaller manufactured nodules). The expedient use of Quispisisa at Huari is in direct contrast to the formal use of Alca at the site. It appears that Alca was being produced by more highly skilled lithic technicians, likely outside of the site. Whether this production was occurring at the Alca source, or somewhere along the journey to Huari, is yet to be determined.

Several questions remain to be examined in relation to obsidian as a resource within a Wari political economy. The first theme relates to the *chaine operatoire* of obsidian as a resource. Along each step in the production sequence, who and/or what social and political organization is involved. At the quarries themselves, how is extraction being conducted? How does the material move from quarry, to the production zone, and finally to the consumption and discard location? What organization is involved? While this dissertation suggests that the in-situ production of Quispisisa obsidian is being conducted by non-skilled residents of Huari, in an expedient manner, the locations of formal tool production sites are as of yet, unknown. One such location for Quispisisa source-type formal tools may be found near the quarry itself. Tripcevich and Contreras (2013) suggest minimal production activities were occurring at the source, and that a possible (and highly likely) center for obsidian production activity was the site of Marcamarca, near the present day town of Colcabamba.

The site of Marcamarca is located at 3,350masl, an elevation suitable to both herding as well as agricultural activities (Tripcevich and Contreras 2011). In fact, this site lies at what would have been the higher limits for permanent, sedentary villages relying on agriculture for

subsistence. The present-day town of Colcabamba is littered with evidence for prehistoric obsidian production, and the site of Marcamarca itself has an incredible abundance of lithic debris (Tripcevich and Contreras 2011). Marcamarca lies only 15km from the Quispisisa source, where there is very limited evidence for reduction debris, leading Tripcevich and Contreras (2011) to suggest Marcamarca and Colcabamba as a location for intensive obsidian production. The date for this production is as of yet unpublished, but may likely date to the Early Intermediate Period or earlier, with evidence of intensification during the Middle Horizon as the Wari Empire expanded and facilitated pre-existing obsidian distribution networks.

Another avenue for continued investigation into Wari political economy stems from the observation made by Burger et al. (2000) that obsidian networks do not appear to overlap with ceramic or iconographic distribution networks. The Wari Empire is known for their investment in, and perhaps fetishization of, regional and exotic resources, particularly those with restricted or limited access (i.e., spondylus from Ecuador, feathers from the Amazon, sand and coca from the coast, metal from Andahuaylas). It is also unsurprising that the Wari would have accessed these resources through pre-existing distribution channels when present, based on their regionally flexible model of political economy and imperial administration (Schreiber 1992). As stated previously, complete understandings of political economic systems are dependent upon recognition of micro-level diversity (obsidian, ceramics, metal, etc.) as well as macro-level systems (organization, institutionalization, etc.).

Obsidian within the central Andes was not ever-present, as it was restricted to nine commonly used sources. However, within the Wari Empire, obsidian appears to have been ubiquitous, and consumed accordingly. Expedient production of obsidian at the capital of the

empire and at other regional imperial sites, suggests that the Wari Empire relied on a system of consistent and dependable obsidian extraction, production, and transportation. This dissertation suggests that this system pre-dated the Middle Horizon, and that the Wari manipulated, facilitated, and where necessary, modified the pre-existing resource system to fit their imperial political economic strategies. Further research would benefit from comprehensive and widespread comparative analyses of different resources, as well as further research at Wari hinterland sites and quarry zones. The material patterns of political economic systems, or the "things-in-motion" (Appadurai 1986: 5), can help archaeologists to illuminate social contexts and meanings, and to further our understanding of how obsidian moved through the Middle Horizon as a resource and product of imperial processes.

REFEENCES CITED

Abrahams, Peter W., Jane A. Entwistle, and Robert A. Dodgshon

2010 The Ben Lawers Historic Landscape Project: Simultaneous Multi-Element Analysis of Former Settlement and Arable Soils by X-ray Fluorescence Spectrometry. *Journal of Archaeological Method and Theory* 17(3):231-248.

Adams, R.M.

1966 *The Evolution of Urban Society: Early Mesopotamia and Prehispanic Mexico.* Aldine Press, Illinois.

Aldenderfer, Mark S.

1998 Montane Foragers: Asana and the South-Central Andean Archaic. University of Iowa Press, Iowa.

Anders, Martha

- 1990 Maymi: un sitio del Horizonte Medio en el valle de Pisco. *Gaceta Arqueológica Andina*.
- 1991 Structure and Function at the Planned Site of Azángaro: Cautionary Notes for the Model of Huari as a Centralized Secular State. In *Huari Administrative Structure: Prehistoric Monumental Architecture and State Government*, edited by William Isbell and Gordon McEwan, pp. 165-197. Dumbarton Oaks, Washington, DC.

Andrefsky, William Jr.

2005 *Lithics: Macroscopic Approaches to Analysis.* Cambridge University Press, Cambridge.

Appadurai, Arjun

1986 Commodities and the Politics of Value. In *The Social Life of Things: Commodities in Cultural Perspective*, edited by Arjun Appadurai, pp. 3-63. Cambridge University Press, Cambridge

Bauer, Brian, and Lucas C. Kellett

2010 Cultural Transformations of the Chanka Homeland (Andahuaylas, Peru) During the Late Intermediate Period. *Latin American Antiquity* 21(1):87-111.

Bauer, Brian, Lucas C. Kellett, and Miriam Araoz

2010 *The Chanka: Archaeological Research in Andahuaylas (Apurímac), Peru.* The Cotsen Institute of Archaeology, California.

Benavides Calle, Mario

1976 *Yacimientos arqueológicos en Ayacucho*. Universidad Nacional de San Cristóbal de Huamanga, Peru.

Bencic, Catherine M.

- 2016 Obsidian Technology at the Wari Site of Conchopata in Ayacucho, Peru. *Andean Past* 12:161-172.
- 2000 Industrias líticas de Huari y Tiwanaku. *Boletin de arqueología PUCP* 4:89-118.

Bennett, Wendell

1946 The Archaeology of the Central Andes. In *Handbook of South American Indians*, edited by Julian H. Steward, pp. 61-147. Smithsonian Institution, Washington, DC.

Bergh, Susan E.

2013 Inlaid and Metal Ornaments. In *Wari: Lords of the Ancient Andes*, edited by Susan E. Bergh, pp. 217-232. Thames & Hudson, Ohio.

Bergh, Susan E., and Justin Jennings

2013 The History of Inquiry into the Wari and Their Arts. In *Wari: Lords of the Ancient Andes*, edited by Susan E. Bergh, pp. 5-30. Thames & Hudson, Ohio.

Bourdieu, Pierre

1979 *Distinction: A Social Critique of the Judgment of Taste.* Harvard University Press, Massachusetts.

Bragayrac, Enrique D.

1991 Archaeological Excavations in the Vegachayoq Moqo Sector of Huari. In *Huari Administrative Structure: Prehistoric Monumental Architecture and State Government,* edited by William Isbell and Gordon McEwan, pp. 71-80. Dumbarton Oaks, Washington, DC.

Bray, Tamara

2003 To Dine Splendidly: Imperial Pottery, Commensal Politics, and the Inca State. In *The Archaeology and Politics of Food and Feasting in Early States and Empires*, edited by Tamara Bray, pp. 93-142. Kluwer Academic/Plenum, New York.

Browman, D.L.

1978 Toward the Development of the Tiahuanaco (Tiwanaku) State. In *Advances in Andean Archaeology*, edited by D.L. Browman, pp. 327-349. Mouton Publishers, The Hague.

Brown, David O., Meredith L. Dreiss, and Richard E. Hughes

2004 Preclassic Obsidian Procurement and Utilization at the Maya site of Colha, Belize. *Latin American Antiquity* 15(2):222-240.

Brumfiel, Elizabeth, and Timothy Earle

1987 Specialization, Exchange, and Complex Societies. Cambridge University Press, Cambridge.

Brush, Stephen B.

- 1982 The Natural and Human Environment of the Central Andes. *Mountain Research and Development* 2(1):19-38.
- Burger, Richard, and Frank Asaro
 - 1977 Trace Element Analyses of Obsidian Artifacts from the Andes: New Perspectives on Pre-Hispanic Economic Interaction in Peru and Bolivia. Archaeological Research Facility, Report #LBL6343. UC Berkeley, California.
 - 1979 Analisis de rasgos significativos en la obsidiana de los andes centrales. *Revista del Museo Nacional* 43:281-326.
 - 1978 Obsidian Distribution and Provenience in the Central Highlands and Coast of Peru during the Preceramic Period. University of California Berkeley, California.
- Burger, Richard, and Michael D. Glascock
 - 2000 Locating the Quispisisa Obsidian Source in the Department of Ayacucho, Peru. *Latin American Antiquity* 11(3):258-268.
- Burger, Richard, and Ramiro Matos Mendieta
 - 2002 Atalla: A Center on the Periphery of the Chavin Horizon. *Latin American Antiquity* 13(2):153-177.
- Burger, Richard, Frank Asaro, Paul B. Trawick, and Fred Stross
 1998 The Alca Obsidian Source Type: the Origin of Raw Material for Cuzco Type Obsidian Artifacts. *Andean Past* 5(13):185-202.
- Burger, Richard, Katharina Schreiber, Michael D. Glascock, and Jose Ccencho
 1998b The Jampatilla Obsidian Source: Identifying the Geological Source of Pampas
 Type Obsidian Artifacts from Southern Peru. *Andean Past* 5(15):225-239.
- Burger, Richard, Karen L. Mohr Chavez, and Sergio J. Chavez
 2000 Through the Glass Darkly: Prehispanic Obsidian Procurement and Exchange in Southern Peru and Northern Bolivia. *Journal of World Prehistory* 14(3):267-362.
- Burger, Richard L, Fidel Fajardo Rios, and Michael D. Glascock
 2006 Potreropampa and Lisahuacho Obsidian sources: Geological Origins of Andahuaylas A and B Type Obsidians in the Province of Ayamaraes, Department of Apurímac, Peru. *Ñwapa Pacha* 28:109-127.
- Burger, Richard L, Catherine M. Bencic, and Michael D. Glascock
 2016 Obsidian Procurement and Cosmopolitanism at the Middle Horizon Settlement of Conchopata, Peru. Andean Past 12:21-44.

Buzon, Michelle R., Stuart Tyson Smith, and Antonio Simonetti

- 2016 Entanglement and the Formation of the Ancient Nubian Napatan State. *American Anthropologist* 188(2):284-300.
- Cabrera Romero, Martha
 - 1998 Evaluación arqueológia en el complejo turístico de *Ñawinpukyo. Informe del proyecto resentado al Instituto Nacional de Cultura.* Unpublished report, Ayacucho, Peru.
- Carré Gonzalez, Enrique, and Enrique Bragayrac
 - 1996 *El templo mayor en la ciudad de Huari.* Universidad de San Cristobal de Huamanga, Ayacucho, Peru.

Carter, Tristan, and Stephen Shackley

- 2007 Souring Obsidian from Neolithic Catalhoyuk (Turkey) Using Energy Dispersive X-ray Fluorescence. *Archaeometry* 49:437-454.
- Castillo, Jose M, Javier Barreda, and Churchell Vela
 - 1993 Geologia de los cuadrangulos de Laramate y Santa Ana. *Carta Geologica Nacional.* Instituto Geologico Minero y Metalurgico, Peru.
- Chase, A.F., and D.Z. Chase
 - 2001 Ancient Maya Causeways and Site Organization at Caracol, Belize. *Ancient Mesoamerica* 12:273-381.

Chia, S., L. Yondri, and T. Simanjunta

2010 The Origin of Obsidian Artifacts from Gua Pawon, Dago and Bukit Karsamanik in Bandung, Indonesia. *L Anthropologie* 122:448-456.

Chia, Stephen, Lufti Yondri and Truman Simantunjak

2010 Obsidian sourcing in Bandung, Indonesia. Asian Perspectives 49(1):148-156.

Childe, Gordon

1950 Man Makes Himself. Watts, London.

Clark, J., and Parry W.J

1990 Craft Specialization and Cultural Complexity. *Research in Economic Anthropology* 12:289-346.

Cobb, Charles

1996 Specialization, Exchange, and Power in Small-Scale Societies and Chiefdoms. *Research in Economic Anthropology* 17:251-294.

Cohen, A.

1974 Two-Dimensional Man: An Essay on the Anthropology of Power and Symbolism in Complex Society. University of California Press, California.

Cook, Anita

1996 The Emperor's New Clothes: Symbols of Royalty, Hierarchy, and Identity. *Journal of the Steward Anthropological Society* 24(1):85-120.

Cook, Anita, and Mary Glowacki

2002 Pots, Politics, and Power: Huari Ceramic Assemblages and Imperial Administration. In *The Archaeology and Politics of Food and Feasting in Early States and Empires*, edited by Tamara Bray. Kluwer Academic Publishers, New York.

Conlee, Christina A.

- 2003 Local Elites and the Reformation of Late Intermediate Period Sociopolitical and Economic Organization in Nasca, Peru. *Latin American Antiquity* 14(1):47-65.
- 2010 Nasca and Wari: Local Opportunism and Colonial Ties during the Middle Horizon. In *Beyond Wari Walls: Regional Perspectives on Middle Horizon Peru*, edited by Justin Jennings, pp. 96-112. University of New Mexico Press, New Mexico.

Costin, Cathy

- 1991 Craft Specialization: Issues in Defining, Documenting, and Explaining the Organization of Production. In *Archaeological Method and Theory Volume 3*, edited by Michael B. Schiffer, pp. 1-56. University of Arizona Press, Arizona.
- 2001 Craft Production Systems. In *Archaeology at the Millennium: A Sourcebook,* edited by G. Feinman and T. Price, pp. 273-327. Kluwer/Plenum, New York.
- 2005 Craft Production. In *Handbook of Methods in Archaeology*, edited by H. Maschner, pp. 1032-1105. AltaMira Press, California.

Costin, Cathy, and Timothy K. Earle

1989 Status Distinction and Legitimation of Power as Reflected in Changing Patterns of Consumption in Late Prehispanic Peru. *American Antiquity* 54(4):691-714.

Covey, Alan, Brian Bauer, Veronique Belisle, and Lia Tsesmeli

2013 Regional Perspectives on Wari State Influence in Cusco, Peru (AD 600-1000). Journal of Anthropological Archaeology 32:538-552.

Craig, Nathan M.

2005 The Formation of Early Settled Villages and the Emergence of Leadership: A Test of Three Theoretical Models in the Rio Ilave, Lake Titicaca Basin, Southern Peru. PhD Dissertation. Department of Anthropology, University of California Santa Barbara, California. Craig, Nathan, Robert J. Speakman, Rachel S. Popelka-Filcoff, Mark Aldenderfer, Luis Flores Blanco, Margaret Brown Vega, Michael D. Glascock, and Charles Stanish.

2010 Macusani Obsidian from Southern Peru: A Characterization of its Elemental Composition with a Demonstration of its Ancient Use. *Journal of Archaeological Science* 37(3):569-576.

Cusick, James G.

1998 Historiography of Acculturation: An Evaluation of Concepts and Their Application in Archaeology. In *Studies in Culture Contact: Interaction, Culture change, and Archaeology*, edited by James G. Cusick, pp. 126-145. CAI Press, Illinois.

DeMarrais, Elizabeth, Luis Jaime Castillo, and Timothy Earle

1996 Ideology, Materialization, and Power Strategies. *Current Anthropology* 37(1):15-31.

D'Altroy, Terrence N.

1992 *Provincial Power in the Inka Empire*. Smithsonian Institution Press, Washington, DC.

Dalton, George

- 1977 Aboriginal Economies in Stateless Societies. In *Exchange Systems in Prehistory*, edited by Timothy Earle and Jonathan Ericson, pp. 191-212. Academic Press, New York.
- 1990 Writings that Clarify Theoretical Disputes over Karl Polanyi's Work. *Journal of Economic Issues* 24(1):249-261.

D'Altroy, Terence N., and Timothy K. Earl

1985 Staple Finance, Wealth Finance, and Storage in the Inka Political Economy. *Current Anthropology* 26(2):187-206.

Demarest, Arthur A.

2013 Ideological Pathways to Economic Exchange: Religion, Economy and Legitimation at the Classic Maya Royal Capital of Cancuen. *Latin American Antiquity* 24(4):371-402.

DeMarrais, Elizabeth, Luis Jaime Castillo, and Timothy Earle

1996 Ideology, Materialization, and Power Strategies. *Current Anthropology* 37(1):15-31.

Dietler, Michael

1998 Consumption, Agency, and Cultural Entanglement: Theoretical Implications of a Mediterranean Colonial Encounter. In *Studies of Culture Contact: Interaction, Culture Change, and Archaeology*, edited by James G. Cusick, pp. 288-315. CAI Press, Illinois.

- 2005 The Archaeology of Colonization and the Colonization of Archaeology: Theoretical Challenges from an Ancient Mediterranean Colonial Encounter. In *The Archaeology of Colonial Encounters*, edited by Gil J. Stein, pp. 33-68. SAR Press: New Mexico.
- 2010 Archaeologies of Colonialism: Consumption, Entanglement, and Violence in Ancient Mediterranean France. University of California Press, California.

Dobres, Marcia-Anne, and Christopher Hoffman

1994 Social Agency and the Dynamics of Prehistoric Technology. *Journal of Archaeological Method and Theory* 1(3):211-258.

1999 *The Social Dynamics of Technology: Practice, Politics, and World Views.* Smithsonian Institution Press, Washington, DC.

Doyel, David E.

1996 Resource Mobilization and Hohokam Society: Analysis of Obsidian Artifacts from the Gatlin site, Arizona. *Kiva* 62(1):45-60.

Doyle, Michael

1986 *Empires*. Cornell University Press, New York.

Drake, Brandon L., Adam J. Nazaroff, and Keith M. Prufer

2009 Error Assessment of Portable X-ray Fluorescence Spectrometer in Geochemical Sourcing. *Society for Archaeological Sciences Bulletin* 32(3):14-17.

Dupre, G., and P. Rey

1973 Reflections on the Pertinence of a Theory of the History of Exchange. *Economy and Society* 2:131-163.

Durkheim, Emile

1915 *The Elementary Forms of the Religious Life.* Translated by Joseph Ward Swain. George Allen and Unwin Ltd., London.

Earle, Timothy K.

- 1977 A Reappraisal of Redistribution: Complex Hawaiian Chiefdoms. In *Exchange Systems in Prehistory*, edited by Timothy Earle and J. Ericson. Academic Press, New York.
- 1985 Commodity Exchange and Markets in the Inca State: Recent Archaeological Evidence. In *Markets and Marketing*, edited by S. Plattner, pp. 369-397. University Press of America, Maryland.
- 1987 Specialization and the Production of Wealth: Hawaiian Chiefdoms and the Inca Empire. In *Specialization, Exchange and Complex Societies,* edited by Elizabeth Brumfiel and Timothy Earle. Cambridge University Press, Cambridge.

- 1991 *Chiefdoms: Power, Economy, and Ideology.* Cambridge University Press, Cambridge.
- 1994 Wealth Finance in the Inca Empire: Evidence from the Calchaqui Valley, Argentina. *American Antiquity* 59:443-460.
- 2011 Chiefs, Chieftaincies, Chiefdoms, and Chiefly Confederacies: Power in the Evolution of Political Systems. *Social Evolution and History* 10(1):27-54.

Edwards, Matthew J.

- 2010 Archaeological Investigations at Pataraya: A Wari Outpost in the Nasca Valley of Southern Peru. Ph.D. dissertation. Department of Anthropology, University of California, Santa Barbara, California.
- 2017 Ritual Practice at the End of Empire: Evidence of an Abandonment Ceremony from Pataraya, a Wari Outpost on the South Coast of Peru. In *Rituals of the Past*, edited by Silvana A. Rosenfeld and Stefanie L. Bautista, pp. 151-168. University Press of Colorado, Colorado.
- Edwards, Matthew J., and Katharina Schreiber
 - 2014 Pataraya: The Archaeology of a Wari Outpost in Nasca. *Latin American Antiquity* 25(2):215-233.
- Edwards, Matthew, Francesca Fernandini Parodi, and Grace Alexandrino Ocana 2008 Decorated Spindle Whorls from Middle Horizon Pataraya. *Nawpa Pacha* 29:87-100.

Eerkens, Jelmer W., Kevin J. Vaughn, Moises Linares-Grados, Chirstina A. Conlee, Katharina Schreiber, Michael D. Glascock, and Nicholas Tripcevich

2010 Spatio-temporal Patterns in Obsidian Consumption in the Southern Nasca Region, Peru. *Journal of Archaeological Science* 37(4):825-832.

Ekholm, Kajsa

1972 *Power and Prestige: The Rise and Fall of the Congo Kingdom.* SKRIV Service AB, Uppsala, Sweden.

Ekholm, Kajsa, and Jonathan Friedman

1979 "Capital" Imperialism and Exploitation in Ancient World Systems. In *Power and Propaganda: A Symposium on Ancient Empires*, edited by M.T. Larsen, pp. 41-58. Akademisk, Copenhagen.

Ellis, Christopher, J.

1997 Factors Influencing the Use of Stone Projectile Tips. In *Projectile Technology*, edited by Heidi Knecht, pp. 37-74. Plenum Press, New York.

Ericson, J.E., A. Makishima, J.Dd. Mackenzie, and R. Burger

1975 Chemical and Physical Properties of Obsidian: A Naturally Occurring Glass. Journal of Non-Crystalline Solids 17:129-142.

Finucane, Brian

- 2008 Trophy Head from Nawinpukuyo, Peru: Physical and Chemical Analysis of Huarpa-Era Modified Human Remains. *American Journal of Physical Anthropology* 135:75-84.
- 2009 Maize and Sociopolitical Complexity in the Ayacucho Valley, Peru. *Current Anthropology* 50(4):535-545.

Forster, Nicola and Peter Grave

2011 Non-destructive PXRF Analysis of Museum-curated Obsidian from the Near East. *Journal of Archaeological Science* 39:728-736.

Frahm, Ellery, and Joshua M. Feinberg

2013 Empires and Resources: Central Anatolian Obsidian at Urkesh (Tell Mozan, Syria) during the Akkadian Period. *Journal of Archaeological Science* 40(2):1122-1135.

Frederickson, Clayton

1997 Changes in Admiralty Islands Obsidian Source Use: The View from Pamwak. *Archaeology in Oceania* 32(1):68-73.

Friedman, J., and M.J. Rowlands

1977 Notes Toward an Epigenetic Model of Evolution of "Civilization". In *The Evolution of Social Systems*, edited by J. Friedman and M.J. Rowlands. Duckworth, London.

Fullagar, Richard, G. Summerhayes, B. Ivuyo, and J. Specht

1991 Obsidian Sources at Mopir, West New Britain Province, Papua New Guinea. *Archaeology in Oceania* 26(3):110-114.

Gell, A.

1998 Art and Agency: An Anthropological Theory. Clarendon Press, Oxford.

Gero, Joan

1989 Assessing the Social Information in Material Objects: How Well do Lithics Measure Up? In *Time, Energy, and Stone Tools,* edited by Robin Torrence, pp. 92-= 105. Cambridge University Press, Massachusetts.

Giddens, Anthony

1984 *The Constitution of Society: Outline of a Theory of Structuration.* University of California Press, California.

Giesso, Martin

2003 Stone Tool Production in the Tiwanaku Heartland. In *Tiwanaku and its Hinterland: Archaeology and Paleoecology of an Andean Civilization, Vol. 2*, edited by Alan Kolata, pp. 363-383. Smithsonian Institution Press, Washington, DC.

Glowacki, Mary

- 1996 *The Huari Occupation of the Southern Highlands of Peru: A Ceramic Perspective from the site of Pikillacta.* PhD Dissertation, Department of Anthropology, Brandeis University, Massachusetts.
- 1998 The Huaro Archaeological Project, 1997-1998. *Archaeological Field Report*. Curtiss T. and Mary G. Brennan Foundation.
- 2013 Shattered Ceramics and Offerings. In *Wari: Lords of the Ancient Andes*, edited by Susan E. Bergh, pp. 145-158. Thames & Hudson, Ohio.

Glowacki, Mary, and Michael Malpass

2003 Water, Huacas, and Ancestor Worship: Traces of a Sacred Wari Landscape. *Latin American Antiquity* 14(4):431-448.

Goldstein, Paul

- 2000 Exotic Goods and Everyday Chiefs: Long-Distance Exchange and Indigenous Sociopolitical Development in the South Central Andes. *Latin American Antiquity* 11(4):335-361.
- 2005 Andean Diaspora: The Tiwanaku Colonies and the Origins of South American Empire. University of Florida Press, Florida.

Golitko, Mark, James Meierhoff and John Edward Terrell

2010 Chemical Characterization of Sources from the Sepik Coast. *Archaeology in Oceania* 45(3):120-129.

Gosden, Chris

2005 What do Objects Want? *Journal of Archaeological Method and Theory* 12(3):193-211.

Griesz, Milosz, and Kryzsztof Makowski

2010 The Wari Phenomenon: In the Tracks of a Pre-Hispanic Empire. *Castillo de] Huarmey. El Mausoleo Imperial Wari*, pp. 285-294.

Grossman, Joel

- 1972 Early Ceramic Cultures of Andahuaylas, Apurimac, Peru. *PhD dissertation*. Department of Anthropology, University of California Berkeley, California.
- 1983 Demographic Changes and Economic Transformations in the South-Central Highlands of Pre-Huari Peru. *Nawpa Pacha* 21:45-126.

Hassig, Ross

1985 Trade, Tribute, and Transportation: The Sixteenth-century Political Economy of the Valley of Mexico. University of Oklahoma Press, Oklahoma.

Hastorf, Christine A.

1990 The Effect of the Inka State on Sausa Agricultural Production and Crop Consumption. *American Antiquity* 55(2):262-290.

Healan, Dan M.

1993 Local Versus Non-Local Obsidian Exchange at Tula and its Implications for Post formative Mesoamerica. *World Archaeology* 24(3):449-466.

Healey, Elizabeth

2007 Obsidian as an Indicator of Inter-Regional Contacts and Exchange: Three Case Studies from the Halaf Period. *Anatolian Studies* 57:171-189.

Ho, Enseng

2004 Empire Through Diasporic Eyes: A View from the Other Boat. *Comparative Studies in Society and History* 46(2):210-246.

Hirth, Kenneth

1996 Political Economy and Archaeology: Perspectives on Exchange and Production. *Journal of Archaeological Research* 4:203-239.

Huntley, Jillian

2012 Taphonomy or Paint Rcipe: In Situ Portable X-ray Fluorescence Analysis of Two Anthropomorphic Motifs from the Woronora Palteau, New South Wales. *Australian Archaeology* 75:78-94.

Inomata, T.

2001 The Power and Ideology of Artistic Creation: Elite Craft Specialists in Classic Maya Society. *Current Anthropology* 42:321-349.

Isbell, William

- 1984 Huari Urban Prehistory. In *Current Archaeological Projects in the Central Andes: Some Approaches and Results*, edited by A. Kendall, pp. 95-131. BAR International Series 210, Oxford.
- 1988 City and State in Middle Horizon Huari. *Peruvian Prehistory*:164-189.
- 1991 Architecture and Spatial Organization at Huari. In *Huari Administrative Structure: Prehistoric Monumental Architecture and State Government*, edited by William Isbell and Gordon McEwan, pp. 19-53. Dumbarton Oaks, Washington, DC.

- 1997 Mummies and Mortuary Monuments: a Postprocessual Prehistory of Central Andean Social Organization. University of Texas Press, Texas.
- 2001 Huari: crecimiento y desarollo de la capital imperial. In *Wari: Arte Precolombino Peruano*, pp. 99-172. Centro Cultural El Monte, Spain.
- 2004 Mortuary Preferences: A Huari Case Study from Middle Horizon, Peru. *Latin American Antiquity* 15(1):3-32.
- Isbell, William, and Katharina Schreiber

1978 Was Huari a State? American Antiquity 43(3):372-389

Jack, Robert N.

1971 The Source of Obsidian Artifacts in Northern Arizona. *Plateau* 43(1):103-114.

Jack, Robert N., and S.E. Carmichael

1969 The Chemical "Fingerprinting" of Acid Volcanic Rocks. *California Division of Mines and Geology* 100:17-32.

Janusek, John Wayne

- 1999 Craft and Local Power: Embedded Specialization in Tiwanaku cities. *Latin American Antiquity* 10(2):107-131.
- 2004 Tiwanaku and its Precursors: Recent Research and Emerging Perspectives. *Journal of Archaeological Research* 12(2):121-183.
- 2006 The Changing "Nature" of Tiwanaku Religion and the Rise of an Andean State. *World Archaeology* 38(3):469-492.

Jennings, Justin, and Michael D. Glascock

2002 Description and Method of Exploitation of the Alca Obsidian Source, Peru. *Latin American Antiquity* 13(1):107-118.

Jia, Peter Weiming, Trudy Doelman, Chuanjia Chen, Hailong Zhao, Sam Lin, Robin Torrence, and Michael Glascock

- 2010 Moving Sources: a Preliminary Study of Volcanic Glass Artifact Distributions in Northeast China Using PXRF. *Journal of Archaeological Science* 37:1610-1677.
- Jones, R.E., and E. Photos-Jones
 - 2005 Technical Studies of Aegean Bronze Age Wall Painting: Methods, Results and Future Prospects. *British School at Athens Studies* 13:199-228.
- Joyce, Arthur A., J. Michael Elman, Michael D. Glascock, Hector Neff, and Marcus Winter
 1995 Exchange Implications of Obsidian Source Analysis from the Lower Rio Verde
 Valley, Oaxaca, Mexico. *Latin American Antiquity* 6(1):3-15.

Kellett, Lucas C., Mark Golitko, and Brian S. Bauer

2013 A Provenance Study of Archaeological Obsidian from the Andahuaylas Region of Southern Peru. *Journal of Archaeological Science* 40:1890-1902.

Kertzer, David I.

1988 *Ritual, Politics and Power.* Yale University Press, Connecticut.

Khatchadourian, Lori

2016 Imperial Matter: Ancient Persia and the Archaeology of Empires. University of California Press, California.

Kidder, Alfred

1956 Digging in the Titicaca Basin. *University Museum Bulletin* 20(3):16-29.

Klarich, Elizabeth, Abigail Levine, and Carol Shultze

2017 Abundant Exotics and Cavalier Crafting: Obsidian Use and Emerging Complexity in the Northern Lake Titicaca Basin. In *Abundance: The Archaeology of Plenitude*, edited by Monica L. Smith, pp. 139-164. University of Colorado Press, Colorado.

Klink, Cynthia, and Mark Aldenderfer

2005 A Projectile Point Chronology for the South-Central Andean Highlands. In *Advances in Titicaca Basin Archaeology, Vol. 1,* edited by Charles Stanish, Amanda Cohen and Mark Aldenderfer, pp. 13-24. Cotsen Institute of Archaeology: California

Knobloch, Patricia

- 1976 A Study of the Huarpa Ceramic Style of the Andean Early Intermediate Period. *MA Thesis*. Department of Anthropology, SUNY Binghamton, New York.
- 2000 Wari Ritual Power at Conchopata: An Interpretation of *Anadanathera Colubrina* Iconography. *Latin American Antiquity* 11(4):387-402.
- 2005 Monkey Saw, Monkey Did: A Stylization Model for Correlating Nasca and Wari Chronology. *Andean Past* 7:111-134.
- 2013 Archives in Clay: The Styles and Stories of Wari Ceramic Artists. In *Wari: Lords of the Ancient Andes*, edited by Susan E. Bergh, pp. 122-144. Thames & Hudson, Ohio.

Knudson, Kelly J.

2008 Tiwanaku Influence in the South Central Andes: Strontium Isotope Analysis and Middle Horizon Migration. *Latin American Antiquity* 19(1):3-23.

Kolata, Alan

1993 *The Tiwanaku: Portrait of an Andean Civilization*. Blackwell Publishing, Cambridge.

Kooyman, Brian P.

2000 Understanding Stone Tools and Archaeological Sites. University of Calgary Press, Alberta.

Kurin, Danielle

- 2012 The Bioarchaeology of Collapse: Ethnogenesis and Ethnocide in Post-Imperial Andahuaylas, Peru (AD 900-1250). *PhD dissertation*. Department of Anthropology, Vanderbilt, Tennessee.
- 2016 *The Bioarchaeology of Society Collapse and Regeneration in Ancient Peru.* Springer International Publishing.

La Lone, D.

1982 The Inca as a Nonmarket Economy: Supply on Command Versus Supply and Demand. In *Contexts for Prehistoric Exchange*, edited by J. Ericson and Timothy Earle, pp. 291-316. Academic Press, New York.

Latour, Bruno

2005 *Reassembling the Social: An Introduction to Actor-Network-Theory.* Oxford University Press, Oxford.

Lau, George

2002 Feasting and Ancestor Veneration at Chinchawas, North Highlands of Ancash, Peru. *Latin American Antiquity* 13(3):279-304.

Leach, Edmond

1966 Pul Eliya: A Village in Ceylon. Cambridge University Press, Cambridge.

Lechtman, H.

1984 Andean Value Systems and the Development of Prehistoric Metallurgy. *Technology and Culture* 25:1-36.

Lemonnier, Pierre

1992 *Elements for an Anthropology of Technology*. Anthropological Papers 88. Museum of Anthropology, University of Michigan, Michigan.

Leoni, Juan B.

- 2004 Ritual, Place and Memory in the Construction of Community Identity: a Diachronic View from Ñawinpukuyo (Ayacucho, Peru). *PhD Dissertation*. Department of Anthropology, SUNY Binghamton, New York.
- 2010 Early Intermediate Period and Middle Horizon Funerary Practices in Ayacucho: a View from the Site of Nawinpukyo. *Nawpa Pacha* 30(1):65-90.

Leroi-Gourhan, Andre

1964 *Gesture and Speech.* MIT Press, Massachusetts.

Lesko, Lawrence, M.

1989 A Reexamination of Northern Arizona Obsidians. *Kiva* 54(4):385-399.

Levine, Abigail, Charles Stanish, P. Ryan Williams, Cecilia Chavez, and Mark Golitko 2013 Trade and Early State Formation in the Northern Titicaca Basin, Peru. *Latin American Antiquity* 24(3):289-308.

Loren, Diana

2001 Social Skins: Orthodoxies and Practices of Dressing in the Early Colonial Lower Mississippi Valley. *Journal of Social Archaeology* 1(2):172-189.

Lucero, Lisa J.

2003 The Politics of Ritual: The Emergence of Classic Maya Rulers. *Current Anthropology* 44(4):523-558.

Lumbreras, Luis G.

- 1974 *The Peoples and the Cultures of Ancient Peru*. Smithsonian Institution Press, Washington, DC.
- 1981 The Stratigraphy of the Open Sites. In *Prehistory of the Ayacucho Basin, Peru. Volume II: Excavations and Chronology*, edited by Richard MacNeish, Angel Garcia Cook, Luis Lumbreras, Robert Vierra, and Antoinette Nelken-Terner, pp. 167-198. University of Michigan Press, Michigan.

Lundblad, Steven P., P.R. Mills, A. Drake-Raue, and S.K. Kikiloi

2011 Non-destructive EDXRF Analyses of Archaeological Basalts. In *X-Ray Fluorescence Spectrometry (XRF) in Geoarchaeology*, pp. 65-79. Springer, New York.

Luttwak, Edward

1976 The Grand Strategy of the Roman Empire from the First Century A.D. to the *Third*. Johns Hopkins University Press, Maryland.

Mann, Michael

1986 The Sources of Social Power. Cambridge University Press, Cambridge.

MacNeish, R.S., R.K. Vierra, A. Nelken-Terner, and C.J. Phagan

1980 Prehistory of the Ayacucho Basin, Peru: Nonceramic Artifacts. University of Michigan Press, Michigan.

MacNeish, Richard, Angel Garcia Cook, Luis G. Lumbreras, Robert K. Vierra, and Antoinette Nelken-Terner

1981 Prehistory of the Ayacucho Basin, Peru. Volume II: Excavations and Chronology. University of Michigan Press, Michigan. McAnany, Patricia A., and Norman Yoffee (editors)

2009 *Questioning Collapse: Human Resilience, Ecological Vulnerability, and the Aftermath of Empire.* Cambridge University Press, Cambridge.

McEwan, Gordon F.

- 1996 Archaeological Investigations in Pikillacta, a Wari Site in Peru. *Journal of Field Archaeology* 23(2):169-186.
- 2005 Excavations at Pikillacta. In *Pikillacta: The Wari Empire in Cusco*, edited by Gordon McEwan, pp. 29-62. University of Iowa Press, Iowa.

Meddens, Frank

1985 The Chicha/Soras Valley During the Middle Horizon: Provincial Aspects of Huari. *PhD Dissertation*. Department of Anthropology, University of London, London.

Menzel, Dorothy

1967 Style and Time in the Middle Horizon Epoch 2A. *Ñwapa Pacha* (6):47-114.

Metraux, Alfred

1946 Weapons. In *Handbook of South American Indians*, edited by Julian H. Steward, pp. 229-263. Smithsonian Institution Press, Washington, DC.

Milne, Brooke, Robert W. Park, Anne C. Hamilton, and Mostafa J. Fayek

2011 Chert Sourcing and Paleo-eskimo Raw Material Use in the Interior of Southern Baffin Island, Arctic Canada. *Canadian Journal of Archaeology* 35(1):117-142.

Moholy-Nagy, Hattula, James Meierhoff, Mark Golitko, and Caleb Kestle

2013 An Analysis of pXRF Obsidian Source Attributions from Tikal, Guatemala. *Latin American Antiquity* 24(1):72-97

Moholy-Nagy, Hattula, Frank Asaro, and Fred H. Stross1984 Tikal Obsidian: Sources and Typology. *American Antiquity* 49(1):104-117.

Morrison, Katheleen D.

2001 Sources, Approaches, Definitions. In *Empires: Perspectives from Archaeology and History*, edited by Susan E. Alcock, Terrence N. D'Altroy, Kathleen D. Morrison, and Carla M. Sinopoli, pp. 1-9. Cambridge University Press, Cambridge.

Morrison, Kathleen D., and Carla M. Sinopoli

1992 The Archaeology of Imperial Control: The Vijayanagara Capital. *American Anthropologist* 97:1-14.

Murra, John V.

1972 El control vertical de un máximo de pisos ecológicos en la economía de las sociedades andinas. In *Visita de la Provincia de León de Huánuco* 1562 (2), edited by Iñígo Ortiz de Zuñiga, pp. 428-476. Universidad Nacional Hermilio Valdizán.

Nash, Donna

2002 *The Archaeology of Space: Places of Power in the Wari Empire.* PhD Dissertation. Department of Anthropology, University of Florida, Florida.

Oakland, Amy

2000 A Wari Tapestry Textile in a Tiwanaku Tomb from the Osmore Valley, Moquegua, Peru. *Textile Society of America Symposium Proceedings* 719.

Ochatoma Paravicino, Jose

- 1992 Acerca del formative en Ayacucho. In *Estudios de Arqueología Peruana*, edited by Duccio Bonavia, pp. 193-213. Lima, Peru.
- 1998 El formative en Ayacucho: balances y perspectivas. *Conchopata. Revista de Arqueología* 1:11-46.

Ochatoma Paravicino, Jose, Martha Cabrera Romero, and Carlos Mancilla Rojas.

- 2012 El area sagrada de Wari: investigaciones arqueologicas en Vegachayuq Moqo. Informe to the Ministerio de Cultura, Lima.
- 2015 El area sagrada de Wari: investigaciones arqueologicas en Vegachayuq Moqo. Universidad de San Cristobal de Huamanga, Ayacucho, Peru.

Odell, George H.

- 1989 Experiences in Lithic Reduction. In *Experiments in Lithic Technology*, edited by Daniel S. Amick, and Raymond P. Maudlin, pp. 163-198. BAR International Series 528, Oxford.
- 2004 Lithic Analysis. Springer, New York.

Ogburn, Dennis E.

2011 Obsidian in Southern Ecuador: The Carboncillo Source. *American Antiquity* 22(1):97-120.

Parker, Bradley

2003 Archaeological Manifestations of Empire: Assyria's Imprint on Southeastern Anatolia. *American Journal of Archaeology* 107(4):525-557.

Peelo, Sarah

2011 Pottery-Making in Spanish California: Creating Multi-Scalar Social Identity through Daily Practice. *American Antiquity* 76(4):642-666.

Phillip, S. Colby and Robert J. Speakman

2009 Initial Source Evaluation of Archaeological Obsidian from the Kuril Islands of the Russian Far East using Portable XRF. *Journal of Archaeological Science* 36:1256-1263.

Polanyi, K.

1968 Primitive, Archaic, and Modern Economies: Essays of Karl Polanyi. Doubleday, New York.

Pozzi-Escot, D.

1985 Conchopata: un poblado de especialistas durante el Horizonte Medio. *Bulletin de L'Institut Francais d'Etudes Andines* 14(3/4):115-129.

Proulx, Donald A.

2001 Ritual Use of Trophy Heads in Ancient Nasca Society. In *Ritual Sacrifice in Ancient Peru*, edited by Elizabeth Benson and Anita Cook, pp. 119-136. University of Texas Press, Texas.

Quilter, Jeffrey

1991 Late Preceramic Peru. Journal of World Prehistory 5(4):387-438.

Rapoport, Amos

 1993 On the Nature of Capitals and Their Physical Expression. In *Capital Cities: International Perspectives*, edited by J. Taylor, G. Lengelle, and C. Andrew, pp. 31-67. Carleton University Press, Ottawa.

Rehl, Jane W.

2000 The Order of Things in Ancient Peru, Visual Metaphors in Wari-Associated DWW Textiles. *Textile Society of America Symposium Proceedings* 719.

Rehren, Thilo, Eckhard Pappert, and Alex Von Bohlen

2012 The Chemical Composition of Early Russian Platinum Coins. *The Numismatic Chronicle* 172:227-286.

Rowe, Ann P.

2013 Tie-Dyed Tunics. In *Wari: Lords of the Ancient Andes*, edited by Susan E. Bergh, pp. 193-206. Thames & Hudson, Ohio.

Rowe, John, Donald Collier, and Gordon Willey

1950 Reconnaissance Notes on the Site of Huari Near Ayacucho, Peru. *American Antiquity* 16(2):120-137.

Russell, Glenn

1988 The Impact of Inka Polity onf the Domestic Economy of the Wanka, Peru: Stone tool production and use. PhD Dissertation, Department of Anthropology. University of California Los Angeles, California.

Sahlins, Marshall

- 1994 Cosmologies of Capitalism: The Trans-Pacific Sector of "The World System". In *Culture/Power/History: A Reader in Contemporary Social Theory*, edited by Nicholas B. Dirks, Geoff Eley, and Sherry B. Ortner, pp. 412-455. Princeton University Press, New Jersey.
- 1958 Social Stratification in Polynesia. American Ethnological Society Monography 29.
- 1972 Stone Age Economics. Aldine-Atherton, Chicago.

Sanders, WT, JR Parson, and RS Santley

1979 *The Basin of Mexico: Ecological Processes in the Evolution of a Civilization.* Academic, New York.

Sandweiss, Daniel H., Heather McInnis, Richard L. Burger, Asuncion Cano, Bernardino Ojeda, Rolando Paredes, Maria del Carmen Sandweiss, and Michael D. Glascock

1998 Quebrada Jaguay: Early South American Maritime Adaptation. *Science* 281:1830 1832.

Saunders, Nicholas J.

2001 A Dark Light: Reflections on Obsidian in Mesoamerica. *World Archaeology* 33(2): 220-236.

Schortman, Edward, and Patricia Urban

2004 Modeling the Roles of Craft Production in Ancient Political Economies. *Journal* of Archaeological Research 12(2):185-226.

Schortman, Edward, Patricia Urban, and Marne Ausec

2001 Politics with Style: Identity Formation in Prehispanic Southeastern Mesoamerica. *American Anthropologist* 103:312-330.

Schreiber, Katharina

- 1978 Planned Architecture of Middle Horizon Peru: Implications for Social and Political Organization. *PhD Dissertation*. Department of Anthropology, SUNY Binghamton, New York.
 - 1987 Conquest and Consolidation: A Comparison of the Wari and Inka Occupations of a Highland Peruvian Valley. *American Antiquity* 52(2):266-284.
 - 1992 *Wari Imperialism in Middle Horizon Peru*. Anthropology Papers Museum of Anthropology 87. University of Michigan, Ann Arbor, Michigan.
 - 1999 Regional Approaches to the Study of Prehistoric Empires: Examples from Ayacucho and Nasca, Peru. In Settlement Pattern Studies in the Americas: Fifty Years since Viru, edited by Brian R. Billman and Gary M. Feinman, pp. 160-171. Smithsonian Institution Press, Washington, DC.

- 2001 The Wari Empire of Middle Horizon Peru: The Epistemological Challenge of Documenting an Empire Without Documentary Evidence. In *Empires: Perspectives From Archaeology and History*, edited by Susan E. Alcock, Terrence N. D'Altroy, Kathleen D. Morrison, and Carla M. Sinopoli, pp. 70-92. Cambridge University Press, Cambridge.
- 2005 Imperial Agendas and Local Agency: Wari Colonial Strategies. In *The Archaeology of Colonial Encounters*, edited by Gil J. Stein, pp. 237-262. SAR Press, New Mexico.
- 2013 The Rise of an Empire. In *Wari: Lords of the Ancient Andes*, edited by Susan E. Bergh, pp. 31-46. Thames & Hudson, Ohio.

Schreiber, Katharina and Josué Lancho Rojas

2005 Irrigation and Society in the Peruvian Desert: The Puquios of Nasca. Lexington Books, Oxford.

Schwartz, Glen M., and John J. Nichols (editors)

2010 *After Collapse: The Regeneration of Complex Societies.* University of Arizona Press, Arizona.

Service, Elman

- 1962 *Primitive Social Organization: An Evolutionary Perspective.* Random House, New York.
- 1972 Origins of the State and Civilization. Norton, New York.

Shackley, Steven M.

- 2011 An Introduction to X-Ray Fluorescence (XRF) Analysis in Archaeology. In *X-ray Fluorescence Spectrometry (XRF) in Geoarchaeology*, edited by Steven Shackley, pp. 7-44. Springer, New York.
- 2005 *Obsidian: Geology and Archaeology in the North American Southwest.* The University of Arizona Press, Arizona.
- 1991 Tank Mountains Obsidian: A Newly Discovered Archaeological Obsidian Source in East-Central Yuma County, Arizona. *Kiva* 57(1):17-25.

Shackley, Steven M. and D. Tucker

2001 Limited Procurement of Sand Tank Obsidian, Southernwestern Arizona. *Kiva* 66(3):345-374.

Silliman, Stephen W.

- 2005 Culture Contact or Colonialism? Challenges in the Archaeology of Native North America. *American Antiquity* 70(1):55-74.
- 2009 Change and Continuity, Practice and Memory: Native American Persistence in Colonial New England. *American Antiquity* 74(2):211-230.

Silverman, Helaine

1994 The Archaeological Identification of an Ancient Peruvian Pilgrimage Center. *World Archaeology 26(1)*:1-18.

Sinopoli, Carla M.

1994 The Archaeology of Empires. Annual Review of Anthropology 23:159-180.

- 1994 Monumentality and Mobility in Mughal Capitals. *Asian Perspectives* 33(2):293-308.
- 1995 The Archaeology of Empires: A View from South Asia. *Bulletin of the American Schools of Oriental Research* 299/300:3-11.

Skidmore, Maeve

2014 Wari Power, Wari People: Building Critical Perspectives on State Expansion at Hatun Catuyoc, Huaro, Peru. *PhD Dissertation*. Department of Anthropology, Southern Methodist University, Texas.

Smelser, Neil

1959 A Comparative View of Exchange Systems. *Economic Development* 7:173-182.

Smith, Michael

- 2001 The Aztec Empire and the Mesoamerican World System. In *Empires: Perspectives from Archaeology and History*, edited by Susan E. Alcock, Terrence N. D'Altroy, Kathleen D. Morrison, and Carla M. Sinopoli, pp. 128-154. Cambridge University Press: Cambridge.
- 2004 The Archaeology of Ancient State Economies. *Annual Review of Anthropology* 33:73-102.

Smith, Michael E., and Frances F. Berdan

1992 Archaeology and the Aztec Empire. *World Archaeology* 23:352-367.

Smith, Michael E., Adrian L. Burke, Timothy S. Hare, and Michael D. Glascock

2007 Sources of Imported Obsidian at Postclassic Sites in the Yautepec Valley, Morelos: a Characterization Study Using XRF and INAA. *Latin American Antiquity* 18(4):429-450. Smith, M.L.

1999 The Role of Ordinary goods in Premodern Exchange. *Journal of Archaeological Method and Theory* 6(2):109-135.

Smith, Stuart Tyson

- 2003 Wretched Kush: Ethnic Identities and Boundaries in Egypt's Nubian Empire. Routledge, London.
- 1998 Nubia and Egypt: Interaction, Acculturation and Secondary State Formation from the Third to First Millenium B.C." In *Studies in Culture Contact: Interaction, Culture Change and Archaeology*, edited by James Cusick, pp. 256-287. Center for Archaeological Investigations 25. Southern Illinois University, Illinois.

Stanish, Charles

- 1992 Ancient Andean Political Economy. University of Texas Press, Texas.
- 1997 Nonmarket Imperialism in the Prehispanic Andes: The Inka Occupation of the Titicaca Basin. *Latin American Antiquity* 8(3):195-216.

Stein, Gil J.

- 1992 Archaeological Survey at Sürük Mevkii: A Ceramic Neolithic in the Euphrates River Valley, Southeastern Turkey. *Anatolica*:19-92.
- 1998 World System Theory and Alternative Modes of Interaction in the Archaeology of Culture Contact. In *Studies in Culture Contact: Interaction, Culture Change, and Archaeology*, edited by James G. Cusick, pp. 220-247. CAI Press: Illinois.
- 2002 Passive Periphery to Active Agents: Emerging Perspectives in the Archaeology of Interregional Interaction. *American Anthropologist* 104(3):903-916.

Stone, Jane

1983 *The Socio-Economic Implications of Lithic Evidence from Huari, Peru.* PhD Dissertation. Department of Anthropology, SUNY Binghamton, New York.

Stone-Miller, Rebecca, and Gordon F. McEwan

1991 The Representation of the Wari State in Stone and Thread: a Comparison of Architecture and Tapestry Tunics. *Anthropology and Aesthetics* 20:53-80.

Tainter, Joseph

1988 *The Collapse of Complex Societies.* Cambridge University Press, Cambridge.

Tedman, Samantha J.

2012 Non-destructive PXRF Characterization and Authentication of Museum Ceramics. *Australian Archaeology* 74:117.

Tello, Julio C.

2009 Las ruinas de Huari en el Peru, August 27, 1931, Lima. In *The Life and Writings of Julio C. Tello*, edited by Richard L. Burger, pp. 275-278. University of Iowa Press, Iowa.

Thomas, Nicholas

1991 *Entangled Objects: Exchange, Material Culture and Colonialism in the Pacific.* Harvard University Press, Massachusetts.

Tripcevich, Nicholas

- 2007 *Quarries, Caravans and Routes to Complexity: Prehispanic Obsidian in the South Central Andes.* PhD dissertation. Department of Anthropology, University of California Santa Barbara, California.
- 2010 Exotic Goods and Sociopolitical Change in the South-Central Andes. In *Trade* and Exchange: Archaeological Studies from History and Prehistory, edited by C. Dillian, and C. White, pp. 59-73. Springer, New York.

Tripcevich, Nicholas, and Daniel A. Contreras

- 2011 Quarrying Evidence at the Quispisisa Obsidian Source, Ayacucho, Peru. *Latin American Antiquity* 22(1):121-136.
- 2013 Archaeological Approaches to Obsidian Quarries: Investigations at the Quispisisa source. In *Mining and Quarrying in the Ancient Andes*, edited by Nicholas Tripcevich, and Kevin J. Vaughn, pp. 23-44. Springer, New York.

Tripcevich, Nicholas and Alex Mackay

2011 Procurement at the Chivay Obsidian Source, Arequipa, Peru. *World Archaeology* 43(2):271-297.

Tung, Tiffiny A.

2012 Violence, Ritual and the Wari Empire: A Social Bioarchaeology of Imperialism in the Ancient Andes. University of Florida Press, Florida.

van der Leeuw, Sander E.

1977 Towards a Study of the Economics of Pottery Making. In *Ex Horreo*, edited by B.L. Beek, R.W. Brant and W. Gruenman van Watteringe, pp. 68-76. University of Amsterdam, Amsterdam.

VanBuren, Mary, and Ana Maria Presta

2010 The Organization of Inka Silver Production in Porco, Bolivia. In *Distant Provinces in the Inka Empire: Toward a Deeper Understanding of Inka Imperialism*, edited by Michael A. Malpass and Sonia Alconini, pp. 173-192. University of Iowa Press, Iowa.

Vaughn, Kevin

2006 Craft Production, Exchange and Political Power in the Pre-Incaic Andes. *Journal* of Archaeological Research 14(4):313-344.

 Vaughn, Kevin, Jelmer Eerkens, Carl Lipo, Sachiko Sakai, and Katharina Schreiber
 2014 It's About Time? Testing the Dawson Seriation Using Luminescence Dating, Southern Nasca Region, Peru. *Latin American Antiquity* 25(4):449-461.

Vaughn, Kevin, and Michael D. Glascock

2005 Exchange of Quispisisa Obsidian in Nasca: New Evidence from Marcaya. *Andean Past* 7:93-110.

Vining, Benjamin R.

2005 *Social Pluralism and Lithic Economy at Cerro Baul, Peru.* BAR International Series 1461, Oxford.

Wachtel, Nathan

1977 The Vision of the Vanquished. Harvested Press, Sussex.

Wallerstein, Immanuel M.

1974 *The Modern World-System: Capitalist Agriculture and the Origins of the European World-Economy in the 16th Century.* Academic Press, New York.

Walker, Jesse

2012 PXRF and Earthenware Ceramics: An Investigation into the Use of PXRF Measurements of Elements to Categorize Anatolian Iron Age ceramics. *Australian Archaeology* 74:117.

Wells, Christian

2006 Recent Trends in Theorizing Prehispanic Mesoamerican Economies. *Journal of Archaeological Research* 14(4):265-312.

Wheeler, Jane C., A.J.F. Russel, and Hilary Redden

1995 Llamas and Alpacas: Pre-Conquest Breeds and Post-Conquest Hybrids. *Journal of Archaeological Science* 22(6):833-840.

Williams, Patrick Ryan

2001 Cerro Baul: A Wari Center on the Tiwanaku Frontier. *Latin American Antiquity* 12(1):67-83.

Williams, Patrick Ryan, Laure Dussubieux, and Donna J. Nash

2012 Provenance of Peruvian Wari Obsidian: Comparing INAA, LA-ICP-MS, and Portable XRF. In *Obsidian and Ancient Manufactured Glasses*, edited by Ioannis Liritzis, and Christopher M. Stevenson. University of New Mexico Press, New Mexico. Winterhoff, E. Quent, Joan A. Wozniak, William S. Ayres, and Erik Lash

2007 Intra-island Source Variability on Tutuila, American Samoa and Prehistoric Basalt Adze Exchange in Western Polynesia-Island Melanesia. *Oceania* 42(2):65-71.

Wolf, Barbara

2012 Potters, Power and Prestige: Early Intermediate Period and Middle Horizon Ceramic Production at Conchopata, Ayacucho, Peru (AD 400-1000). *PhD Dissertation*. Department of Anthropology, SUNY Binghamton, New York.

Woolf, Gregory

1992 Imperialism, Empire, and the Integration of the Roman Economy. *World Archaeology* 23:283-293.

Wurtzburg, Susan

1991 Applied X-ray Fluorescence: Sourcing Chert Artifacts from Sayil, Yucatan. *Mexicon* 13(5):92-95.

Yoffee, Norman

1988 Orienting Collapse. In *The Collapse of Ancient States and Civilizations*, edited by Norman Yoffee and George L. Cowgill, pp. 1-19. University of Arizona Press, Arizona.

0011a	0010c	0010b	0010a	0009c	q6000	0009a	0008c	0008b	0008a	0007b	0007a	0006c	0006b	0006a	0005c	0005b	0005a	0004c	0004b	0004a	0003c	0003b	0003a	0002c	0002b	0002a	0001c	0001b	0001a	L
376.1879422	361.5352132	315.2258688	298.7093726	368.6572745	354.6012568	370.17005	371.0568385	382.4048341	332.1927684	341.7488654	335.4396994	431.9911205	352.8899635	315.5049635	536.6513454	549.5612938	568.0628698	380.3938599	342.8745095	404.3885995	410.6988791	348.9459745	422.0653279	348.0475031	322.9436304	335.8670883	293.8679768	317.3337554	379.6297027	MnKa1
6478.032454	5850.805765	5599.48109	5312.637817	5523.756892	5741.961534	5738.770461	5969.737696	5756.816938	5851.737108	6388.04615	6886.294434	6459.341464	5891.080663	5917.168679	5811.056869	5776.289221	5733.444013	5891.557242	5831.795749	6573.846659	7115.917206	5476.911046	7229.188264	5511.360209	6338.997911	5982.585732	5590.563353	5192.113297	5623.851931	FeKa1
32.57779503	30.83822731	32.25081767	28.6710123	28.04713615	27.86726878	23.37722638	28.19164563	22.95923247	33.37776306	29.93445944	26.17513295	46.19823502	31.0847049	29.33021374	53.41742431	61.0937121	54.72780379	25.88435133	27.66932567	30.07236536	37.649413	26.71630541	34.22823216	27.95887522	26.9763078	28.59633815	25.89851719	25.14467309	23.48923688	ZnKa1
24.07186151	21.78804813	18.73704019	17.29087382	17.26120495	19.17951334	16.73547205	19.99758176	17.11485594	19.79508172	21.73942376	22.48714516	23.82019213	21.01922291	22.07667357	25.6586374	26.29744531	24.98467251	21.46068774	19.63541752	25.35320554	24.39680037	19.37143922	26.74133037	18.57018217	22.67498436	22.99908763	17.80210289	16.804935	16.54546466	GaKa1
20.41123593	19.65136031	16.37090352	17.19760643	19.79362265	18.4441366	18.41009664	19.36554465	17.4245607	16.6627386	21.02666459	20.25014221	19.57350897	19.98178574	18.32027494	14.53014787	14.2362558	13.10498905	19.72523303	18.51439642	20.09023808	21.92796817	16.81156895	18.7712457	16.72301361	18.93874603	19.41949338	18.14137172	12.48326635	20.28361988	ThKa1
193.3302395	177.842979	165.1339799	160.8084596	170.094612	173.3526606	175.036039	176.2561137	169.9178992	175.3593474	185.8692625	192.6454152	190.9696831	180.9613134	182.623058	124.0938248	125.4719716	118.8345864	172.3074016	173.400265	194.5555941	191.8364015	163.0642309	205.6564267	168.7693119	191.087227	179.1959903	169.0069727	150.7818451	172.6141529	RbKa1
131.0544081	119.8497309	115.726247	109.3649255	117.8393759	120.5644528	122.0597559	115.9653854	120.3077067	123.1725847	126.6701357	133.8474619	132.1646796	122.7579958	127.3701288	52.57271135	52.66070403	51.76298234	121.5654859	116.5316449	132.3726457	128.2110252	111.1984865	141.7290761	113.4634892	128.9008386	122.456908	113.4186992	102.540852	121.5985703	SrKa1
13.50623504	12.11170275	14.07138513	13.23256667	14.14256501	12.96601811	13.22981364	12.59056872	14.30783966	13.17846421	13.71170703	13.96725263	14.614924	13.56039901	14.2154086	13.87652734	13.1424206	13.19523473	14.04254193	11.82341114	13.32504927	13.99251578	15.05885628	14.20347286	11.2319762	13.08527175	15.52224697	13.59661587	13.29953584	12.84613031	ҮКа1
106.3156318	99.30123502	96.47090318	91.63025993	96.96168672	101.4472567	99.08796631	98.1166543	97.65306041	100.3972089	103.3045141	108.489755	106.2001279	104.8352911	102.2467512	96.01225293	99.37014681	97.49082695	98.79171055	101.5242438	104.9642869	107.7978207	96.95628853	111.0950573	97.287172	105.7218348	101.6992158	99.44348587	92.17972161	98.65995331	ZrKa1
13.45108411	11.06608898	10.67240627	9.718737511	10.87416705	11.06753441	11.18567616	11.80241809	10.98125308	11.63962479	11.39343161	12.0385377	12.71531192	12.30675863	12.45125878	30.1884361	30.70045213	29.47451473	11.39329254	12.01896191	13.01420592	11.5894868	10.29088858	14.04401173	10.84211518	11.43543981	11.79384406	10.60526151	10.23572091	11.69355845	NbKa1

PXRF DATA: TRACE ELEMENT CONCENTRATIONS (PPM)

APPENDIX I

75 101.13122	14.07708375	122.1515829	174.5483669	17.32250213	20.42328603	21.12447393	5844.06995	343.5539668	0025c
	15.93146339	120.4018489	170.5901391	17.1520539	21.7886232	27.08698604	5797.270019	332.7191378	0025b
-+-	13.88065844	117.3243781	172.6023628	18.07923449	17.46095982	29.7892823	5971.716465	334.1735845	0025a
101	15.27973858	120.5255219	167.7053058	17.09185708	18.59402074	30.54972709	5662.147429	342.7011001	0024c
1	14.70640681	124.5812668	181.0807367	19.85657345	18.00643332	29.93863934	5945.61952	356.4713338	0024b
12	11.75264401	96.39026891	142.8540555	15.76992552	14.05305148	23.99464607	4775.929209	221.3972351	0024a
to	13.06028943	117.5153418	170.6661626	16.92071391	17.14092136	27.55834047	5580.612268	336.3434151	0023c
19	13.36923219	115.0012765	167.4955141	17.68408817	18.04127417	30.75518675	5769.536569	337.7712067	0023b
25	13.78092625	117.7650196	169.462805	17.26004157	20.23266874	22.99239146	5662.921084	370.4060698	0023a
25	14.91359325	119.4682093	173.5907012	17.81452364	18.36995494	25.24260309	5919.04752	359.4668287	0022c
ű	12.9896863	112.9118333	167.3364372	18.17340391	19.03832473	21.99000262	5475.811372	311.9820093	00226
12	13.28103442	121.5951714	178.7834255	18.27556977	20.88184965	26.80262799	6097.451189	334.7066147	0022a
24	15.26507724	125.3439293	178.6515684	18.31477951	18.66241468	28.55925401	6284.138582	427.2791732	0021c
95 96.91351722	14.37513795	115.2030402	168.5211721	17.59873223	20.14284636	27.39697547	5890.272283	316.9430436	0021b
33	14.24017503	132.735506	190.4654555	20.89404438	22.19045132	38.1770955	6779.283923	366.9031156	0021a
57	15.0263086	124.3780392	178.8794288	18.11852958	21.25684252	40.07557054	6245.333581	345.0139279	0020c
35	15.10572785	124.4749574	179.6312535	19.06656089	24.03844367	32.91186306	6173.292012	415.487519	00206
55 105.2121967	13.38420455	125.8844791	185.3088821	20.43610433	22.93325013	29.05418463	6051.904078	363.203924	0020a
27	14.44305727	119.8772874	174.0642338	18.81634857	22.82816125	29.15236544	5886.928833	334.6704264	0019c
92 103.9628719	14.78681092	127.5089039	189.4663344	19.85589766	22.91016241	25.69241236	6267.027319	358.8050237	0019b
71 109.2992319	14.67062371	134.1237366	198.2763046	20.92326127	25.55792254	27.58252382	6664.176162	377.9411917	0019a
16 102.2568218	15.76536916	123.7537544	179.1283779	18.85856152	22.72727519	34.49610784	6144.929881	341.4719843	0018c
11 108.1743152	16.5413711	134.3574509	197.5183426	18.20741013	23.56775986	43.24968918	6889.95559	404.8866783	0018b
1	12.98928211	124.4992206	188.9269392	18.61217665	19.45333287	30.52890999	6428.205838	361.2361003	0018a
96	13.83657396	117.9548668	168.5171401	17.80889167	18.96473768	33.11235931	6355.276273	361.1583221	0016c
79 98.73494803	12.55751179	120.5157554	176.038178	18.94408686	20.81034041	31.95838384	5935.09647	344.1290037	0016b
84 101.3226695	12.4721984	123.1181846	181.5608517	19.11505963	19.45530066	22.83498556	6025.724418	332.2034002	0016a
33 101.3153947	12.96470733	119.7123824	181.2168929	18.55242438	23.07160403	34.1655883	6173.08867	358.816296	0015c
32	13.38777892	123.5790601	177.0274912	17.11809812	21.67966385	27.94390098	6177.284245	363.3600588	0015b
14	13.44268644	121.5812856	178.1353379	18.99976417	20.01742548	29.87843285	5712.207362	367.6452006	0015a
17 108.0334987	14.30199917	131.4185822	194.1409528	20.43994452	24.18946325	30.24688398	6491.061554	373.8172495	0011b

113.	113.5144828	
156.5526041		107.6902723
162.9806854	2.9806854 111.7979842	
169.6150364	39.6150364 118.1304978	
185.7367276	35.7367276 133.1803317	
189.0946446	39.0946446 130.5905835	
191.3274669	1.3274669 128.0608399	
176.2126882	5.2126882 118.905306	
170.2571982	0.2571982 117.6812447	
174.4061934	1.4061934 121.2129704	**
167.1191916	7.1191916 115.2808722	
176.8015673	6.8015673 119.928822	
186.4327484	6.4327484 125.203268	
188.1807542	8.1807542 129.8538259	
177.7675736	7.7675736 121.1737372	
189.7166166	9.7166166 130.3166527	
178.2319569	8.2319569 121.5331253	
184.2764337	4.2764337 128.099416	
183.6926924	3.6926924 123.8287153	
177.7628584	.7628584 121.5416235	
183.090673	3.090673 125.0641413	
180.0806409	0.0806409 120.7369613	
187.7243863	7.7243863 128.4138697	ω
194.9392382	4.9392382 131.4184876	
189.5521719	9.5521719 126.4801912	
172.9328494	2.9328494 116.3253753	
168.4128941	8.4128941 117.5243952	
181.4087289	1.4087289 124.7293403	
152.7407337	2.7407337 104.5826143	
182.3716769	2.3716769 122.4698785	
175.4635995	5.4635995 123.9134966	

168.4370022 118.2522677 14.0307953 159.5696515 111.4183184 12.02406256	168.4370022 118.2522677 159.5696515 111.4183184	168.4370022 159.5696515			18.78608817 16.45119587	18.54793778 18.40214585	28.7088234 34.59338567	5567.128906 5839.690017	334.4807206 387.7829369	0052a 0052b
10.4607358 9.98963235	98.27343027 90.28135824	13.90560575 12.83629861	118.3531464 104.3931079	172.2323696 156.2366612	19.21253053 17.3901774	18.98619914 16.70909682	31.63936143 24.60214214	5689.506533 5181.961204	328.7471057 296.9574497	0051b 0051c
11.0666445	94.25829483	13.25079268	112.110631	162.9069779	14.52137823	16.88653352	27.14000181	5506.634074	286.9492443	0051a
10.90847303	98.92709255	14.82672309	122.1191191	175.4342216	17.2815119	20.78757828	26.38548338	5984.165379	366.5529276	0050c
10.22396988	99.68534788	14.69623014	117.3822992	167.9283881	16.51563689	20.69681195	25.68164567	5663.318688	359.7724791	0050b
11.28251431	100.7249509	14.29437707	119.6017881	172.8924429	17.80398578	22.13185325	25.73044392	5994.372643	310.6311859	0050a
12.22893404	99.64666673	13.67924796	120.5912535	176.1516381	15.34565208	20.9441586	31.08201342	5991.178812	324.445507	0048c
11.74423113	107.0348149	13.66365632	129.1615432	188.1735899	17.74554098	25.10430357	35.2827746	6453.340065	383.8092768	0048b
9.722292377	97.73987482	12.76201116	113.4257744	167.0679712	14.93369712	18.89119508	23.97199155	5588.233428	303.3002485	0048a
11.01723192	100.451459	11.27766916	120.6231521	175.4250454	17.04139091	20.05108158	33.41592091	5974.268534	364.366721	0047c
11.43295145	106.0511921	13.77095723	128.0583618	184.9020592	20.0576717	22.80007118	33.35583851	6306.532606	344.1318962	0047b
12.94446865	105.0263615	14.43001445	128.3996547	187.1800592	20.16249216	21.17902875	31.49933949	6442.874378	317.8132918	0047a
12.26425523	104.9760558	14.38784708	126.9097312	187.1541696	18.76445122	22.02345661	38.06284395	6524.656477	387.640614	0046c
12.91187264	108.9586383	15.88575591	131.3228247	194.4930452	19.11118641	25.71309419	32.49869387	6554.775951	316.8570531	0046b
11.791258	105.5889553	15.3542679	134.9806415	196.2556481	20.39742348	23.03872633	36.09620687	6652.82068	411.2627545	0046a
12.85896278	106.39328	16.00562844	133.1111207	188.3197875	21.65295915	25.33537789	53.08993214	6659.129795	421.7390431	0045c
13.56553402	107.6993541	16.05256224	133.7874067	188.9848624	19.03700954	24.14079352	46.07137937	6532.55872	367.5632587	0045b
11.33657184	105.4182652	14.2472291	130.8209995	189.1548641	19.79753689	24.57416035	52.11167456	6665.683212	390.9636017	0045a
12.91487805	109.3384082	15.88552998	134.0693878	193.1862372	17.64716764	25.0130485	29.15420829	6518.935177	393.5483044	0044c
12.8624373	107.8917542	14.60910761	136.113084	200.1583976	19.93003439	24.41992365	31.46294723	6419.716567	361.081352	0044b
13.10442044	109.6214693	15.73592065	135.0630275	198.1217135	20.18432723	26.90425476	34.9772267	6653.141362	379.3193131	0044a
10.92925476	103.4370126	13.78490895	122.3743822	180.4130716	17.59512393	19.95875157	26.306346	6171.265829	337.9923659	0043c
10.85786312	101.0656154	14.91656409	124.716447	181.6698152	19.6871806	20.57458242	36.88817104	6121.596233	363.7903808	0043b
11.10508322	102.5404608	13.79765222	120.3180616	174.7281367	20.41876245	21.01095954	33.25281643	5905.658163	342.0360385	0043a
12.48612773	96.59512881	13.19722954	68.75921992	133.5155805	12.19595496	18.58888174	31.71295971	5373.432576	394.2320178	0042c
13.74912271	106.8738228	14.31484136	79.03975591	146.9186004	14.28857608	19.96138063	46.31186075	6064.00224	508.4320204	0042b
12.16037985	112.9136899	14.78132387	79.26609919	154.6927456	13.89067486	25.13153806	43.7907122	6476.365824	500.8101528	0042a
10.55692614	97.87340876	13.32105255	111.1283624	162.7784258	16.17967928	18.79834195	29.62589177	5477.523203	311.3928203	0041c
11.39148052	97.54031562	13.83537415	117.4617599	174.9641996	16.96443399	19.81908276	29.45619222	5702.131519	349.8910742	0041b

			124.7328551 123.0788038 125.3422592 124.3428164 136.5226728 135.4542053 130.1228219 132.0712742 130.1228219 132.0712742 132.0712742 132.0712742 110.2790869 1114.4818184 122.3209134 122.3209134 128.4552377 128.4552377 128.4552377
	486155 521125 028525 680441 071187 071187 477621 477621 477621 489207 477621 489207 076794 489207 0765318 609407 5565477	182.70722 182.70722 186.708 196.39472 196.7205 197.06166 197.06166 197.06166 197.06166 197.06166 197.0897 170.21972 180.67872 180.67872 180.80662	
Γ	486155 521125 028525 680441 071187 477621 477621 477621 489207 489207 489207 489207 489207 489207 6056318	182.70722 178.74437 186.708 196.39472 196.39472 196.7206 197.06166 197.06166 195.52505 195.52505 197.34475 167.34475 167.34475 167.50897 170.21972 180.67872 180.67872 183.864(
21 42760946 18 7256547	486155 521125 028525 680441 071187 071187 477621 477621 489207 489207 489207 489207 609407	182.70722 182.70722 186.708 196.39472 196.39472 196.77205 197.06166 197.06166 197.50807 155.13074 167.50897 167.50897 167.50897 170.21972 170.21972	
19.83718152 18.71609407	486155 521125 028525 680441 071187 071187 477621 477621 477621 477621 477621 4776311	182.70122 182.70122 186.706 196.39472 196.39472 196.7205 197.06166 197.06166 195.52505 195.13074 167.34475 167.34475 167.34475 180.67872	
22.28992995 18.84056318	486155 521125 028525 680441 071187 071187 477621 477621 530911 530911		180.4175647 182.7072259 178.7443721 186.70883 196.7947243 196.7720903 197.0616623 195.5250965 195.54307146 167.3447983 167.5089722 170.2197207
20.76965896 17.70076794	486155 521125 028525 680441 680441 071187 071187 071187 477621 477621		180.4175647 182.7072259 178.7443721 186.3947243 196.3947243 196.7720903 197.0616623 195.5250965 195.5250965 155.1307146 167.3047983 167.5089722
19.32627945 19.29489207	486155 521125 028525 680441 680441 071187 071187 477621		180.4175647 182.7072259 178.7443721 186.70683 196.3847243 196.7720903 197.0616623 197.0616623 195.5250965 155.1307146 167.3447983
16.41514349 18.58530911	486155 521125 028525 680441 071187 071187		180.4175647 182.7072259 178.7443721 186.70883 196.720903 196.7720903 197.0616623 195.5250965 155.1307146
17.83925906 16.96477621	48615 52112 02852 68044		180.4175647 182.7072259 178.7443721 186.70883 196.3947243 196.7720903 195.5250965
21.98628369 21.4071187	48615 52112 02852 68044		180.4175647 182.7072259 178.7443721 186.70883 196.3947243 196.7720903 197.0616623
22.95676752 19.62680441	48615 52112 02852		180.4175647 182.7072259 178.7443721 186.3947243 196.3947243 196.7720903
25.06153837 20.36028525	48615		180.4175647 182.7072259 178.7443721 186.70883 196.3947243
25.73819182 21.47521125	48615		180.4175647 182.7072259 178.7443721 186.70883
23.73296682 18.66486155			180.4175647 182.7072259 178.7443721
19.25086745 18.35909918	90991		180.4175647 182.7072259
22.74958525 19.02283162	28316		180.4175647
21.62944849 17.44923197	92319		
18.10978385 17.16997291	99729	1 160.6819356	
19.99031307 16.65364706	364706		171.6533923 118.0922547
17.41170523 18.03734686	734686		159.0403057 113.7320656
17.04140874 14.17464554	464554		4 162.913014 109.6126226
15.83668964 15.79731778	731778		3 150.8035724 102.1677024
17.48672786 16.96811074	81107-		4 156.319654 108.6490334
18.74643203 18.18190431	19043		1 174.7451018 118.9523445
17.53953181 17.70839357	839357		7 163.5391796 110.4326005
17.07888912 18.27177579	177579		9 167.1254371 116.6732934
19.8045648 21.84101238	101238		3 180.7567546 122.7216158
20.18296857 21.33695902	695902		2 184.3034676 126.7865353
	791895		172.2097749 120.6162226
20.29981532 20.09791895	17.097096		

120.3684598 13.5903328
178.8607352 121.9357951
171.4230816 118.8316774
176.8261119 120.6539738
161.9068336 108.8923699
184.6139198 124.820527
172.9586514 117.185038
171.1485906 117.1559476
177.4191187 119.2093803
188.3109136 130.0181034
204.2773245 134.5039767
196.8366177 131.0814262
194.0196426 134.7837772
180.9278827 124.1989606
181.6950128 123.9502876
199,4077405 140.7931997
190.9268942 128.6267117
181.0333043 125.8639946
174.082162 120.0116627
184.4540353 126.4487433
172.7108516 120.1833121
166.8885552 116.0814129
196.628448 131.7647335
178.360746 118.9299239
170.9775673 118.3122507
173.160323 118.7352102
157.2819109 116.8772054
174.3811083 116.740242
195.4246072 142.3541038
201.1780661 146.504162
171.4567114 115.372613

	13.87133997 17.2624333		26.51555072 15.64553055	55.37424787 25.68249384	7276.68746 5239.062047	430.3220301 583.6687155 317.2252554	0087c 0089a
79.88556409 82 78074516	135.5376058	12.44916247	26.1724193 22 20682682	33.76571967 57 08037997	6554.948355 6605.062019	442.5311575	0087a
123.768284	179.3579714	19.11869405	20.85958187	28.05017143	5998.656924	356.6651199	0086c
126.4587303	182.0289792	19.59280171	21.4494688	31.31490923	6224.041219	378.2352311	0086b
120.9061826	177.825361	15.91759376	20.73915447	27.9669167	5927.957866	348.3605959	0086a
117.8960303	177.544589	18.62903667	16.82152	32.1912724	5958.435396	363.6249712	0085c
114.3895753	167.8993817	18.91799169	19.01471479	26.87174051	5702.065535	342.0371048	0085b
116.1865767	170.512598	18.11451049	18.31579615	26.29087134	5682.756077	354.4316744	0085a
126.6003101	184.8371472	18.7286951	20.64955135	31.94619357	6468.800197	409.1175131	0084c
125.431119	184.3026467	19.94979323	21.6867164	25.31611743	6177.248799	390.924285	0084b
120.8853002	178.1632994	17.60890589	21.15842936	28.91685453	5958.8233	388.2421368	0084a
118.9858811	175.9057197	21.19848314	21.21407453	31.15453324	5850.636956	357.5589401	0082c
139.6275146	208.6830565	20.38842149	28.18816895	50.04710866	8316.039592	392.7166577	0082b
121.511267	171.9442064	18.27449325	17.2387695	26.98877127	5789.349566	296.1972126	0082a
129.4705857	177.9992834	18.34410522	22.23047268	25.33686053	6070.094203	369.7748942	0081c
140.4622534	205.3294418	23.1205294	25.07027406	32.36094269	6759.171015	412.7815505	0081b
127.6994238	189.298145	20.28279073	24.17485973	34.33279882	6157.837773	359.9182488	0081a
128.6715515	184.3073888	18.696784	21.17038629	32.10702834	6341.551772	379.8209374	0080c
117.8057688	171.4783956	16.54542204	20.08348654	21.94927528	5714.0594	264.8933159	0080b
127.2319396	186.8411746	19.63836711	23.74029618	32.79786782	6313.793607	362.3352352	0080a
112.7865193	164.3148158	15.28423446	19.40674863	24.71150773	5517.669044	273.1182206	0079c
124.4270874	185.7635278	19.54089517	21.52884452	31.96803909	6218.493837	397.4846434	0079b
129.9075662	188.0081886	20.13039443	23.48226523	27.08775675	6186.828325	366.3692066	0079a
110.4251137	156.5502186	16.14638538	16.20353031	25.2938375	5284.257697	310.7488432	0078c
118.5601768	174.2940007	18.96842232	18.55026177	28.56887862	5741.638722	367.6622144	0078b
120.9170945	180.9861988	17.19398639	20.89347385	26.16075124	6090.675732	331.6009638	0078a
119.63171	170.760191	18.27936801	19.53895296	30.76179424	5787.334767	361.9831978	0077c
94.54919336	140.9885289	13.11023197	14.66597667	26.0166251	4636.479789	225.3371967	0077b
100.0635405	145.2790534	15.42812729	17.73994348	23.38313228	4966.801335	229.5932978	0077a
	100.0635405 94.54919336 119.63171 120.9170945 118.5601768 110.4251137 129.9075662 122.9075662 124.4270874 127.8657688 128.671515 127.6994238 140.4622534 127.6994238 140.4622534 129.4705857 121.511267 121.511267 122.42705867 125.431119 126.603101 116.1865767 111.3895753 112.895753 112.895753 112.768284 79.88556409 82.76074516 87.57460952		145.2790534 140.9885289 170.760191 180.9861986 174.2940007 185.7635278 185.7635278 185.7635278 185.7635278 185.7635278 185.7635278 185.7635278 185.7635278 185.7635278 185.7635278 185.7635278 185.7635278 185.7635278 185.7635278 184.3073888 185.298145 205.3294418 177.59052634 177.59052634 177.845294 177.544589 177.545576058 175.9352677 175.9352677 175.9352677 175.9352677 175.9352677 151.9392677 162.940986	15.42812729 145.2790534 13.11023197 140.9885289 18.27938801 170.760191 17.19398639 180.9861988 18.96842232 174.2940007 16.14638538 156.5502186 20.13039443 188.0081886 19.54089517 185.7635278 19.54089517 186.073328 19.54089517 185.7635278 19.54089517 186.0811746 19.5429073 189.298145 20.26279073 189.298145 23.1205294 171.4783956 18.34410522 177.9932834 18.34410522 177.9932834 18.34410522 177.9932834 18.34410522 175.9057197 17.60890589 178.1632994 18.1451049 170.512598 18.1451049 170.512598 18.91789169 167.8932817 18.91795376 177.825361 19.59280171 182.0289792 19.11869405 179.3576058 15.58810423 151.93292677 15.58810423 15	17.73994348 15.42812729 145.2790534 14.65597667 13.11023197 140.9885289 18.53895296 18.27936801 170.760191 20.89327385 17.19398639 180.9861232 18.55026177 18.96842232 174.2940007 16.20353031 16.14638538 156.5502186 21.52864452 19.54089517 188.081886 23.48226523 20.13039443 188.0081886 21.52864452 19.54089517 185.7635278 19.40674863 15.2842346 164.3148158 21.52864452 19.54089517 186.8411746 22.0.7027406 23.1205294 171.4783956 21.21407453 21.19848314 189.298145 17.2387695 18.27449325 171.942064 17.2387695 18.27449325 171.942064 21.15842936 17.60890589 178.1632994 21.54942936 17.60890589 178.163294418 21.6667164 19.94979323 184.3026467 18.31579615 18.1451049 170.512598 19.01471479	23.38313228 17.73994348 15.42812729 145.2790534 26.0166251 14.66597667 13.11023197 140.9885289 30.76179424 19.53885286 17.13398639 180.9861988 28.56887862 18.25026177 18.96842232 174.2940007 25.2938375 16.2035031 16.14638538 156.5502186 27.08775675 23.48226523 20.13039443 188.0081886 31.96803909 21.52884452 19.54089517 185.7635278 24.71150773 19.40674863 15.2642346 164.3148158 32.10702834 21.17038629 18.596784 184.3073888 34.33279862 24.17485973 20.28279073 189.298145 32.36094269 25.07027406 23.1205294 205.3294418 25.3768653 21.1926853 21.19828314 175.9092834 31.15453324 21.15842395 174.9449325 174.9449325 32.1916743 21.8667164 19.94979323 184.3071472 28.91685453 21.15842936 17.6089589 178.1632944 26.8774051<	4866.801335 23.38313228 17.73394348 15.42812729 145.2780534 4636.479788 26.0166251 14.66597667 13.11023197 140.9865289 5774.5372 26.16075124 20.89347385 17.13396393 180.9861986 5774.638722 28.56887862 18.55026177 18.96842232 174.2940007 5284.257697 25.2938375 16.2033031 16.14638538 146.346328 5517.669044 24.71150773 19.40674863 15.28423446 146.3428326 6313.793607 32.79786782 23.70384654 16.54542204 171.4783956 6457.857773 34.302798682 24.1748597 20.28279073 188.686784 6457.857773 34.302798682 24.1748597 20.28279073 189.298145 6458.600193 32.30694269 25.070727406 23.1205294 205.3284418 6477.248799 25.31617747 17.2387685 18.24410522 177.9392884 6477.248799 25.31617747 18.31691545 21.1964314 175.9057197 5488.800197 31.15453324 21.4074

0099b 373	0099a 356	0098c 328	0098b 342	0098a 333	0097c 41	009 7b 318	0097a 35	0096c 31	0096b 390	0096a 31	0095c 299	0095b 359	0095a 358	0094c 387	0094b 352	0094a 379	0093c 312	0093b 324	0093a 414	0092c 357	0092b 356	0092a 388	0091c 359	0091b 343	0091a 384	0090c 333	0090b 379	SCC BRAD	
373.1514296	356.0748354	328.7899104	342.8381615	333.0214141	418.577376	318.1693403	370.548416	312.582943	390.9763489	311.810311	299.3874909	359.7228557	358.6371392	387.3639714	352.5032625	379.1373017	312.1351391	324.1729235	414.2805586	357.2995371	356.1874743	388.8589606	359.0970532	343.6025419	384.2121934	333.8620476	379.4185146	339.8047234	
6416.491334	6891.796564	5992.557046	6207.865145	5721.622862	5684.331509	5828.204212	5756.455466	6423.730007	6735.607629	6143.928406	5860.145053	6116.457058	6028.531653	6202.26238	5833.084174	6113.605438	5646.786277	6023.765353	5719.573198	6107.726419	5820.728139	6074.777569	5457.360783	5924.695351	5996.725866	5990.195918	5987.864663	6065.750224	10010-1000 - 000 - 000 - 000 - 00
34.12734522	30.49555202	32.06403289	25.59498572	27.75717286	29.75333753	30.64002463	31.19215635	24.92306154	33.91750122	19.73796976	25.49743256	27.10404738	29.52357119	57.101684	29.09837543	23.20936418	26.35935685	26.99492945	31.24250292	27.23041471	23.89542763	30.25026178	26.26723539	26.34900608	30.01634874	25.04900482	27.67608092	23.69694841	
23.15536049	23.36977446	21.51952798	19.41106545	18.15631699	21.63956326	19.40371732	17.65182019	23.40935126	25.28505018	23.03369414	19.27530242	22.20513736	19.62170482	20.08742409	21.16392977	20.58458469	17.9199667	19.18931503	17.58969047	20.25796627	20.89519384	21.54731813	15.34310073	19.15486814	19.28748953	17.98648877	18.90793257	17.1763632	the state operation of the second
19.44223096	20.23956248	18.75739677	20.93249661	18.68849729	19.05881504	17.45231698	18.11150539	19.88025052	19.71940927	18.47664992	18.63093813	19.30883138	20.46789955	18.94060793	18.44442611	18.10733638	16.92554597	19.14628068	18.56308546	17.91902717	20.83498523	17.22445898	15.91653866	19.7051675	18.78866659	18.42853902	15.72511118	16.78544536	
182.9397766	203.347863	177.0789911	178.4685656	171.9810946	170.6271346	171.4241361	172.7924996	190.8030566	204.9696677	179.9395657	174.0050785	184.9172566	180.6853963	179.4088351	179.672441	181.789018	173.3783947	171.4096287	172.6634184	171.1372329	174.0114847	178.3538138	167.1783607	173.2806239	181.1561656	166.5269227	172.4547312	177.0751575	
123.6882223	135.5994324	120.181147	123.3515371	120.0038234	117.7477253	117.1304222	116.1500992	128.0130884	135.4280337	122.5982387	119.3417111	122.5457474	119.7185353	121.3905775	123.7706185	121.6194201	118.2479507	119.5854995	117.3672588	116.9020004	122.092625	123.3105789	110.1487674	119.1158241	120.5998968	112.1416591	121.2107638	118.1244568	
15.68114605	13.78543657	14.70727803	13.92600113	14.40545879	14.15360804	13.63021733	14.50595577	14.34320032	13.0638642	13.98132902	11.80795739	14.16770971	13.44825343	15.20073976	16.35723119	14.50657558	15.15495299	13.61498141	14.23626707	13.86636068	12.41078594	13.34492467	14.17123701	14.59476666	14.29594897	13.35111844	11.24327502	15.55626193	
104.9176011	111.2034349	99.401209	102.5833988	100.0526274	100.301864	100.0226591	96.29042314	104.4307872	113.3877553	103.5498971	98.47927487	107.0406919	101.5902328	100.8051754	102.2863294	101.2243331	100.7811848	97.56456693	97.76112197	98.63790587	100.749504	102.9082031	95.11464464	101.2418456	102.6324358	100.5825745	99.49584579	100.6169703	-
12.13618476	13.02519823	11.15044151	11.25406855	10.83349665	11.82503656	11.28366556	11.48381423	12.2275244	13.86101949	11.10708586	12.22689308	11.97954554	11.57439314	11.26981907	11.50642977	13.28963635	12.42453511	12.30685727	10.52899343	10.76222453	12.26613061	13.02871426	11.8986094	11.58896157	12.09004045	11.19205417	12.28621861	11.43113981	

11.77504673	102.1550256	13.96185243	126.9740719	179.3056153	20.60357634	20.49764058	30.82652419	6057.972863	326.225384	0114c
11.92526909	106.2517302	12.84031052	122.094552	178.1133941	20.52360561	20.63725436	28.02626177	6059.08599	391.5736295	0114b
11.47822527	100.3230901	14.2223388	119.9603031	174.0859571	17.52344894	21.14714843	23.99364086	5870.050236	349.611718	0114a
11.46943937	100.666434	12.87862111	119.8217587	175.5920674	18.53623144	17.33533772	27.06956204	5845.631882	339.8272334	0113c
10.58892913	96.77368348	13.43637441	116.9310573	171.3276159	18.24821022	17.07498969	28.70934946	5587.621767	367.3480704	011 3 b
11.93723543	101.0398553	13.07901948	118.3881999	180.1217303	17.57924257	21.98295524	26.31759039	5925.99275	312.4040121	0113a
11.66375061	100.2756699	13.49197606	119.9458348	174.9862568	17.75957122	18.99503919	28.43226771	5757.020747	359.8938612	0112c
11.00747652	99.14424855	12.97709993	118.3043495	168.5430877	16.29429258	20.34480386	23.87209239	5717.825574	317.3665653	011 2b
11.86810509	101.4724308	14.61071824	117.9263967	172.9648739	17.1553959	19.03388299	23.29108929	5746.452008	304.2177713	0112a
10.74389201	101.8088352	13.36507716	118.8071823	174.7602414	17.83189118	21.88991291	24.06432434	5813.648311	350.8636336	0111c
10.09778328	101.3230739	14.26880782	114.8816248	169.0210857	17.86891739	17.51630978	28.99676134	5642.378713	348.4161231	0111b
11.53054932	104.3107419	14.67221372	123.3511892	177.6171919	19.33890641	19.22419764	25.30808435	5930.778922	399.9895749	0111a
11.39116381	99.04601287	14.34812041	115.7942003	166.4582117	18.16987628	16.72338892	26.20252961	5635.417544	360.9941397	0110c
10.66999375	97.66469373	14.86411173	116.8890557	168.3623506	18.71008677	17.86180847	28.57050393	5742.463326	299.065246	0110b
11.40142036	99.98089591	14.30372674	118.9674147	173.3958438	16.72540215	17.51510911	25.80239279	5747.428267	336.2461169	0110a
12.94739865	109.1929322	14.57018576	134.6576307	197.5301409	21.29776516	25.82849118	34.00935395	6597.357272	417.8059467	0107c
12.37095814	105.4697019	15.6075259	129.5181969	192.788761	18.39472701	24.49711282	32.26853726	6473.029499	415.7591959	0107b
11.80009717	105.7629062	13.34080695	127.6437005	186.541071	20.3347598	22.32815189	29.10432923	6135.708459	364.150198	0107a
10.84317644	100.636022	14.64189995	122.9232876	177.3126859	18.14760464	20.64499102	38.89947184	5959.09376	311.3993153	0105c
11.42722312	98.68540257	14.39015494	119.5787481	171.9982415	20.30940865	19.33439304	30.59993377	5803.142052	322.4752338	0105b
11.30241647	92.02215448	11.33629271	106.6820063	155.255876	16.80234276	17.07128797	29.45078989	5358.372348	290.4367702	0105a
11.79509143	104.7938318	15.88428666	121.9982078	177.4927529	18.81713073	21.06249815	26.32195635	5960.512682	360.0240158	0104c
11.58262151	103.5284828	15.6771145	126.8224604	182.5636353	17.13500915	22.64643281	27.3345087	6091.880523	381.6802134	0104b
11.63652564	104.9716701	14.35586957	123.8047831	180.3337687	19.77590249	21.53756454	29.17076358	5877.677673	348.4856579	0104a
11.87179933	95.98004432	13.83640587	113.2249175	160.7665051	17.53558431	18.94374899	25.89980645	5347.667623	337.7231541	0101c
13.47921215	109.2396688	16.09865217	141.0523539	203.8114425	20.59975083	29.71655302	42.86775719	7267.384809	423.7888787	0101b
11.77645665	104.0378868	13.12141885	125.9935176	184.7220126	20.32613371	22.28515487	34.06269021	6134.328631	358.076731	0101a
12.56726476	108.4877247	14.1130924	127.6069144	193.1142795	20.28237627	23.38377921	38.61452076	6355.960872	343.3343483	0100c
13.00319268	114.6227074	14.42145599	136.8373636	205.0480818	20.74849388	25.64289367	47.11894162	7445.781073	372.4212702	0100b
12.57929562	109.259427	13.75648047	134.7826764	198.6201071	21.59352381	24.3572297	45.81644648	6719.730607	368.635992	0100a
12.71714668	107.9297938	15.10509682	129.8157929	189.4830179	19.27607844	26.12039565	36.3799927	6488.029158	357.7718633	0099c

	13.55476178	127.0693973	185.4936426	18.84440673	20.83219776	33.94998432	6452.330258	347.988174	0126a
105.3803148	13.43117394	123.3393554	181.029227	18.47106402	21.20054817	22.81317985	5907.713142	373.0549472	0125c
103.0230073	12.06997896	125.1700008	179.9884118	20.01234298	20.79101587	29.37580979	6063.538109	355.3128644	0125b
103.930383	13.22263634	120.9766631	182.2525778	22.08380691	19.11268367	31.93853553	6013.541354	348.4927169	0125a
98.56805118	14.44318482	117.5044712	171.6988092	17.06630811	19.51131159	25.6982646	5770.921708	339.4481805	0124c
98.52993	12.97346239	118.4869985	171.2692444	17.1743523	17.59806189	26.38510687	5667.702018	322.604614	0124b
99.21445956	12.99023179	119.477061	170.9506683	19.03337201	19.5301649	29.82967535	5793.792767	292.0268473	0124a
99.54828092	13.99278261	112.6901333	170.3992763	18.47277411	18.299964	27.70884588	5570.538838	315.0868474	0123c
101.8748269	13.5100688	122.3476417	172.078142	17.28675138	19.32333831	30.62807622	5797.477523	393.9840168	0123b
99.48620533	13.57371142	120.7701615	176.2155665	19.06645666	20.99811328	19.83418927	5788.259093	365.685688	0123a
98.37263055	13.12571811	114.8551455	173.0284779	16.46917522	18.29018831	29.53365303	5720.20221	322.1170489	0122c
97.82409271	13.05125091	115.5933144	172.3812254	17.44071025	17.60937297	30.85352819	6160.926267	333.9211372	0122b
98.83145859	11.84285371	118.6214598	173.7756908	17.36535925	20.36491115	30.54306159	5792.738951	347.3466337	0122a
106.034332	13.27267821	129.1390282	192.0393321	20.2416485	25.49100405	46.59470964	6469.04626	317.1453014	0120c
111.3188886	13.9389004	133.6488969	196.2061715	19.58037449	28.753593	58.6300519	6749.357041	407.6030045	0120b
111.34696	15.93457646	139.5435985	194.6518646	24.20022665	26.66190901	60.31840588	7208.777744	351.4206411	0120a
101.5436777	13.75701626	122.0517119	182.6881922	18.8995652	22.64591448	26.28108525	6060.720309	299.8633513	0119c
108.2813893	15.51491865	137.4503848	199.6302306	21.804115	26.88457978	40.14252685	6761.44846	433.008294	0119b
104.875295	14.05509733	123.0990277	186.3872307	17.10999549	22.95432316	29.98356022	6190.999062	328.4212433	0119a
104.2444638	13.92895915	128.5628713	184.2314416	18.25861098	22.22234332	45.28795068	6403.239201	310.9396098	0118c
107.3755137	15.48808092	137.4994255	203.2548506	21.8342531	23.71178234	36.80206628	6726.732418	439.4661837	0118b
100.2082303	10.35248957	122.8254534	184.1634963	17.40622998	22.77161009	36.3822338	5967.355436	348.0905321	0118a
101.2995045	13.43217769	124.1527902	180.5402361	18.60705798	23.94768009	33.85911019	6022.001084	350.0319168	0117c
104.7600746	14.98218545	130.7872726	191.9988869	19.05290446	23.62886998	39.95119323	6512.397224	372.1541833	0117b
108.4555319	14.43030934	131.0537535	190.5381876	21.59476749	23.64912682	36.52880998	6401.040835	377.6096854	0117a
115.6138551	13.78953064	148.501937	221.9147808	23.19353234	28.34284807	48.87790895	7713.584259	423.242871	0116c
112.6777146	15.16615759	143.3485556	213.0814705	22.124452	28.75530753	37.69566707	7094.638483	458.8506107	0116b
106.5039187	14.53269223	129.4507504	191.4157115	19.20151627	22.55473432	34.68956604	6202.200274	473.7577098	0116a
101.233254	13.65520208	121.6569905	181.1744886	17.78747134	21.98680374	26.98954886	5992.461744	384.074694	0115c
103.7149645	13.34337775	121.1671391	180.3993599	17.49242507	20.75904765	22.9848443	5869.296176	344.9756536	0115b
102.7623715	13.6747807	124.899618	183.5506546	17.07950295	22.93685133	28.02737087	6004.1788	404.0216506	0115a

18.81390Z1Z 1/4.0458933
174.9019493
176.3822679
177 9127589
179.5892176
182.2685965
196.4583838
172.566364
189.9068684
185.4041163
185.651009
177.9015439
170.889880
180.2985523
176.9209948
171.0293352
205.2098812
193.8331612
192.9026354
171.5225029
177.7082312
177.833441
170.5916930
165.880853
183.0555199
166.2426568
10010101000

110.2222433
<u> </u>
174.3559337 121.4046622
177.2937248 122.769084
168.9965571 115.5091979
158.9715367 109.9525451
124.6945541 68.27434505
134.5484148 73.02429234
142.3117229 75.86334392
130.8858039 66.66995291
122.9994829 67.10767266
124.3039758 67.30314862
172.1045713 118.693835
160.1849706 112.0175874
170.6627389 115.8317998
163.4386623 114.5908154
169.3145692 114.9422355
168.1428936 115.1421622
179.0971376 124.6761791
168.8001584 121.4281714
180.308941 126.6710038
183.5842743 125.7875726
183.9716916 124.3055804
172.2858736 116.5423654
180.6173937 122.6894741
204.3390881 140.5349832
190.904892 129.5293652
170.2290378 115.9444125
173.7879538 118.6508781
176.4072213 119.7576133
187.9441372 124.2876543

01 75b 32	0175a 34	0174c 31	01 74b 33	0174a 40	0172c 34	0172b 40	0172a 41	0171c 40	0171b 33	0171a 40	0170c 42	0170b 33	0170a 36	0169c 37	0169b 37	0169a 34	0168c 35	0168b 34	0168a 32	0166c 37	0166b 38	0166a 3	0165c 50	01 65b 53	0165a 51	0164c 33	0164b 33	0164a 37	0163c 33
325.2278353	346.0257772	316.7515841	330.9305636	405.5237455	345.4153528	400.3215249	417.5908967	405.9529881	333.5843006	401.7633101	421.7293116	338.6083675	362.4383876	372.6798727	379.6237501	349.9389508	357.7865059	343.0387244	327.2449665	376.7776209	389.5368003	340.005353	509.0825152	535.2614571	518.9417012	338.9790176	333.3730511	378.1979853	330.2252224
6462.666538	6051.00092	5980.454902	5742.616156	6188.594788	5928.356583	6696.766181	6300.076354	6743.67542	5909.005035	6307.874003	6706.489949	6605.532614	6189.24653	6229.195162	6567.051581	6138.00299	5503.466293	5682.059817	5816.374849	6813.711776	5880.511427	6117.166616	6372.581447	7152.245803	6426.051262	5994.385943	6002.690702	6128.268055	6096.5903
31.03349362	24.59936551	33.28092201	28.05445964	31.99868831	31.11058702	44.38793974	25.59124149	34.98259804	42.23175297	36.80974656	30.78130719	32.37268233	27.67740325	27.13463555	39.56218693	30.46380717	27.34208911	19.85103768	35.63609022	24.81104053	23.89079251	26.74589757	43.53558776	56.9395042	46.69401015	24.69615249	32.29433232	28.00053279	34.01126984
24.05749283	19.83581447	20.67354267	19.86302738	20.67904088	19.08827192	22.20731586	22.15302262	26.43368352	22.63555418	23.70529161	24.77441163	22.50196978	23.71816758	21.05362699	23.00198406	22.85868692	20.81554806	19.17757945	18.23779017	23.75933038	19.77835598	20.5237639	23.76749315	29.29224537	26.04900122	22.7189292	19.57031533	21.49632876	20.77464832
21.06817348	19.02343161	17.60142665	19.68991043	15.30735531	16.33489255	21.46972415	20.87114667	21.96823501	16.58864007	19.01923056	21.35694486	19.29157661	20.35054349	21.72080722	20.35794097	18.32914894	17.39703468	16.35031561	17.0974511	19.11652225	16.5316053	18.92284593	14.8331279	12.4418059	11.76722669	15.97564564	18.05550628	18.25127577	16.39926555
194.8052103	181.1052249	179.1400118	177.3227465	182.1460085	173.1516782	192.5108761	191.2627751	196.4308798	170.050676	182.8140372	198.3128698	196.641971	190.0114502	180.8854271	196.3398763	186.9756538	166.8307912	161.847126	169.1382782	183.7508926	176.8580089	183.794543	152.9517353	169.1180663	156.8463572	179.4061363	177.4464505	186.085738	180.4132727
130.6572198	125.5699707	124.17804	119.4746878	127.3450761	119.2937377	131.5048013	129.3380064	134.2281992	117.457734	125.6150645	132.7013982	128.2238451	127.0394001	126.4720171	134.5973524	127.3121704	112.835225	111.5089585	118.0859358	127.4540369	124.9608166	127.8265697	82.05884326	85.28802377	83.14843558	124.54565	120.109354	127.2823034	122.0662305
12.40913303	14.73986402	13.73899746	14.18160712	15.20017187	13.21157782	15.09452369	16.27773187	13.43862646	13.93420638	14.27044813	14.13006884	15.09051772	13.42456813	13.78977683	13.0735736	14.46714795	13.72575398	12.84613387	13.68790588	15.98657201	13.65919235	14.27879017	15.41596535	14.95878631	17.00953185	14.45631575	13.31446651	13.83386916	16.60560059
107.4420819	102.9139048	101.6722843	102.2215326	101.7569552	102.3634077	110.4277135	109.5775236	112.3338522	99.68766249	103.6618774	106.2742112	107.5990118	107.8293265	102.4275856	109.3417922	106.9147425	96.99059469	94.89873497	99.45911929	104.9206447	101.4114731	106.3133621	109.5340432	118.5276991	109.4741842	103.0326224	101.206216	105.4487597	103.110192
13.39207203	11.5109084	12.69931783	11.73474598	11.49886493	11.82369871	13.14366161	12.62975355	12.90789561	11.47867622	12.16606238	12.75208687	12.20769857	11.97762995	12.64610142	12.78385702	11.33108113	10.49579022	11.1246327	11.23977228	11.10577231	11.37706901	12.65991117	14.02922275	14.81965253	14.08677766	12.15863076	12.34864957	12.74646718	13.49320265

13.77235256	164.8928463	17.92631151	17.83003858	23.10149803	5382.696265	0187c 319.1739465
176.7515958 121.4762347		15.88228021	21.0871465	26.76003994	5873.158386	342.4493618
164.3781079 111.8794753		17.06561355	17.74504256	29.08118636	5439.479703	346.821613
130.9546028 71.46177613		9.447310985	18.7883304	38.50703361	5550.088512	439.4503794
121.1185496 64.84663678		11.39492719	16.55462383	34.90714151	5049.539536	437.4891691
132.3587615 68.47076114		12.43788002	18.07542952	40.18409732	5395.207628	501.0660069
194.3544234 135.9237734		19.72028123	24.58319652	28.82249681	6646.185292	373.6870203
198.8908765 138.1722991		23.15101515	25.69800811	37.45257086	6988.704091	408.8071065
189.7496463 129.2766175		18.64178417	22.97250742	29.06971457	6633.137556	403.915406
186.9953737 134.2788624		21.19104601	21.31340914	56.87158296	7532.912953	377.7295674
190.4356675 139.4006286		20.16538667	24.97800474	59.79932721	7478.691543	378.2104885
189.8578156 138.812318		18.31029839	24.89969584	53.98382372	7727.527865	388.8484788
181.5427269 121.3335891		21.47921014	20.79866886	29.38152323	6167.213466	398.7843184
179.4763791 119.9449427		18.13602271	19.63588332	24.47011438	6070.824238	349.795995
181.7469674 121.5902061		19.24577304	17.3739666	32.53496114	6199.668202	338.5584727
188.3317099 130.1191189		16.30321414	26.45953338	42.7881353	6388.060103	324.3670359
209.1412397 139.6022665		21.55549988	26.63982511	35.5954283	7303.229373	446.0514293
189.9327069 130.4984173		20.22722842	25.76278157	41.58562694	6854.030222	382.2861225
190.8083263 131.4465915		18.56961813	25.71421684	34.56058576	6754.660263	399.3612076
180.1259175 123.4375706		17.57943192	21.90536117	36.62471324	6135.309091	344.7547357
170.9323728 115.6638782		17.38931796	21.01366226	24.58042664	5671.079514	335.9302623
193.7055171 128.3489738	19.7135403 193	19.713	23.5134976	36.28397377	6317.319823	360.1428746
176.6695891 120.7262825		17.71638135	22.92389641	28.27786645	5788.233052	294.0327114
203.7646279 137.6732063		22.32007081	26.73462933	30.4607921	6824.420822	356.7716478
154.8006753 105.4724528		14.50510276	16.74534242	25.19610593	5451.656845	267.2730126
178.2538986 122.7476348		16.98471108	19.46642764	30.60983452	5860.571238	292.4873599
204.0412427 139.312789		21.31931961	24.87185088	47.01565314	7420.126513	396.7156619
173.9096631 118.9599492		17.77206238	22.27954638	36.10699319	5940.531804	287.0203543
173.3772561 121.4837015		19.14565915	20.97600356	30.91775686	5920.185478	335.4522812
194.9645133 137.5376861		18.91	26.7144806	36.95614573	6850.388617	375.1001687
190.3405734 127.1130707						

0198c	0198b	0198a	0197c	0197b	0197a	0196c	0196b	0196a	0195c	0195b	0195a	0194c	0194b	0194a	0193c	0193b	0193a	0192c	0192b	0192a	0191c	01916	0191a	0190c	0190b	0190a	0189a	0188c	0188b	0188a
384.9892525	293.1388869	392.213959	262.9121577	338.595521	324.0506404	351.1271633	378.9694846	426.8777524	336.2371152	313.9774411	266.2030923	400.5007557	311.2665013	289.1340201	211.1224124	343.2220892	382.5591872	386.8541949	384.3913021	352.0170866	386.8719628	350.3116419	400.7467573	316.2927587	344.6141352	375.5510392	363.5898308	340.1563476	314.7933897	385.6596854
5904.429597	5555.996503	5843.921951	5487.301095	5766.073537	5644.658541	5780.054462	6084.734264	7209.15835	5628.711352	5528.904876	5840.490981	5997.7969	5499.414583	5451.565131	5833.918716	5835.211826	5953.234328	6292.036368	6056.839518	5828.660393	6275.98231	6342.396717	7904.00696	5369.886563	5386.324828	5861.293607	5715.069733	5709.016008	5704.403287	5752.615857
26.05944597	28.1188359	28.12361588	24.54875947	27.29900277	28.87831967	22.08121794	25.14188665	35.88604251	28.80189505	26.64182339	29.41052044	27.16048494	25.59265831	25.46577761	24.46518674	30.64017524	22.06046778	26.41192327	26.3969335	25.02146187	36.06282489	32.2940917	27.7720714	21.2292351	27.27639336	27.79193587	24.29756528	26.80526635	23.98760917	27.1646673
16.91492127	17.68589592	19.13980563	17.45357948	20.68036063	19.37468547	20.9044824	21.95524358	27.14375677	19.53778744	16.97355667	21.25783561	17.87751682	17.05523107	19.59356054	23.82944595	19.09249948	18.4955654	23.61610367	19.44876466	20.05404254	22.4089334	22.58975966	23.34280111	18.34727153	17.29676873	19.68877842	16.63945814	17.93135719	17.47005183	18.60801662
18.91844428	18.76901107	17.87922352	16.26743757	19.24047711	17.60916353	17.40608193	18.16879356	21.82079092	18.91513799	17.89071954	18.27539351	19.37355585	15.16385422	17.14437676	15.89793839	16.97558758	19.54322209	18.84390698	18.97520148	19.63477252	19.51775937	19.97237087	18.26597097	14.85460208	16.36148955	20.56291735	17.21976356	16.0509662	16.73022537	19.45205765
172.5652003	163.4410652	175.4532677	166.7777465	172.847405	171.6596141	171.4411818	179.1949386	212.7657018	170.0467995	167.8773655	171.1184573	174.3654619	163.6122028	168.1289288	184.5583576	174.9189823	175.3612852	187.0686628	182.2704645	181.3945059	178.9164659	178.0709082	189.0133016	163.8088192	158.7151659	175.8903662	167.5378717	168.2060417	171.8719807	171.4656768
120.3801571	113.9175692	119.355547	114.6482339	118.1712095	117.5032398	120.2441357	125.5991132	144.6556723	118.2440604	116.658811	119.715658	117.7220564	113.9082112	112.2064274	128.6374163	118.2434335	123.3126272	128.6481622	122.3259579	120.5632992	123.7868355	124.5628836	133.5031873	111.2041907	107.0082379	121.5759336	109.7349829	116.7926599	118.5517162	118.1774676
14.21806427	13.3672414	13.63799556	14.60491121	14.123158	13.26355462	12.7857903	13.84877793	15.97802441	13.46328371	14.98269809	14.16099782	14.18593724	13.43794091	12.50156847	10.99456664	13.18252528	14.66246854	15.00797855	15.15911871	14.30784606	13.19919314	14.5151391	14.54054737	13.95331225	13.46546553	13.85504055	13.27468485	14.7915569	12.89840025	13.56811456
100.00696	94.99390585	101.5622751	96.12310714	101.4222312	102.3927639	99.03839311	103.7283781	112.9794761	100.9514124	98.65651444	100.7144835	102.3830531	96.22692092	96.45771271	101.4272038	100.9507409	99.55380547	106.5212552	104.5063494	102.3238819	100.4764504	104.0453567	108.7119968	94.11613746	93.69145546	100.7703162	94.34340681	96.07473123	97.0713143	98.83909355
11.20856095	11.11886902	11.11896299	10.97210964	10.9540544	11.61313899	10.67210813	12.29016812	13.43069657	10.83783484	11.06591562	12.18993781	11.19677209	11.07897019	11.28320739	11.0962965	11.7361979	11.57314795	11.70846899	12.12046111	11.86249835	12.85258804	11.25326626	12.42120903	10.81698778	11.00265914	11.03919792	11.38658365	11.45710784	10.18553454	11.02576939

21.54584712 20.00160606 183.0283368 123.516166 13.5596662 17.15377747 18.57730045 157.2425697 109.32404 12.3753577	20.00160606 183.0283368 18.57730045 157.2425697	20.00160606 18.57730045		21.54584712 7.15377747 20.2821326	21.54 17.15	29.90942474 26.32715432 21.61679548	6227.479266 5399.6643 5564.860438	352.2842908 306.4479906 320.8046362	0209b 0209c 0210a
99.7300107	12.3998549	120.4309683	172.5967431	17.5429783	19.74449294	30.11314592	5775.253742	346.4602186	0209a
102.100849	13.76686927	121.3538284	176.9486883	18.03485606	18.7223316	21.58543127	5853.806175	325.490854	02086
103.5014797	13.56513295	123.7712746	185.4743662	20.58638715	21.48558505	28.85615118	6035.149358	348.0379199	0208a
102.3851575	12.88164077	121.9029169	173.1919201	19.03111788	17.7524279	25.49853826	5737.775466	307.9878019	0206c
100.4879873	14.36881857	118.480231	171.3756706	16.72898167	20.51756292	26.68396425	5724.299891	376.1260212	0206b
98.48657483	14.33797645	115.0897322	171.2733895	15.02244622	19.1304848	28.7408043	5787.455181	328.8624926	0206a
97.15508132	13.35867487	118.5013001	173.2184359	18.38205322	20.27517643	24.41192781	5788.745179	324.1744196	0205c
99.06605723	12.9860814	119.5088076	175.1535691	19.1812762	19.71253986	27.77350661	5744.89717	331.0645334	0205b
99.48736261	13.689928	113.0100307	169.3734635	17.82625122	20.28013441	26.71328532	5550.263243	312.4998436	0205a
96.52525889	13.35196545	113.0772857	163.2785736	17.50950436	18.23764699	27.07910369	5670.923517	336.5274826	0204c
96.57545188	13.19658945	110.4614144	164.380472	15.58655015	19.40619878	26.57243972	5696.40742	367.9312427	0204b
103.3022053	14.46542459	119.8901611	177.9465307	19.53727442	20.42510658	21.36765471	6054.740872	374.5353444	0204a
97.39488466	14.13043289	115.9759204	166.110853	17.89248217	16.24344401	30.72524652	6218.262565	394.854301	0203c
97.63268922	12.67922786	116.1042808	166.6389486	17.06626309	17.84197015	25.64240335	5665.065432	336.8593051	0203b
95.77420665	13.16572078	112.5596294	159.7663095	16.97502762	17.76565291	23.09690347	5369.79727	304.7242484	0203a
105.676575	12.82849809	129.6753881	199.2133444	18.60719652	25.56055454	35.54047605	7259.717491	362.4388951	0202c
101.3006823	13.80462598	122.0873502	179.9606419	19.85724375	19.81475313	32.15806614	5758.462658	391.236915	0202b
103.4555229	15.14510881	119.7957056	178.2348003	17.91106891	20.74550892	31.29260653	5927.997191	378.0390893	0202a
91.9042376	11.76094528	101.4704597	156.1634171	15.40285698	15.28647578	22.84830521	5239.491801	300.4354793	0201c
97.95077456	13.12059486	110.5424523	162.6539542	18.53069132	19.05911032	20.33048746	5624.030906	342.0366916	0201b
98.29319435	14.64699736	117.0019609	169.2171431	18.10671423	18.84296678	20.95303356	6175.878251	350.4083045	0201a
100.6662502	12.9214476	117.1480635	171.4689417	18.49509492	19.82517866	26.51368184	5725.955498	384.9903354	0200c
99.56868568	12.50855144	117.9116994	170.1690781	17.22224983	19.04712095	26.26032537	5683.407896	296.4464649	0200b
97.45887726	13.36900118	117.0157516	172.4660996	19.40937295	18.69671026	27.33487239	5746.051255	341.8879401	0200a
100.3007915	14.87922338	118.2220485	171.6084259	18.95434135	17.05553882	26.2970607	5460.361119	346.3465397	0199c
98.82482214	13.63072905	113.1069068	169.9394582	17.76175183	17.80806751	24.10986164	5610.986779	311.5207296	0199b
100.166594	13.03475822	118.8373647	171.4232942	18.20920801	18.68465365	24.60132711	5602.382815	366.5337658	0199a

11.5892320	99.79409157	13.89051497	120.6017961	172.1243512	18.97576596	20.39639661	28.70713397	5798.659789	329.9422514	0224a
12.162182	102.8138707	14.83310377	127.9166804	183.3072428	19.02447451	22.18168861	28.85960037	6217.1582	353.958083	0223c
11.9479442	98.47711583	12.80749407	118.449432	167.5776437	16.43593943	20.28485925	26.08631998	5865.824477	342.9115639	0223b
12.5452377	106.3096618	15.57491291	128.8912244	185.0658577	18.68339429	21.6465489	36.11114352	6353.844517	327.1294242	0223a
12.1667108	105.3952451	13.82268634	126.363537	180.7318113	19.903472	21.30389006	24.19962338	6366.032262	389.8063409	0222c
12.7811010	99.61132225	12.2933952	120.1577995	177.5935134	19.61037189	19.97856453	30.96107774	5885.208055	318.0030364	0222b
10.8700495	97.04145751	12.94542406	114.1383171	163.5302075	15.95833453	17.83091371	26.14040212	5548.29196	328.4486583	0222a
11.4746527	102.5451518	14.24873065	123.2473885	177.327573	19.010284	21.42863891	30.7197399	6143.857026	408.8984551	0221a
13.6715319	113.1031136	16.21540537	142.2659562	206.1888654	21.44268678	28.76680715	48.90927317	7432.884448	492.7486807	0220c
13.2015086	109.7114997	14.08890258	140.5318544	206.2720433	19.87850066	25.78202871	35.08808011	6882.64943	381.082195	0220b
12.1864984	107.0944804	14.24184685	133.71288	189.3000833	20.57672662	22.57571199	43.92110511	6479.261029	362.5609897	0220a
12.0616674	104.5208028	14.45236638	127.8199737	189.7801622	18.42920826	22.96109425	31.48677349	6365.768167	321.2548101	0218c
11.8477036	108.9278249	14.32767274	129.5395581	190.4226683	17.85053922	26.71631074	33.80323292	6443.620498	377.0865086	0218b
14.8250080	112.1730864	16.01748137	141.3741271	203.7104318	20.42657771	27.72101883	36.19295302	7343.331485	416.5564987	0218a
12.3876390	107.1787667	16.16904869	127.3032205	185.2915876	18.83274541	21.59435801	34.41146825	6314.491794	338.4158772	0217c
11.8346327	109.9181982	13.68130742	135.3965527	203.4012055	20.90942589	24.51630475	40.27901436	6812.930584	399.8733397	0217b
12.2369927	112.7923628	13.61256264	139.9995993	207.1241208	23.73285635	24.55425183	53.96480285	7985.718916	568.11347	0217a
11.5187398	102.1020036	13.63038673	119.2155249	177.1740965	18.67377513	19.22493688	26.14685938	5787.223046	384.1409595	0214c
11.9613308	102.2528964	15.42526006	123.3551511	176.7569704	18.93059125	19.66653227	26.98214339	5941.169669	371.4818249	0214b
11.6633438	103.1741088	13.72861894	117.6023682	179.7636855	16.56394025	20.33930078	27.00355275	5982.607629	363.4399832	0214a
13.0672657	104.9743964	15.9067125	127.7798037	188.9718266	20.9538831	20.63475433	30.33688041	6345.206612	401.2565636	0213c
11.5938124	102.7960574	14.01073169	117.3253018	176.1660908	18.67111935	20.40405621	29.57067937	5846.294293	360.5742165	0213b
11.3930731	101.0393335	15.54027897	122.0943776	177.6000477	18.53190366	20.00829592	27.61288253	5892.178613	361.4161631	0213a
12.5774204	104.9851048	14.92295644	79.74187033	143.9020647	13.3876931	24.00636634	38.72447442	5907.036153	514.6108421	0212c
12.0546440	100.9519126	16.01388074	73.82113489	131.5579587	12.91498447	18.48681784	42.24107613	5498.575159	493.1870195	0212b
12.4755350	104.6935415	15.32407572	73.64676721	137.1817313	13.26188996	17.92620079	37.00729693	5676.320908	435.9541287	0212a
12.5438782	104.6321445	14.11014963	127.4640802	182.3887887	17.95181872	20.6626562	29.73808343	6130.512952	373.800091	0211c
12.909222	110.0638245	13.82978299	132.4642635	197.7985127	18.53578605	23.3788844	27.62310926	6587.104447	438.166617	0211b
13.2728726	107.6564702	14.26914588	131.8456275	191.4005792	22.588363	23.93898825	27.03843884	6574.442978	351.7516872	0211a
10.1502657	98.15296613	13.25462689	115.9565721	168.2525868	17.80289075	19.87301844	25.27387448	5571.422531	342.6058122	0210c
11.19144747	102.1276881	14.61195186	122.8730377	174.3203986	16.34667825	20.15778144	27.75747275	5870.235263	274.0775151	0210b

NUV1546 101	12.90984485	120.2440759	177.5713764	17.78600576	20.52251252	28.22385873	5908.181288	305.6760306	0234b
105.374349	15.42165859	124.2306996	184.3249661	19.38002278	20.44922887	31.79549761	6123.713384	383.5470991	0234a
107.7336526	13.15337098	131.5898519	194.0385624	19.65725474	23.23503907	37.27113693	6625.275645	409.0151008	0233c
109.0557956	17.21888467	134.3317982	189.4209213	20.29111052	25.28209502	35.12790049	6702.95431	383.0586255	0233b
103.1439196	13.81380365	124.8202203	184.2971754	22.03246825	21.46737187	32.58120052	6176.933752	393.457636	0233a
112.7819556	14.10154287	137.0814532	205.2045679	21.37413376	26.85370636	44.04580118	6961.652253	414.3289364	0232c
110.6371449	15.89143121	138.1784923	202.1352786	19.77682645	25.52096159	41.68159122	6994.276459	411.6248648	0232b
101.5470187	15.04900909	124.9595112	181.0913014	17.59210058	22.17732539	29.9905916	6004.46389	417.6367081	0232a
100.0056986	12.99708854	116.7214221	167.2867726	16.55002085	20.00816122	30.33065107	5714.407564	332.1346281	0231c
107.6868185	13.86083561	132.5473669	195.3471517	19.77543952	27.99141647	35.10296999	6555.0382	401.1191847	0231b
103.4095108	13.63855679	127.6712139	182.1596221	20.61206303	20.87960654	34.77828731	6255.964703	388.8095984	0231a
102.2294978	14.31246297	124.6663886	179.8008991	20.12865425	20.70170644	28.26073415	5993.571749	336.7795499	0230c
101.8374769	13.7044944	125.0052148	179.4079056	18.16462729	22.15725456	35.81726286	6062.09241	322.4338342	0230b
102.8851178	14.2656301	119.812108	179.1457623	19.81282606	23.02031226	30.17634054	6299.595501	355.0921925	0230a
105.1664252	15.57919923	125.24378	185.2892551	20.89290319	22.74071878	30.54419321	6268.703273	356.6032764	0229c
108.9458012	12.90908059	137.0450645	202.7992318	20.33243419	28.3737366	42.47047907	7236.408823	369.7737656	0229b
105.5653088	14.98030274	124.1049058	182.5165048	21.46303528	22.36971429	30.62566248	6061.107734	334.5314055	0229a
98.13092637	12.31859902	112.9407122	166.0898964	16.80199879	18.3204874	29.6776815	5430.138301	371.8635051	0228c
102.2000678	12.86278022	121.4815633	177.1778973	18.95101358	20.37918315	31.86349216	6502.520422	318.3608474	0228b
106.5660268	14.69033712	131.9829592	190.8798565	19.83480305	24.20114769	36.00101043	6297.508988	352.0060201	0228a
107.5796613	14.23933014	127.286232	184.7325305	20.41717844	22.67459645	37.45691944	6389.221681	392.1867882	0227c
113.6809065	14.30951978	145.4213697	210.7720029	21.56183177	27.34723261	54.97767277	7413.167796	473.8907452	0227b
105.6599959	16.53792421	127.077583	183.4748027	20.1627066	23.8358074	31.72106532	6317.49694	338.806508	0227a
98.89146712	13.42961691	113.5892751	167.2743248	18.1226482	18.35041332	29.90432611	5492.331971	337.3239753	0226c
108.5012568	13.07938164	134.0644156	196.7609889	20.75957797	25.48656972	38.83631749	6855.931266	355.4253723	0226b
105.9154176	14.21018404	125.0017447	186.5943534	19.19082341	22.56162691	30.62900353	6263.78244	385.5068908	0226a
109.0854155	15.28336049	126.487971	185.3295277	19.13781533	20.44372151	34.06595643	6201.699645	362.934702	0225c
100.6530222	14.1137208	119.6498409	180.1652132	19.37277279	22.13486108	36.65023846	5940.607281	388.0097403	0225b
98.57059863	11.29150388	121.4038726	175.9058835	17.61975049	20.80549385	37.85925859	6021.04555	352.1847025	0225a
100.3250538	15.10888292	118.3811219	176.3936205	19.81573961	18.63185296	28.46041301	5876.811845	368.7216199	0224c
99.17586973	13.8985809	116.7030293	169.3151086	19.42566399	18.79999354	26.88033283	5762.176418	303.2218679	0224b

227.5689918		25.00010814 18.11437845		27.9955478 23.0425338	41.68987187 32.82115174	8252.776516 6394.225575	463.1532331 350.3262202
	196.2506288			24.04924723	32.72103188	6754.681849	335.0408801
	186.6888715			22.70976876	37.31624478	6493.23356	351.0088177
	190.4956734			23.1404562	38.04982937	6526.498801	347.7298763
	182.127862			21.70970126	35.31105533	6182.111907	315.8934789
6 128.2718465	190.6123256	20.27060397 190.6		23.51187312	37.50863498	6357.024477	385.5151154
1 122.4968862	180.601834	15.22110124 180.6		23.53904854	29.55771702	5919.554511	366.926177
4 131.5639553	192.9859294	19.67932563 192.9		23.17798899	30.40669221	6428.88592	377.9301359
118.584783	173.8834689	18.87706067 173.8		22.03374233	28.61774723	5945.171072	344.1491278
122.1776776	179.4933035	20.68608508 179.4		21.37969932	28.9221714	5996.450707	370.4594278
2 116.5850989	175.0166612	17.25820193 175.0		17.30122532	27.22647386	5838.333417	391.6581884
4 137.3510099	210.7708804	21.25055548 210.7		26.89764581	36.12976639	7191.376611	364.5819174
5 139.566507	209.2667885	20.8725973 209.2		28.1565591	39.42613699	7135.63253	375.4283494
8 130.1400211	196.1697968	23.37359251 196.1		23.87967174	32.68271879	6563.514248	345.776765
8 116.4194974	162.8794938	17.88788128 162.8		19.19229583	29.35227297	5709.75716	357.8609733
5 117.8578392	172.8428815	17.30129078 172.8	-	22.95038918	30.50082478	5871.738085	298.3002157
14 130.8645085	190.1562314	18.9929646 190.1		24.86316099	32.92852468	6381.64175	382.8116384
52 120.2890954	177.934652	19.47755144 177		18.88904001	24.06898678	5847.671419	340.4189906
9 121.4273158	174.5819819	17.77975371 174.5		19.45008983	27.72252744	5895.966554	340.9459238
5 123.1187612	172.4873226	18.57967373 172.4		18.48212179	25.31021209	5896.446582	384.7659409
125.5473163	195.889939	21.02722912 195		20.98693242	26.66213311	6215.781072	324.3574211
144.6415436	213.6049383	22.21850905 213.6		28.33885784	43.03750245	7656.166545	371.3461129
129.2736631	189.8584992	19.17824029 189.8		24.09836497	33.62092934	6530.440386	384.0523286
102.7023023	144.0501043	14.06270809 144.0		13.02170152	31.07535419	5275.154547	286.5292105
5 115.1017463	167.7244195	17.28344099 167.7		20.28851561	31.59510744	6423.054876	314.1945304
1 121.3828374	177.893937	19.62989126 177.8		21.11672479	23.19448393	6121.713078	386.2305899
126.0029266	178.6770374	21.02801365 178.6		20.0122644	27.44947269	6600.013941	370.6283154
123.8152522	177.493054	18.2068975 177		18.76077026	31.3878862	6622.239173	377.2760009
116.4191897	172.2028042	18.88735658 172.2		18.37593091	26.33555858	5825.618667	364.6767905
8 123.8916298	183.5199098	19.7156162 183.5		24.09220981	41.04091072	0T 10.01 000T	1010.0220101

0262a 371.7896329	0261c 368.9099639	0261b 352.2869043	0261a 394.0552259	0258c 388.1518962	0258b 380.3392263	0258a 398.7544494	0256c 367.9119192	0256b 320.2555844	0256a 347.8873162	0255c 407.8971477	t	0255b 384.7173271																		
6094.644534	6305.302605	5818.885322	6220.833581	6711.406934	6298.579635	6120.323952	5923.652805	5670.205733	6140.952317	6460.905683	7307.171665		6768.711661	5914.442216 6768.711661	7376.156446 5914.442216 6768.711661	5966.419753 7376.156446 5914.442216 6768.711661	6316.892989 5966.419753 7376.156446 5914.442216 6768.711661	5842.800903 6316.892989 5966.419753 7376.156446 5914.442216 6768.711661	6038.747686 5842.800903 6316.892989 5966.419753 7376.156446 5914.442216 6768.711661	6553.515615 6038.747686 5842.800903 6316.892989 5966.419753 7376.156446 5914.442216 6768.711661	5099.993833 6653.515615 6038.747686 5842.800903 6316.892989 5986.419753 7376.156446 5914.442216 6768.711661	6119.52504 5099.393833 6553.515615 6038.747686 5642.800903 6316.892989 5366.419753 7376.156446 5914.442216 6768.711661	6084.521893 6119.52504 5099.9938533 6553.515615 66038.747686 5842.800903 6316.892989 5366.419753 7376.156446 5914.442216 6768.711661	6604.652077 6084.521893 6119.52504 5099.993833 6553.515615 6038.747686 5842.800903 6316.892989 5966.419753 7376.156446 5914.442216 6768.711661	5924.672119 6604.652077 6084.521893 6119.52504 5099.993833 66553.515615 6038.747686 68038.747686 5842.800903 6316.892989 5866.419753 7376.156446 5914.442216 6768.711661	6318.686759 5924.672119 6604.652077 6084.521893 6119.52504 5099.993833 6553.515615 6038.747686 5642.800903 65316.892989 5966.419753 7376.156446 5914.442216 6768.711661	5709.920565 6318.686759 5924.672119 6604.652077 6084.521893 6119.52504 5099.993833 6553.515615 6038.747686 5642.800903 6316.892989 5366.419753 7376.156446 5914.442216	6069.653511 5709.920565 6318.686759 5924.672119 6604.652077 6084.521893 6614.52269 5099.993833 6553.515615 6038.747686 5642.800903 6316.892989 5366.419753 7376.156446 5914.442216	6538.228199 6069.653511 5709.920565 6318.686759 5924.672119 6604.652077 6084.521893 6119.52504 5099.993833 6553.515615 6038.747686 5842.800903 58642.800903 58642.800903 55914.442216 5914.442216	5987.640156 6638.228199 6069.653511 5709.920565 6318.686759 5924.672119 6604.652077 6084.521893 6119.52504 5099.993833 6553.515615 6038.747686 5842.800903 6316.892989 5966.419753 7376.156446 5914.442216 6768.711661
34.52334844	36.2822688	37.53470064	32.95473911	33.90942154	35.96873976	29.23813898	30.48198538	26.98784901	33.31871071	28.40316484	32.54422523		28.69408901	21.58883116 28.69408901	33.99932653 21.58883116 28.69408901	24.51006249 33.99932653 21.58883116 28.69408901	32.65304516 24.51006249 33.99932653 21.58883116 28.69408901	30.71128277 32.65304516 24.51006249 33.99932653 21.58883116 28.69408901	24.91717185 30.71128277 32.65304516 24.51006249 33.99932653 21.58883116 24.69408901	34.74915032 24.91717185 30.71128277 32.65304516 24.51006249 33.99932653 21.58883116 28.69408901	23.1551139 34.74915032 24.91717185 30.71128277 32.65304516 24.51006249 33.999832653 21.58883116 21.58883116	26.31541101 23.1551139 34.74915032 24.91717185 30.71128277 32.65304516 24.51006249 33.99932653 21.58883116 21.58883116	31.87662905 26.31541101 23.1551139 34.74915032 24.91717185 30.71128277 32.65304516 24.51006249 33.99932653 21.58883116 21.58883116	40.43985271 31.87662905 26.31541101 23.1551139 34.74915032 24.91717185 30.71128277 32.65304516 24.51006249 33.99932653 21.58883116 21.58883116	26.52771144 40.43985271 31.87662905 26.31541101 23.1551139 34.74815032 24.91717185 30.71128277 32.65304516 24.51006249 33.99932653 21.58883116 21.58883116	26.56406802 26.52771144 40.43985271 31.87662905 26.31541101 23.1551139 34.74915032 24.91717185 30.71128277 32.65304516 24.51006249 33.99932653 21.58883116 21.58883116	26.48222241 26.56406802 26.52771144 40.439852771 31.87662905 26.31541101 23.1551139 34.74915032 34.74915032 34.74915032 30.71128277 32.65304516 24.51006249 33.99932653 33.99932653 21.58883116 24.58883116	26.96356863 26.48222241 26.56406802 26.52771144 40.43865271 31.87662905 26.31541101 23.1551139 34.74915032 24.91717185 30.71128277 32.65304516 24.51006249 33.99932653 21.58883116 21.58883116	33.38084502 26.96356863 26.4822241 26.52771144 40.43985271 31.87662905 26.31541101 23.1551139 34.74915032 24.91717185 30.71128277 32.65304516 24.51006249 33.99932653 21.58883116 21.58883116	24.45319447 33.38084502 26.96356863 26.48222241 26.56406802 26.52771144 40.43985271 31.87662905 26.31541101 23.1551139 34.74915032 24.91717185 30.71128277 32.65304516 24.51006249 33.99932653 21.58883116 21.58883116
19.51464117	23.7882062	19.52614477	18.66971265	20.77431477	19.46419025	21.62532565	20.78073219	17.72559477	20.45918062	22.74830736	26.48233287		26.27593503	16.65626613 26.27593503	24.06836939 16.65626613 26.27593503	22.16003732 24.06836939 16.65626613 26.27593503	24.41041295 22.16003732 24.06836939 16.65626613 26.27593503	19.63466229 24.41041295 22.16003732 24.06836939 16.65626613 26.27593503	20.59664177 19.63466229 24.41041295 22.16003732 24.06836939 16.65626613 26.27593503	24.72156584 20.59664177 19.63466229 24.41041295 22.16003732 24.06836939 16.65626613 26.27593503	17.82592394 24.72156584 20.59664177 19.63466229 24.41041295 22.16003732 22.1603732 22.65256613 16.65626613 26.27593503	18.38954639 17.82592394 24.72156584 20.59664177 19.63466229 24.41041295 22.16003732 24.06836939 16.65626613 26.27593503	23.68333281 18.38954639 17.82592394 24.72156584 20.59664177 19.63466229 24.41041295 22.16003732 24.06836939 16.65626613 26.27593503	23.14115378 23.68333281 18.38954639 17.82592394 24.72156584 20.59664177 19.63466229 24.41041295 22.16003732 24.06836939 16.65626613 26.27593503	23.44375442 23.14115378 23.68333281 18.38954639 17.82592394 24.72156584 20.59664177 19.63466229 24.41041295 22.16003732 24.06836939 16.65626613 26.27593503	20.30689003 23.44375442 23.14115378 23.68332281 18.38954639 17.82592394 24.72156584 20.59664177 19.63466229 24.41041295 22.16003732 24.06836939 16.65626613 26.27593503	20.62746768 20.30669003 23.44375442 23.68333281 18.38954639 17.82592394 24.72156584 20.59664177 19.63466229 24.41041295 22.16003732 22.16003732 24.06836939 16.65626613 26.27593503	21.96956965 20.62746768 20.30669003 23.44375442 23.4375442 23.68333281 18.38954639 17.82592394 24.72156584 24.72156584 20.59664177 19.63466229 24.41041295 22.16003732 22.16035393 16.65626613 26.27593503	22.41725036 21.96956965 20.62746768 23.0669003 23.44375442 23.68333281 18.38954639 17.82592394 24.72156584 24.72156584 29.65466229 24.41041295 22.16003732 22.16035393 16.65626613 26.27593503	18.76018955 22.41725036 20.62746768 20.62746768 23.44375442 23.44375442 23.68333281 18.38954639 17.82592394 17.82592394 24.72156584 20.59664177 19.63466229 24.41041295 22.16003732 24.06836939 16.65626613 26.27593503
17.96517179	18.91192116	16.75305748	18.02261237	18.82338383	20.57024307	19.82919676	18.67679772	18.88608134	18.27885604	18.85664122	22.63704837		21.9742097	17.46353915 21.9742097	22.24497022 17.46353915 21.9742097	20.61543803 22.24497022 17.46353915 21.9742097	18.14854596 20.61543803 22.24497022 17.46353915 21.9742097	18.83847985 18.14854596 20.61543803 22.24497022 17.46353915 21.9742097	20.37622134 18.83847985 18.14854596 20.61543803 22.24497022 17.46353915 21.9742097	17.77600345 20.37622134 18.83847985 18.14854596 20.61543803 22.24497022 17.46353915 21.9742097	18.79201927 17.77600345 20.37622134 18.83847985 18.14854596 20.61543803 22.24497022 27.24497022 21.9742097	17.56016351 18.79201927 17.77600345 20.37622134 18.83847985 18.14854596 20.61543803 22.24497022 17.46353915 21.9742097	17.56619841 17.56016351 18.79201927 17.77600345 20.37622134 18.83847985 18.4854596 20.61543803 22.24497022 17.46353915 21.9742097	20.14206567 17.56619841 17.56016351 18.79201927 17.77600345 20.37622134 18.83847985 18.4854596 20.61543803 22.24497022 27.9742097	19.66051345 20.14206567 17.56619841 17.56016351 18.79201927 17.77600345 20.37622134 18.83847985 18.14854596 20.61543803 22.24497022 21.9746353915 21.9742097	18.17404913 19.66051345 20.14206567 17.56619841 17.56016351 17.77600345 20.37622134 18.83847985 18.14854596 20.61543803 22.24497022 17.46353915 21.9742097	18.55932127 18.17404913 19.66051345 20.14206567 17.56619841 17.56016351 17.77600345 20.37622134 18.83847985 21.37622134 18.83847985 21.46353915 22.24497022 21.9742097	17.91915373 18.55932127 18.17404913 19.66051345 20.14206567 17.56619841 17.56016351 17.56016351 17.77600345 20.37622134 18.83847985 21.37622134 18.83847985 21.46353915 22.24497022 21.9742097	18.16607414 17.91915373 18.55932127 18.17404913 19.66051345 20.14206567 17.56016351 17.56016351 17.77600345 20.37622134 18.83847985 21.3762334 18.4545985 22.24497022 21.9742097 21.9742097	20.06415592 18.16607414 17.91915373 18.55932127 18.17404913 19.66051345 20.14206567 17.56619841 17.56619841 17.56619841 17.56016351 18.79201927 17.77600345 20.37622134 18.83847985 18.4854596 20.61543803 22.24497022 21.9742097
171.4736751	189.0950385	175.4413671	180.4590326	192.3277582	180.4823173	184.3013028	175.3712643	176.2642626	182.0813821	188.828979	208.125212		202.9832736	175.2710249 202.9832736	198.5341287 175.2710249 202.9832736	180.7830103 198.5341287 175.2710249 202.9832736	187.2304454 180.7830103 198.5341287 175.2710249 202.9832736	174.9494278 187.2304454 180.7830103 198.5341287 175.2710249 202.9832736	181.7305198 174.9494278 187.2304454 180.7830103 198.5341287 175.2710249 202.9832736	189.4579608 181.7305198 174.9494278 187.2304454 180.7830103 198.5341287 175.2710249 202.9832736	154.331478 189.4579608 181.7305198 174.9494278 187.2304454 180.7830103 198.5341287 175.2710249 202.9832736	172.9468275 154.331478 189.4579608 181.7305198 174.9494278 187.2304454 180.7830103 198.5341287 175.2710249 202.9832736	181.1240107 172.9468275 154.331478 189.4579608 181.7305198 174.9494278 174.9494278 187.2304454 180.7830103 198.5341287 175.2710249 202.9832736	194.0002867 181.1240107 172.9466275 154.331478 189.4579608 181.7305198 181.7305198 187.2304454 187.2304454 180.7830103 198.5341287 198.5341287 175.2710249 202.9832736	182.5858787 194.0002867 181.1240107 172.9468275 154.331478 189.4579608 181.7305198 181.7305198 187.2304454 187.2304454 180.7830103 198.5341287 198.5341287 175.2710249 202.9832736	183.9201381 182.5858787 194.0002867 181.1240107 172.9468275 172.9468275 154.331478 184.7305198 189.4579608 189.4579608 187.2304654 180.7830103 198.5341287 198.5341287 175.2710249 202.9832736	176.8305741 183.9201381 182.5658787 194.0002867 181.1240107 172.9468275 154.331478 181.7305198 189.4579608 189.4579608 189.4579608 187.2304454 187.2304454 180.7830103 198.5341287 198.5341287 175.2710249 202.9832736	180.6599169 176.8305741 183.9201381 182.5858787 194.0002867 194.0002867 181.1240107 172.9468275 154.331478 181.7305198 181.7305198 181.7305198 187.2304454 187.2304454 180.7830103 198.5341287 175.2710249 202.9832736	184,6116826 180,6599169 176,8305741 183,9201381 182,5858787 194,0002867 194,0002867 194,0002867 172,9468275 172,9468275 174,331478 181,7305198 181,7305198 181,7305198 187,2304454 180,7830103 198,5341287 180,7830103 198,5341287	179.1271854 184.6116826 180.6599169 176.8305741 182.5858787 194.0002867 194.0002867 194.0002867 194.0002867 1172.9466275 154.331478 1481.7305198 181.7305198 187.2304454 187.2304454 187.2304454 187.2304454 187.2304454 187.2304454 187.2304454 187.2304454
117.0432994	131.0884714	116.0319504	124.1665882	129.8671483	124.1768729	125.7080049	119.9560207	117.2127285	122.8093725	125.7758065	144.3917772		135.7027819	120.8333945 135.7027819	139.8399275 120.8333945 135.7027819	126.7824457 139.8399275 120.8333945 135.7027819	127.3185774 126.7824457 139.8399275 120.8333945 135.7027819	120.481385 127.3185774 126.7824457 139.8399275 120.8333945 120.8333945	121.4830889 120.481385 127.3185774 126.7824457 139.8399275 139.833945 120.8333945 135.7027819	128.0304241 121.4830889 120.481385 127.3185774 126.7824457 139.8399275 139.8399275 139.833945 120.8333945	104.1888466 128.0304241 121.4830889 120.481385 127.3185774 126.7824457 139.8399275 139.833945 120.8333945 135.7027819	120.0374154 104.1888466 128.0304241 121.4830889 122.4830889 120.481385 127.3185774 126.7824457 139.8399275 139.8399275 135.7027819	122.9649218 120.0374154 104.1888466 128.0304241 121.4830889 121.3185774 126.7824457 139.8399275 139.8399275 135.7027819	131.1736952 122.9649218 120.0374154 104.1888466 128.0304241 121.4830889 120.481385 127.3185774 126.7824457 139.8399275 139.8399275 135.7027819	126.1341411 131.1736952 122.9649218 120.0374154 104.1888466 128.0304241 121.4830889 120.481385 122.3185774 126.7824457 139.8399275 139.8399275 139.833945	123.2708329 126.1341411 131.1736952 122.9649218 122.9649218 120.0374154 124.1888466 128.0304241 124.4830889 120.481385 127.3185774 126.7824457 139.8399275 139.8399275 139.833945	119.2728796 123.2708329 126.1341411 131.1736952 122.9649218 120.0374154 124.1888466 128.0304241 124.4888466 128.0304241 121.4830889 120.481385 127.3185774 126.7824457 139.8399275 139.8399275 139.833945	121.6302683 119.2728796 125.1341411 131.1736952 125.1341411 131.1736952 122.9649218 120.0374154 124.0374154 124.1888466 128.0304241 121.4830889 120.481385 127.3185774 126.7824457 139.8399275 139.8392457 139.8392457	121.9766592 121.6302683 119.2728796 123.2708329 126.1341411 131.1736952 122.9649218 120.0374154 120.0374154 120.3374154 124.1888466 128.0304241 121.4830889 120.481385 127.3185774 126.7824457 139.8399275 139.8399275 135.7027819	125.3204312 121.9766592 121.6302683 119.2728796 125.1706329 126.1341411 131.1736952 122.9649218 122.9649218 122.9649218 122.9649218 120.0374154 126.0304241 127.3185774 126.7824457 139.8399275 129.833945 125.7027819
13.12032179	15.47691886	12.93144758	12.99765485	16.26722305	13.65015515	14.2508615	15.98834665	13.48381896	14.38572601	13.94058269	14.66180323		15.25375861	13.51240522 15.25375861	15.94744786 13.51240522 15.25375861	12.61805168 15.94744786 13.51240522 15.25375861	13.77674813 12.61805168 15.94744786 13.51240522 15.25375861	15.89372611 13.77674813 12.61805168 15.94744786 13.51240522 15.25375661	13.60080683 15.89372611 13.77674813 12.61805168 15.94744786 13.51240522 15.25375861	13.13984149 13.60080683 15.89372611 13.77674813 12.61805168 15.94744786 13.51240522 15.25375861	13.5050876 13.13984149 13.60080683 15.89372611 13.77674813 12.61805168 15.94744786 13.51240522 13.51240522	13.17475607 13.5050876 13.13984149 13.60080683 15.89372611 13.77674813 12.61805168 15.94744786 13.51240522 15.25375861	15.19980982 13.17475607 13.5050876 13.13984149 13.60080683 15.89372611 13.77674813 12.61805168 15.94744786 13.51240522 13.51240522	13.42819557 15.19980982 13.17475607 13.5050876 13.1360080683 13.60080683 15.89372611 13.77674813 12.61805168 15.94744786 13.51240522 13.51240522	14.45533616 13.42819557 15.19980982 13.17475607 13.5050876 13.5050876 13.5050876 13.13984149 13.60080683 15.89372611 13.77674813 12.61805168 15.94744786 15.94744786 15.51240522	13.829838 14.45533616 13.42819657 15.19980982 13.17475607 13.5050876 13.600806876 13.13984149 13.600806883 15.89372611 13.77674813 15.94744786 15.94744786 15.94744786	13.38912829 13.829838 14.45533616 13.42819557 13.17475607 13.5050876 13.13984149 13.6080683 15.89372611 13.77674813 12.61805168 15.94744786 13.51240522	13.64519622 13.38912829 13.829838 14.45533616 13.42819657 13.17475607 13.17475607 13.5050876 13.13984149 13.6080683 15.89372611 13.77674813 12.61805168 15.94744786 13.51240522 13.51240522	14.11813171 13.64519622 13.38912629 13.38912629 13.42613657 14.45533616 13.1245607 13.17475607 13.17475607 13.13884149 13.6080683 15.89372611 13.77674813 12.61805168 15.94744786 13.51240522 13.51240522	13.95902093 14.11813171 13.64519622 13.38912829 13.829838 14.45533616 13.42819557 15.19980982 13.17475607 13.17475607 13.5050876 13.17864149 13.60080683 15.94744786 15.94744786 13.51240522 13.51240522
99.09901416	104.5414483	97.41852111	103.385783	106.9409862	103.6503656	104.0725013	100.7411702	98.47810493	104.0267245	103.3035501	112.1236208		110.4293114	100.9711849 110.4293114																
11.19872995	11.64696749	11.66756231	10.45130534	11.90754737	11.08783083	12.16068413	11.4663518	10.57003318	11.18727357	12.38481871	12.84809044		13.09221284	10.50538284 13.09221284	13.99707079 10.50538284 13.09221284	10.99869109 13.99707079 10.50538284 13.09221284	13.11540327 10.99869109 13.99707079 10.50538284 13.09221284	11.42252243 13.11540327 10.398689109 13.99707079 10.50538284 13.09221284	12.46002783 11.42252243 13.11540327 10.99869109 13.998707079 10.50538284 13.09221284	11.77734398 12.46002783 11.42252243 13.11540327 10.99869109 13.998707079 10.50538284 13.09221284	10.15763124 11.77734398 12.46002783 11.42522243 13.11540327 10.99869109 13.99707079 13.99707079 13.09221284	11.29874181 10.15763124 11.77734398 12.46002783 11.42252243 13.11540327 10.39869109 13.99707079 13.99707079 13.09221284	10.84951554 11.29874181 10.15763124 11.77734398 12.46002783 11.42252243 11.42252243 13.11540327 10.99866109 13.99707079 10.50538284 13.09221284	12.67934078 10.84951554 11.29874181 10.15763124 11.77734398 12.46002783 11.42252243 11.42252243 13.11540327 10.99869109 13.99707079 13.99707079 13.99707079	12.46688815 12.67934078 10.84951554 11.29874181 10.15763124 11.77734398 12.46002783 11.42252243 11.42252243 11.42252243 13.11540327 10.99869109 13.99707079 13.99707079 13.09221284	11.72688816 12.46688815 12.67934078 10.84951554 11.29874181 10.15763124 11.77734398 12.46002783 11.42252243 11.42252243 13.11540327 10.99869109 13.998707079 13.998707079 13.09221284	11.80902849 11.72689816 12.4668815 12.67934078 10.84951554 10.84951554 11.29874181 11.15763124 11.177734398 12.46002783 11.42252243 11.42252243 13.11540327 10.99869109 13.998707079 13.998707079 13.998707079	11.79469175 11.80902849 11.72668816 12.46688815 12.67934078 10.84951554 11.29874181 11.129874181 11.15763124 11.77734398 12.46002783 11.42252243 11.42252243 13.11540327 10.98869109 13.99707079 13.99707079	13.22616025 11.78468175 11.80902849 11.72689816 12.46688815 12.46688815 12.467934078 12.467934078 12.467934078 11.29874181 10.15763124 11.77734398 12.46002783 11.42252243 11.42252243 13.11540327 10.39866109 13.399707079 10.50538284 13.09221284	11.87926703 13.22616025 11.79469175 11.72689816 12.46688815 12.46688815 12.46688815 12.46934078 11.84951554 11.29874181 10.15763124 11.177734398 12.46002783 11.42252243 13.11540327 10.99869109 13.99707079 13.99707079 13.99707079

13.6026272
135.4418954 13.4710771
123.4241786 14.53000683
121.9695652 16.29395399
120.1226042 13.83164313
123.7336911 15.82190689
126.9491403 13.22950173
125.3928568 14.632638
116.8758168 12.88880362
113.2856201 14.4918056
118.7677875 13.26241887
126.3125803 14.40120797
129.6514784 15.03129016
134.8861163 13.99410268
130.4866148 13.78825692
134.0795956 15.14508152
188.9857592 133.4592463 15.48165258
167.5594538 111.512308 12.41296604
169.9218347 119.1632151 14.21904938
125.7380254 14.85893203
121.3340408 14.37993614
128.5278507 15.12902316
135.920672 15.9489102
123.5726521 14.85630162
129.5891561 14.21540018
119.7803379 11.9304055
119.8433699 13.01411741
123.7092797 14.3727574
125.2556297 13.3181897
127.1640634 14.99340654
130.1829474 14.53947194

0293c 348.7521968 599	0293b 378.2206909 612	0293a 313.2538153 639	0292c 396.2616458 632	0292b 392.300684 633	0292a 420.4890706 659	0286c 367.965024 565	-	0286b 383.8111203 570	351.9681849 383.8111203 (314.5140784 351.9681849 383.8111203	348.3196166 314.5140784 351.9681849 383.8111203	393.6761064 348.9196166 314.5140784 351.9681849 383.8111203	355.0339883 393.6761064 348.9196166 314.5140784 351.9681849 383.8111203	359.1053106 355.0339883 393.6761064 348.9196166 314.5140784 351.9681849 383.8111203	333.0480216 359.1053106 355.0339983 393.6761064 348.9196166 314.5140784 351.9681849 383.8111203	429.666621 333.0480216 359.1053106 355.0339883 393.6761064 348.9196166 314.5140784 351.9681849 383.8111203	350.8743226 429.6666621 333.0480216 359.1053106 355.0339083 393.6761064 348.9196166 314.5140784 351.9681849 383.8111203	375.8903794 350.8743226 429.6666621 333.0480216 355.0339983 393.6761064 348.9196166 314.5140784 351.9681849 383.8111203	363.7956888 375.8903794 350.8743226 429.6666621 333.0480216 355.0339883 393.6761064 348.9196166 314.5140784 351.9681849 383.8111203	332.4047426 363.7956888 375.8803794 350.8743226 429.6666621 333.0480216 355.0339883 393.6761064 348.9196166 314.5140784 351.9681849 383.8111203	348.0704811 332.4047426 363.7956888 375.8903794 350.8743226 429.6666621 333.0480216 355.0339883 393.6761064 348.9196166 314.5140784 351.9681849 363.111203	339.3381447 348.0704811 332.4047426 363.7956888 375.8903794 350.8743226 429.6666621 333.0480216 359.1053106 355.0339883 393.6761064 348.9196166 314.5140784 351.9681849 351.9681849 351.9681849	370.9532315 339.3381447 338.0704811 332.4047426 350.874326 429.6666621 333.0480216 355.033983 393.6761064 348.9196166 314.5140784 351.9681849 383.8111203	287.9624832 370.9532315 339.3381447 348.0704811 332.4047426 363.7956888 375.8903794 350.8743226 429.6666621 330.480216 359.1053106 359.1053106 355.0339983 393.6761064 348.9196166 314.5140784 351.9681849 383.8111203	384.1564771 287.9624832 370.9532315 339.3381447 348.0704811 332.4047426 363.7956888 375.8903794 350.8743226 429.666621 330.8743226 429.6666621 333.0480216 335.033983 393.6761064 348.9196166 314.5140784 351.9681849 383.8111203	361.405102 394.1564771 287.9624832 370.9532315 339.3381447 336.37956888 375.8803794 3350.874326 429.6666621 333.0480216 335.0339883 393.6761064 348.9196166 314.5140784 351.9681849 351.9681849 383.8111203	412.4148373 361.405102 394.1564771 287.9624832 370.9532315 339.3381447 336.704811 332.4047426 363.7956888 375.8903794 350.8743226 429.6666621 339.1053106 355.0339883 393.6761064 348.9196166 314.5140784 351.9681849 351.9681849 351.9681849	485.2919812 361.405102 370.9632315 361.46771 287.9624832 370.9632315 339.3381447 332.4047426 363.7956888 375.8903794 350.8743226 429.6666621 335.1053106 355.0339883 393.6761084 348.9196166 314.5140784 351.9681849 351.9681849 351.9681849	427.0648175 445.2919812 361.405102 334.1564771 287.9624832 370.9532315 339.3381447 332.4047426 363.7956888 375.8903794 350.8743226 429.6666621 335.1053106 355.0339883 393.6761064 348.9196166 314.5140784 351.9681849 351.9681849	386.6090592 427.0648175 445.2919812 445.2919812 361.405102 394.1564771 287.9624832 370.9532315 339.3381447 348.0704811 332.4047426 335.7956888 375.8903794 355.05868732 335.0687326 429.6666621 335.0761053106 355.0339883 328.5761064 351.966166 354.9196166 354.9196166 354.9196166 354.9196166 354.9196166 354.9196166 354.9196166 354.9196166 354.9196166 354.9196166 354.9196166 354.9196166 354.91961849 354.91961849 354.91961849 354.91961849
5000 445564	6129.243143	6399.254992	6327.147787	0684 6330.243491	6597.239718	5656.867526	5705.585233		5907.41252	5734.930658 5907.41252	6108.920643 5734.930658 5907.41252	6486.922799 6108.920643 5734.930658 5907.41252	5841.531228 6486.922799 6108.920643 5734.930658 5907.41252	6041.46221 5841.531228 6486.922799 6108.920643 5734.930658 5907.41252	5705.480961 6041.46221 5841.531228 6486.922799 6108.920643 5734.930658 5907.41252	6402.893701 5705.480961 6041.46221 5841.531228 6486.922799 6108.920643 5734.930658 5907.41252	5636.485066 6402.893701 5705.480961 6041.46221 5841.531228 6408.922799 6108.920643 5734.930658 5907.41252	5967.971087 5636.485066 6402.893701 5705.480961 6041.46221 6041.46221 5841.531228 6406.922799 6108.920643 5734.930658 5907.41252	6067.094942 5967.971087 5636.485066 6402.893701 5705.480961 6041.46221 5841.531228 6486.922799 6108.920643 5734.930658 5907.41252	5721.080014 6067.094942 5967.971087 5636.485066 6402.893701 5705.480961 6041.46221 5841.531228 6486.922799 6108.920643 5907.41252	5878.87614 5721.080014 6067.094942 5967.971087 5636.485066 6402.893701 5705.480361 6041.46221 5841.531228 6486.922799 6108.920643 5907.41252	5977.350172 5878.87814 5721.080014 6067.094942 5967.971087 5636.485066 6402.893701 5705.480961 5705.480961 5705.480961 5841.531228 6486.922799 6108.920643 5907.41252	6128.021542 5977.350172 5878.87814 5721.080014 6067.094942 5967.971087 5636.485066 6402.893701 5705.480961 6041.46221 5705.480961 5705.480961 5705.480961 5704.930658 5907.41252	5922.871063 6126.021542 5977.350172 5878.878.14 5721.080014 6067.094942 5967.971087 5636.485066 6402.893701 5705.480961 6041.46221 5705.480961 6408.922799 6108.920643 5907.41252	6058.232136 5922.871063 6128.021542 5977.350172 5878.87814 55721.080014 6067.094942 5967.971087 5636.485066 6402.893701 5705.480961 6041.46221 6041.46221 66468.922799 6108.920643 5907.41252	6566.759534 6058.232136 5922.871063 6128.021542 5977.350172 5878.87814 5771.080014 6067.094942 5636.485066 6402.893701 5705.480961 6705.480961 66041.46221 6646.922799 6108.920643 5907.41252	63.89.752558 6566.759534 66056.232136 5922.871063 6128.021542 5977.350172 5878.87814 5721.080014 5721.080014 65647.094942 5967.971087 5636.485066 6402.893701 5705.480361 6641.46221 5841.531228 6486.922799 6108.920643 5734.930658	6780.343718 6389.752558 6566.759534 6656.232136 5922.871063 6128.021542 5977.350172 5878.87814 5721.080014 5721.080014 5721.080014 5705.482061 6402.893701 5705.480961 5705.480961 5705.480961 5841.531228 6486.922799 6108.920643 5734.930658	6657.86136 6780.343718 6389.752558 6566.759534 6656.232136 5922.871063 6128.021542 5977.350172 5878.87814 5721.080014 66067.094942 5967.971087 55636.485066 6402.893701 5705.480961 66041.46221 5841.531228 6486.922799 6108.920643 5774.930658	67702.797039 6657.86136 6780.343718 6389.75258 6588.759534 6658.232136 5922.871063 6128.021542 5977.350172 5977.350172 5678.878.14 5721.080014 66057.094942 5565.480961 66042.893701 5705.480361 66041.46221 5841.531228 6486.922799 6108.920643 5734.930658
	31.36411961 20	31.69948016 21	33.94241008 24	31.162255 21	30.21285063 22	26.49913107 16	24.39538488 19	62.72232018 18		30.86892903 1																				
20.73898428	-	21.45580111	24.27026535	21.31514284	22.59158745	16.50901757	19.16593422	18.64853183		19.0525131																				
	20.68799188	21.9947013	19.42826248	20.17665409	20.36023191	19.59089938	16.90807476	17.87406118		19.31112587	18.53887096 19.31112587	20.82040467 18.53887096 19.31112587	17.45758632 20.82040467 18.53887096 19.31112587	16.92102821 17.45758632 20.82040467 18.53887096 19.31112587	17.96308585 16.92102821 17.45758632 20.82040467 18.53887096 19.31112587	19.70961504 17.96308585 16.92102821 17.45758632 20.82040467 18.53887096 19.31112587	16.32336254 19.70961504 17.96308585 16.92102821 17.45758632 20.82040467 18.53887096 19.31112587	15.5459376 16.32336254 19.70961504 17.96308586 16.92102821 17.45758632 20.82040467 18.53887096 19.31112587	19.16543591 15.5459376 16.32336254 19.70961504 19.70961504 17.96308585 16.92102821 17.45758632 20.82040467 18.53887096 19.31112587	16.03291695 19.16543591 15.5459376 16.32336254 19.70961504 19.70961504 17.96308585 16.92102821 17.45758632 20.82040467 18.53887096 19.31112587	18.63355075 16.03291686 19.16543591 15.5459376 16.32336254 19.70961504 19.70961504 19.32102821 17.45758632 20.82040467 18.53887096 19.31112587	18.89562456 18.63325075 16.03291685 19.16543591 19.70961504 19.70961504 19.70961504 19.70961504 19.20308282 16.92102821 17.45758632 20.82040467 18.53887096 19.31112587	17.6780883 18.89562456 18.63355075 16.03291695 19.16543591 19.16543591 19.165439376 16.32336254 19.70961504 19.70961504 19.2102821 19.2102821 19.2102821 19.45758632 20.82040467 19.31112587	18.54425748 17.6780883 18.89562456 18.63355075 14.63221695 15.5459376 19.70961504 19.70961504 17.95308586 16.92102821 17.45758632 20.82040467 19.31112587	19.52490135 18.54425748 17.6780883 18.89562456 18.63355075 18.63355075 19.16543591 19.16543591 19.16543591 19.16543591 19.16543591 19.16543591 19.16543591 19.16543591 19.16543591 19.70961504 19.70961504 19.70961504 19.20102821 17.45758632 20.82040467 18.53887096 19.31112587	19.46032552 19.52490135 18.54425748 17.6780883 17.6780883 18.63355075 18.63355075 19.16543591 19.16543591 19.70961504 19.70961504 19.70961504 19.70961504 19.70961504 19.70961504 17.45758632 16.92102821 17.45758632 20.82040467 19.31112587	20.72957761 19.46032552 19.52490135 18.54425748 17.6780883 17.6780883 18.63355075 18.63355075 18.6325075 19.16543591 19.16543591 15.5459376 16.32336254 19.70961504 17.96308585 16.92102821 17.45758652 20.82040467 18.53887096 19.31112587	19.6852496 20.72957761 19.52490135 19.52490135 18.54425748 17.6780883 18.63355075 18.63355075 18.63355075 18.632391685 19.16543591 19.16543591 19.70961504 19.70961504 19.70961504 19.70961504 19.457586532 20.82040467 18.53887096 19.31112587	20.02496992 19.6852496 20.72957761 19.46032552 19.52490135 19.52490135 18.54425748 17.6780883 18.63355075 18.63355075 18.63355075 18.63355075 19.16543591 19.16543591 19.16543591 19.16543591 19.70961504 19.70961504 19.70961504 19.70961504 19.7558632 20.82040467 19.31112587	20.28005915 20.02496992 19.6852496 20.72957761 19.46032552 19.52490135 18.5452748 17.6780883 18.89562456 18.63355075 18.63355075 18.63355075 19.16543591 19.1654591 19.1655591 19.1655591 19.16555591 19.16555591 19
	177.4451857	189.8096177	190.2205206	187.927328	195.7842547	172.3581042	173.7042372	176.1620002		164.3341602	176.8112505 164.3341602	187.8316837 176.8112505 164.3341602	177.4088122 187.8316837 176.8112505 164.3341602	178.2991427 177.4088122 187.8316837 176.8112505 164.3341602	170.853891 178.2991427 177.4088122 187.8316837 176.8112505 164.3341602	183.1160676 170.853891 178.2891427 177.4088122 187.8316837 176.8112505 164.3341602	159.7445732 183.1160676 170.853891 178.2991427 177.4088122 187.8316837 176.8112505 164.3341602	165.2625918 159.7445732 183.1160676 170.853891 170.853891 177.4088122 187.8316837 176.8112505 164.3341602	178.1057625 165.2625918 159.7445732 183.1160676 170.853891 178.2991427 177.4088122 187.8316837 176.8112505 164.3341602	172.5532089 178.1057625 165.2625918 159.7445732 178.26853891 170.853891 178.2991427 177.4088122 187.8316837 176.8112505 164.3341602	177.0951463 172.5532089 178.1057625 165.2625918 159.7445732 183.1160676 170.853891 170.853891 177.4088122 187.8316837 176.8112505 164.3341602	181.0835344 177.0851463 172.5532089 178.1057625 165.2625918 159.7445732 183.1160676 170.853891 170.853891 177.4088122 187.8316837 176.8112505	181.5062608 181.0835344 177.50951463 172.5532089 178.1057625 165.2625918 159.7445732 183.1160676 170.853891 178.2991427 177.4088122 187.8316837 176.8112505	175.0371933 181.5062608 181.0835344 177.0951463 172.5532089 178.1057625 165.2625918 159.7445732 183.1160676 170.853891 177.4088122 187.8316837 176.8112505 164.3341602	175.2678608 175.0371933 181.5062608 181.0835344 177.0951463 172.5532069 178.1057625 165.2625918 159.7445732 183.1160676 170.853891 178.2991427 177.4088122 187.4088122 187.8316837 176.8112505	190.5003881 175.2678608 175.0371933 181.5062608 181.0835344 177.0951463 172.5532089 178.1057625 165.2625918 183.1160676 170.853891 177.4088122 187.8316837 176.8112505 164.3341602	182.1967467 190.5003881 175.2678608 175.0371933 181.5062608 181.0835344 177.0851463 172.5532089 178.1057625 165.2625918 183.1160676 170.853891 177.4088122 187.4088122 187.43341602	197.0461225 182.1967467 190.5003881 175.2678608 175.0371933 181.5062608 181.0835344 177.0851463 172.5532089 178.1057625 165.2625918 159.7445732 183.1160676 170.853891 178.2991427 177.4088122 187.8316837 176.8112505	195.756151 197.0461225 182.1967467 190.5003881 175.0571933 181.0835344 177.0851463 172.5532089 178.1057625 165.2625918 178.1057625 183.1160676 170.853891 178.2991427 177.4088122 187.43341602	188.5001512 195.756151 197.0461225 182.1967467 190.5003881 175.0371933 181.5062608 181.5062608 181.5062608 181.5062608 177.0951463 172.5532089 172.5532089 172.5532089 175.2625918 175.2625918 159.7445732 183.1160676 170.853891 177.4088122 187.4088122 187.8316837 175.8316837
and a second second second second	125.3656555	131.1760638	128.5014816	126.9863281	127.6254852	118.7967061	114.8137324	118.8573743	117.7017201	744 1241327	122.5380168	124.8519719 122.5380168	120.8187847 124.8519719 122.5380168	118.7030845 120.8187847 124.8519719 122.5380168 1122.5380168	115.4885298 118.7030845 120.8187847 124.8519719 124.8519719 122.5380168 124.4314787	120.8861658 115.4885298 118.7030845 120.8187847 120.819719 122.5380168 122.5380168	108.5916277 120.8861658 115.4885298 118.7030845 120.8187847 120.8187847 122.5380168 122.5380168	113.8637166 108.5916277 120.8861658 115.4885298 115.4885298 115.4885298 115.4885197 120.8187847 122.5380168 122.5380168	122.6418297 113.8637166 108.5916277 120.8861658 115.4885296 115.4885296 115.4885296 112.8187847 122.5380168 122.5380168	120.2541793 122.6418297 113.8637166 108.5916277 120.8861658 115.4865298 115.4865298 115.4865298 115.4865298 112.819719 122.5380168	122.3182353 120.2541793 122.6418297 113.8637166 108.5916277 120.8861658 115.4865298 115.4865298 115.4865298 112.8187847 122.5380168 122.5380168	123.9930966 122.3182353 120.2541793 122.6418297 113.8637166 108.5916277 120.8861658 115.4885298 115.4885298 115.4885298 1120.8187847 122.5380168	122.2477756 123.9930966 122.3182353 120.2541793 122.6418297 122.6418297 113.8637166 108.5916277 120.8861658 115.4885298 115.4885298 115.4885298 112.819719 122.5380168	121.5582387 122.2477756 123.9930966 123.9930966 122.3182353 120.2541793 122.6418297 122.6418297 113.8637166 108.5916277 120.8861658 115.4885298 115.4885298 115.4885298 115.4885298 112.8187847 122.5380168	124.8585554 121.5582387 122.2477756 122.3182353 120.2541793 120.2541793 122.6418297 113.8637166 108.5916277 113.8651658 115.4885298 115.4885298 115.4885298 115.4885298 1120.8187847 120.8187847 122.5380168	130.0357299 124.8586554 121.5582387 122.2477756 122.34930966 123.9930966 122.3182353 120.2541793 120.2541793 122.6418297 113.8637166 108.5916277 120.8861658 115.4865298 115.4865298 112.48519719 122.5380168	124.0618554 130.0357299 124.8585554 121.5582387 122.2477756 122.2477756 122.2477756 122.2477756 122.541793 120.2541793 120.2541793 122.6418297 113.8637166 108.5916277 120.8661658 115.4865298 115.4865298 115.4865298 112.48519719 122.5380168	134.110754 124.0618554 130.0357299 124.858554 121.5582387 122.2477756 122.2477756 122.2477756 122.241793 120.2541793 120.2541793 122.6418297 113.8637166 108.5916277 120.8861658 115.4865298 115.4865298 115.486519719 122.5380168	134.3310135 134.110754 124.0618554 130.0357299 124.858554 121.5582387 122.2477756 122.2477756 122.2477756 122.2477756 122.2477756 122.2477756 122.241793 122.241793 122.6418297 113.8637166 115.4865298 115.4865298 115.4865298 112.48519719 122.5380168	131.5343249 134.3310135 134.110754 124.0618554 124.0618554 121.5582387 122.5477756 122.2477756 122.3472756 122.3472353 120.2541793 120.2541793 120.28461658 115.4885298 115.4885298 115.4885298 115.4885298 112.5380168 122.5380168
	14.11547985	15.83095335	15.81188136	14.09626842	14.59983965	13.31463335	12.34011641	13.74035129	14.01944000	1 1 0101 1050	16.86216763	13.36936789 16.86216763	12.84674641 13.36936789 16.86216763	14.91546156 12.84674641 13.36936789 16.86216763	14.454333966 14.91546156 12.84674641 13.36936789 16.86216763	13.76933215 14.45433966 14.91546156 12.84674641 13.36936789 16.86216763	11.86749167 13.76933215 14.45433966 14.91546156 12.84674641 13.36936789 16.86216763	13.96948119 11.86749167 13.76933215 14.45433966 14.91546156 12.84674641 13.36936789 16.86216763	14.63665249 13.96948119 11.86749167 13.76933215 14.45433066 14.91546156 14.91546156 13.36936789 16.86216763	13.30949551 14.63665249 13.96948119 11.86749167 13.76933215 14.45433966 14.91546156 14.91546156 13.36936789 16.86216763	14.09186248 13.30949651 14.63665249 13.96948119 11.86749167 13.76933215 14.45433966 14.91546156 14.91546156 13.36936789 16.86216763	13.58373654 14.09186248 13.30949551 14.63665249 13.96948119 11.86749167 13.76933215 14.45433966 14.91546156 14.9154674641 13.36936789 16.8674641	14.89713852 13.58373654 14.09186248 13.30949551 14.63665249 13.96948119 11.86749167 13.76933215 14.45433866 14.91546156 14.915461563 16.86216763	14.03775691 14.89713852 13.56373654 14.09186248 13.30949551 14.63665249 13.96948119 11.86749167 13.76933215 14.45433866 14.91546156 14.915461563 16.86216763	14.38814276 14.03775691 14.89713852 13.58373654 14.09186248 13.30949651 14.63665249 13.96948119 13.96948119 11.86749167 13.76933215 14.45433966 14.91546156 14.915461563 14.86216763	15.27423504 14.38814276 14.03775691 14.89713852 13.58373654 13.30949551 14.63665249 13.96948119 13.96948119 13.96948119 13.76933215 14.45433966 14.91546156 14.915461563 15.86216763	16.60917748 15.27423504 14.38614276 14.03775691 14.89713852 13.36949551 14.63665249 13.36948551 14.63665249 13.36948119 13.36933215 14.45433366 14.91546156 14.9154674641 13.36936789 16.86216763	15.64300801 16.60917748 15.27423504 14.38814276 14.38814276 14.03775691 14.89713852 13.58373654 14.091865249 13.36948551 14.63665249 13.36948119 13.369548119 11.86749167 13.76933215 14.45433966 14.91546156 12.84674641 13.36936789 16.86216763	14.04979425 15.64300901 16.60917748 15.27423504 14.38814276 14.03775691 14.03775691 14.89713852 13.369349651 14.63665249 13.369348119 11.86749167 13.369348119 11.86749167 13.76933215 14.45433966 14.91546156 14.9154674641 13.36936789 16.86216763	13.677557 14.04979425 15.64309901 15.66917748 15.27423504 14.38814276 14.03775691 14.88713852 13.58373654 14.09186248 13.30949551 14.63665249 13.36933215 14.45433966 14.45433966 14.91546156 14.91546156 12.84674641 13.36936789 16.86216763
	101.0404415	106.8925135	106.5827678	106.4076384	107.9476362	98.77621548	98.33185929	100.7151035	96.70623584		102.7271431																			
11.62338991	12.18631963	12.07201572	11.96532185	11.92299198	12.07970926	11.28836526	10.47538235	11.51512733	10.85648208		11.24286384	11.55157253 11.24286384	10.96545279 11.55157253 11.24286384	9.881273262 10.96545279 11.55157253 11.24286384	11.17450219 9.881273262 10.96545279 11.55157253 11.24286384	11.71424393 11.17450219 9.881273262 10.96545279 11.55157253 11.24286384	11.02578921 11.71424393 11.17450219 9.881273262 10.96545279 11.55157253 11.24286384	11.18798041 11.02578921 11.71424393 11.17450219 9.881273262 10.96545279 11.55157253 11.24286384	11.83904134 11.18798041 11.02578921 11.71424393 11.17450219 9.881273262 10.96545279 11.55157253 11.24286384	10.60755946 11.83904134 11.18798041 11.18798041 11.02578921 11.71424393 11.17450219 9.881273262 10.96545279 11.55157253 11.24286384	11.15921769 10.60755946 11.83904134 11.18798041 11.18798041 11.71424393 11.17450219 9.881273262 10.96545279 11.55157253 11.24286384	12.18040499 11.15921769 10.60755946 11.83904134 11.18798041 11.12798041 11.171424393 11.17450219 9.881273262 10.96545279 11.55157253 11.24286384	11.13493053 12.18040499 11.15921769 10.60755946 11.83904134 11.18798041 11.18798041 11.171424393 11.171424393 11.17450219 9.881273262 10.96545279 11.55157253 11.24286384	11.43398335 11.13493053 12.18040499 11.15921769 10.60755946 11.83904134 11.18798041 11.18798041 11.171424393 11.171424393 11.17450219 9.881273262 10.96545279 11.55157253 11.24286384	11.42951673 11.43398335 11.13493053 12.18040499 11.15921769 10.60755946 11.83904134 11.18798041 11.171424393 11.1745278921 11.71424393 11.17450279 9.881273262 10.96545279 11.55157253 11.24286384	12.76701923 11.42951673 11.42951673 11.13493053 12.18040499 11.15921769 10.60755946 11.83904134 11.18798041 11.18798041 11.71424393 11.174508219 9.881273262 10.96545279 11.55157253 11.24286384	11.57504479 12.76701923 11.42951673 11.42951673 11.1399335 11.14399835 11.15921769 11.60755946 11.60755946 11.60755946 11.6075598041 11.16798041 11.171424393 11.17450452799 9.881273262 10.96545279 11.55157253 11.24286384	12.79434528 11.57504479 12.76701923 11.42951673 11.42951673 11.13493053 12.18040499 11.15921769 11.60755946 11.163904134 11.1657559461 11.714273262 10.96545279 9.881273262 10.96545279 11.55157253 11.24286384	11.84296017 12.79434528 11.57504479 12.76701923 11.42951673 11.42951673 11.13493053 11.13493053 12.18040499 11.15921769 11.60755946 11.83904134 11.1592578921 11.714298041 11.77424393 11.17450278921 11.96545279 9.881273262 10.96545279 11.55157253 11.24286384	12.62164584 11.84296017 12.70434528 11.57504479 12.76701923 11.42951673 11.42951673 11.1399355 11.1399355 11.145921769 11.15921769 11.60755946 11.60755946 11.83904134 11.17142578921 11.17450278921 11.17450278921 11.55157253 11.55157253 11.24286384

192.8804644 136.0252211 1	192.8804644 136.0252211 169.3723549 121.4085496	192.8804644 169.3723549		- 1°	18.79348772 18.64545074	25.98541074 20.39265757	31.58465981 29.99495648	7332.44594 5671.579049	421.9062227 319.0299221	0310a 0310b
13.3070708	122.3888893	14.88101135	142.6842707	161.6745369	17.38190404	21.45819678	38.30610508	6678.194243	468.86022	0309c
13.9919949	124.9391526	17.70112093	148.5872975	166.1805257	19.62565664	20.14275369	36.36882501	7425.365206	504.1773379	0309b
13.1530497	108.4039874	14.68376154	127.5295525	148.865687	15.9986426	15.32122753	30.98192505	5537.958569	390.3277808	0309a
11.0536831	100.6952891	14.06175554	124.0596678	173.8405339	18.63980746	19.89534957	27.30422438	6085.914356	331.7447601	0308c
11.6693464	101.8134645	14.84273733	119.67912	176.6845963	20.2291773	21.21075023	26.04120454	5947.736267	342.1775159	0308b
11.0907258	103.0414611	13.39193501	124.3670558	180.4007138	19.12624871	21.83034158	21.96458011	5963.990009	355.6320536	0308a
13.1796584	113.2254394	14.23702181	139.7532916	206.4840592	19.5230549	27.65225701	34.39625054	6938.974776	459.7249202	0306c
13.2843214	112.7760078	16.01061845	134.9207943	204.250173	20.43290737	30.87660021	41.25779668	7150.242382	393.0686047	0306b
11.6593365	109.6321972	15.2418124	135.3657461	201.0657895	19.17958812	24.83308065	35.92539532	6732.219566	393.9483414	0306a
11.5497208	100.0963279	13.64856875	118.570611	178.1262171	17.37496373	20.84439545	22.93736509	5827.408303	281.4569548	0305c
11.5028543	101.3670034	13.85956281	121.80028	178.7200883	17.02053138	21.99394098	29.4165542	5930.560693	337.3838965	0305b
11.7536805	103.9230928	12.05625068	122.2658426	183.2690483	19.02833306	23.21301432	28.95645998	5933.769601	332.1772693	0305a
12.0543011	102.9126344	15.22961738	122.1869411	181.0702289	20.38443449	21.46080456	42.43750747	5972.459415	407.1930477	0304c
11.5137456	103.7406646	14.94189949	123.9969976	188.1287266	21.08159403	19.99485554	35.24701604	6202.033346	392.6190054	0304b
12.9627508	110.4364658	14.5968232	133.7183635	196.8145278	19.47728878	25.24224654	37.12048965	6636.688332	415.9246749	0304a
12.1734860	105.5052824	15.84041996	127.8679625	189.8790202	21.03532071	20.99225111	33.88640115	6547.063411	402.8454464	0303c
12.1314756	105.6078807	12.76548196	130.0081402	189.9200988	18.95742272	23.87240785	32.92511993	6587.63546	379.0807513	0303b
11.4583055	105.7342402	13.64543912	128.6889698	183.5220967	19.77981225	24.64428949	26.45406104	6114.813489	352.9437254	0303a
13.2833314	100.2981938	14.11848239	120.9598691	174.2219365	19.06638173	24.2360155	28.46651048	6327.883577	302.1292203	0298b
12.8869527	108.4666347	14.00229299	126.5865194	191.878998	19.73913016	26.01874296	28.40517069	6387.868663	396.0579545	0298a
9.09607606	90.22009324	13.8114227	97.2827898	145.968493	15.15555156	14.68194178	32.74748317	4923.610155	265.6029527	0296c
11.1668595	101.4367275	13.63333328	120.53652	176.7607708	18.95714509	19.90475008	26.73757565	5903.432534	382.7185608	0296b
10.9093256	102.841958	15.42677011	125.5531559	182.6649396	19.20161067	22.73871141	30.79940718	6207.911556	370.7052035	0296a
11.7642243	97.24746944	14.01037234	121.6179867	174.6471973	16.94309523	20.8415116	30.06972646	6369.85698	388.8105907	0295c
10.8414984	99.16435053	12.02883558	118.445993	172.0602638	17.30962638	21.41207888	29.12845075	6433.14009	429.9927222	0295b
12.4376117	103.7018223	14.49466776	127.748176	187.3520573	19.60339641	22.58934668	37.78338344	7225.501956	446.2727779	0295a
11.6812267	104.2030385	14.26949841	126.6604464	183.6959012	20.32128196	18.71884524	39.68297415	6759.982466	338.3878782	0294c
11.9184267	104.4132277	15.65662961	120.9565691	176.6982839	19.40714092	19.7552175	27.82890945	6117.390952	333.7282917	0294b
12.28967806	102.9323276	14.13162539	123.2665183	184.8925186	19.7690536	19.79290995	28.77612821	6120.106007	333.552108	0294a

01.0000100	1	137 7747534	203 418029	22.21661845	25.70168283	35.1061017	6939.051447	393.9294245	0328a
Q	12.44703763	118.1298156	172.8507604	18.0813735	19.36598251	29.9951919	5851.338353	338.6331904	0327c
102.5848992	14.14881174	120.2452032	173.5975595	18.66615069	19.86169728	26.27998356	5864.139227	335.9381199	0327b
109.5324097	13.52928608	132.6437609	195.0139407	19.69003535	22.95906357	37.4074167	7209.680489	498.0998153	0327a
100.4509079	13.13665793	122.7936118	178.4230297	18.16879386	21.6431271	29.54942729	6107.605009	328.5858235	0324c
101.9788503	14.99211484	120.5158649	178.3400152	17.54115766	21.77911625	26.98859337	6073.479971	370.2474255	0324b
99.98522098	13.52089116	120.8265315	180.7896841	17.68673758	18.35035286	28.21588657	5813.575685	366.4095793	0324a
101.7213197	12.96984345	120.4202716	175.0806416	18.98810716	20.8958556	29.50006203	5869.316171	384.6163392	0323c
100.3300153	15.40929081	118.5422567	173.7540846	17.5259076	21.88396139	21.36585156	5822.20139	319.4995677	0323b
102.3531087	13.72250519	118.5907156	177.4378284	16.70153803	20.83958782	23.57680544	5909.583895	328.1990633	0323a
102.217076	15.34799948	123.8811073	177.8674941	18.4523035	20.45719473	25.28117395	5840.949334	383.8088576	0322c
104.0575538	14.90518728	122.0105232	180.1792739	18.61729827	21.88567359	27.61600429	6058.2771	402.3369743	0322b
102.8808203	12.43962619	121.13635	181.089698	18.42356804	20.14179777	28.63830074	5889.658875	361.0682935	0322a
104.906669	15.97550943	134.4014343	187.538731	20.79482382	22.13191452	39.27506223	7007.079743	416.4706608	0321c
107.6883399	14.50932378	129.9662027	196.0281216	22.13203462	21.3207995	37.68194055	6900.376646	427.0422014	0321b
100.6939829	14.859376	122.8969842	176.5507952	16.29343506	19.03605767	27.32515226	5941.929217	358.267989	0321a
96.06007181	13.28527458	112.5227932	161.8831148	18.0502016	15.49330311	22.01361444	5553.808613	281.9081839	0320c
99.90552681	14.5845749	117.7283066	172.7045323	18.19760438	16.74758022	29.6288474	5706.083236	419.1591102	0320b
98.37359097	14.24036952	112.6584909	167.6581942	19.80854596	18.14876853	23.70050989	5707.085235	319.9960962	0320a
101.273449	14.23190284	125.3278103	182.2409996	20.24726795	19.51493937	283.1544177	6413.417845	410.1936274	0319b
107.4675568	14.52649889	128.9239949	193.1548883	20.29756482	22.4906152	43.80025318	6671.728238	350.6176444	0319a
100.1923414	12.55691213	118.8171261	176.5390408	18.69872662	18.45828895	27.9865078	5925.358624	322.4847031	0317c
102.5970063	13.86221031	117.6105843	172.8446306	16.03418476	19.62577775	29.06243375	5814.546605	319.1805648	0317b
100.9553464	14.32889551	120.7668469	173.7917465	17.98013075	18.71334284	29.503768	5798.944773	419.9203085	0317a
91.74361527	14.46249222	107.7922557	157.4018476	16.75724903	15.49216876	25.14472366	5233.171666	355.0472225	0316c
91.68962968	13.02418886	105.0165349	151.5432011	16.4736605	15.3397416	22.50967831	5301.528203	338.9301122	0316b
100.5013954	15.58485412	118.6900814	174.3850371	19.68507826	21.26741761	22.59495631	5782.692549	386.5140361	0316a
97.43261443	13.51485009	111.9548509	166.8694715	20.27750741	17.03471786	24.73258176	5813.645907	365.5085144	0315c
97.77737092	13.20317335	120.2103794	172.6788014	19.54796246	17.63500881	29.22862072	6010.24377	373.3895531	0315b
98.1093995	11.3820835	116.3075664	166.8259409	18.26276877	18.93809711	30.01388464	5752.260211	351.5106278	0315a
103.1093802	14.55670148	120.2450692	176.9116063	18.56219682	20.63107956	280.790247	6115.809668	368.3035349	0310c

0349a 353.3451173	0346c 301.5696667	0346b 328.2645464	0346a 414.2282034	0345c 373.0867068	0345b 404.3782549	0345a 406.7883964	Ī	0344c 331.6315084				4 τυ ω ω	ω <u>4</u> τυ ω ω																	
5934.241784	5575.055414	6237.507569	5869.379084	5711.708029	5640.341561	6486.579452	5775.988022	5781.343956		6098.734154	6896.196796 6098.734154	5654.082467 6896.196796 6098.734154	5993.780271 5654.082467 6896.196796 6098.734154	5800.23074 5993.780271 5654.082467 6896.196796 6098.734154	6090.385066 5800.23074 5993.780271 5654.082467 6896.196796 6098.734154	6305.866418 6090.385066 5800.23074 5993.760271 5654.082467 6696.196796 6098.734154	6502,695424 6305,866418 6090,385066 5800,23074 5993,760271 5654,082467 6696,196796 6098,734154	6526.720411 6502.695424 6305.866418 6090.385066 5800.23074 5993.780271 5654.082487 6896.196796 6098.734154	6250.045652 6526.720411 6502.695424 6305.866418 6090.385066 5890.23074 5593.760271 5654.082467 6896.196796 6896.734154	7205.171085 6250.045652 6526.720411 6502.695424 6305.866418 66090.385066 5800.23074 5693.780271 5654.082467 6896.196796 6896.734154	6347.888173 7205.171085 6250.045652 6526.720411 6502.635424 6305.866418 66090.385066 5800.23074 5593.760271 5654.082467 6896.196796 6896.734154	5684.003229 6947.888173 7205.171085 6250.045652 6526.720411 6505.866418 66090.385066 5800.23074 5893.760271 5854.082467 6896.196796 6098.734154	6042.01488 5684.003229 6947.888173 7205.171085 6525.045652 6526.720411 6502.695424 65305.866418 6699.385066 5690.385066 5690.23074 5993.780271 5654.082467 6698.734154	5941.155667 6042.01488 5684.003229 6647.868173 7205.171085 65250.045652 65250.045652 6526.720411 6502.685424 65305.866418 66390.385066 5800.23074 5593.780271 55654.082467 6696.734154	6116.098866 5941.155667 6042.01488 5684.003229 66947.888173 7205.171085 6250.045652 6526.720411 6502.695424 6505.866418 66090.385066 5800.23074 5593.780271 5654.082467 6896.196796 6896.134154	6207.784482 6116.098866 5941.155667 6042.01488 5664.003229 6647.888173 7205.171085 6250.045652 6520.045652 6520.695424 6502.695424 6505.866418 66090.385066 5800.23074 5683.780271 56854.082467 6896.196796 6896.134154	6386.142653 6207.784482 6116.098866 5941.155667 6042.01488 5684.003229 6947.888173 7205.171085 6250.045652 6250.045662 6526.720411 6526.720411 6526.720411 6526.720411 6529.385066 5800.23074 5393.780271 5654.082467 6896.196796 6896.734154	5966.410531 6386.142663 6207.784482 6116.098866 5941.155667 6042.01488 5684.003229 6647.888173 7205.171085 6250.045652 6250.045652 6250.045652 6526.720411 6526.720411 6526.720411 6502.695424 6305.866418 6305.866418 5890.23074 5593.760271 5593.760271 5654.082467 6896.196796 6896.194745	6041.217774 5966.410531 6206.412653 6207.784482 6116.098866 5941.155667 6042.01488 5684.003229 6647.888173 7205.171085 6250.045652 6526.720411 6526.720411 6526.720411 6526.720411 6502.695424 6305.886418 6090.385066 5800.23074 5393.760271 5854.082467 6896.196796 6896.196796	5664.723296 6041.217774 5966.410531 6386.142653 66207.784482 66116.098866 5941.155667 6642.01488 5664.003229 69347.888173 7205.171085 6250.045652 6526.720411 6526.720411 6526.720411 6526.720411 6526.2695424 65305.886418 6699.385066 5800.23074 5393.780271 5854.082467 6896.196796 6898.734154
27.5343877	31.29588282	29.12753538	32.98081389	29.40910039	25.65318133	28.27917518	24.40048738	28.9992444		29.75366057	538.9145469 29.75366057	42.77785191 538.9145469 29.75366057	1095.391739 42.77785191 538.9145469 29.75366057	26.84677947 1095.391739 42.77785191 538.9145469 29.75366057	30.32268729 26.84677947 1095.391739 42.77785191 538.9145469 29.75366057	29.20259191 30.32268729 26.84677947 1095.391739 42.77785191 538.9145469 29.75366057	30.17055111 29.20259191 30.32268729 26.84677947 1095.391739 42.77785191 538.9145469 29.75366057	26.07048728 30.17055111 29.20259191 30.32268729 26.84677947 1095.391739 42.77785191 538.9145469 29.75366057	29.69122849 26.07048728 30.17055111 29.20259191 30.322687294 26.84677947 1095.391739 42.77785191 538.9145469 29.75366057	37.5903104 28.69122849 26.07048728 30.17055111 29.20259191 29.20259191 30.32268729 26.84677947 1095.391739 42.77785191 538.9145469 29.75366057	37.57784257 37.5903104 29.69122849 26.07048728 30.17055111 29.20259191 29.20259191 30.32268729 26.84677947 1095.391739 42.77785191 538.9145469 29.75366057	33.22839253 37.57784257 37.5903104 29.69122849 26.07048728 30.17055111 29.20259191 30.32268729 26.84677947 1095.391739 42.77785191 538.9145469 29.75366057	29.79995725 33.22839253 37.57784257 37.5903104 26.69122849 26.67048728 30.17055111 29.20259191 30.32268729 26.84677947 1095.391739 42.77785191 538.9145469 29.75366057	26.68635599 29.79995725 37.57784257 37.57784257 37.5903104 28.69122849 26.07048728 30.17055111 29.20259191 30.32268729 29.84677947 1095.391739 42.77786191 538.9145469 29.75366057	31.95305094 26.68635599 29.79995725 33.22839253 37.57784257 37.5903104 29.69122849 26.07048728 30.17055111 29.20259191 30.32266729 29.84677947 1095.391739 42.77785191	27.93506902 31.95305094 26.68635599 29.79995725 37.57784257 37.57784257 37.5903104 29.69122849 26.070487284 30.17055111 29.20259191 30.32268729 26.34677947 1095.391739 42.77785191 538.9145469 29.75366057	34.58980791 27.93506902 31.95305094 28.68635599 29.79895725 33.22839253 37.57784257 37.5903104 29.69122849 26.07048728 30.170551111 29.20259191 30.32268729 26.84677947 1095.391739 42.77785191 538.9145469 29.75366057	28.67950497 34.58980791 27.93506902 31.95305094 28.68635599 29.79985725 37.57784257 37.5903104 29.69122849 26.07048728 30.170551111 29.20259191 30.32266729 26.84677947 1095.391739 225.75366057 538.9145469 29.75366057	32.8402223 28.67950497 34.58980791 27.93506902 29.799505902 29.79995725 37.57784257 37.57784257 37.5903104 29.69122849 29.69122849 29.69122849 29.69122849 29.69122849 29.695391739 1095.391736 1095.391736	25.09272123 32.8402223 28.67950497 34.58980791 27.33506902 23.195305094 28.78985725 33.22839253 37.57784257 37.57784257 37.57784257 37.5903104 28.69122849 29.69122849 29.0755111 29.20259191 30.32268729 26.84677947 1095.391736 42.77786191 538.9145469 29.75366057
10 07005050	18.28636682	23.87059766	21.16022809	18.58771129	19.07812548	19.86664966	18.15651627	20.78434215	19.20330972		28.80735318	19.50531719 28.80735318	21.16584761 19.50531719 28.80735318	18.59065898 21.16584761 19.50531719 28.80735318	19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	20.14292844 19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	20.15177173 20.14292844 19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	22.65818122 20.15177173 20.14292844 19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	23.78198658 22.65818122 20.15177173 20.14292844 19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	25.93975174 23.78198658 22.65818122 20.15177173 20.14292844 19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	22.57079317 25.93975174 23.78198658 22.65818122 20.15177173 20.14292844 19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	18.24595017 22.57079317 25.93975174 23.78198658 22.65818122 20.15177173 20.14292844 19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	19.16898964 18.24595017 22.57078317 25.93975174 23.78198658 22.65818122 20.15177173 20.14292844 19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	17.68424899 19.16898964 18.24595017 22.57079317 23.78198658 22.65818122 20.15177173 20.14292844 19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	21.38696896 17.69424899 19.16898964 18.24595017 22.57079317 23.78198658 23.78198658 23.78198658 22.65818122 20.15177173 20.15177173 20.14292844 19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	22.27202811 21.38696896 17.69424899 19.16898964 18.24595017 22.57079317 25.93975174 23.78198658 22.65818122 20.15177173 20.14292844 19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	23.26244886 22.27202811 21.38696896 17.69424899 19.16896964 18.24595017 22.57079317 22.57079317 22.578198658 23.78198658 22.65818122 20.15177173 20.14292844 19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	23.62853586 23.26244886 22.27202811 21.38696896 17.69424699 19.16898964 18.24595017 22.57079317 22.57079317 22.65818122 23.78198658 22.15177173 20.14292844 19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	20.08119079 23.52853586 23.26244886 22.27202811 21.38696896 15.16898964 18.24595017 22.57079317 22.57079317 22.578198658 22.65818122 22.15177173 20.14292844 19.76635701 18.59065898 21.16584761 19.50531719 28.80735318	19.66842539 20.08119079 23.62853586 23.26244886 23.26244886 21.38696896 17.69424889 19.16898964 18.24595017 22.57078317 25.93975174 23.78198658 22.015177173 20.14292844 19.76635701 18.590658986 21.16584761 19.50531719 28.80735318
19.23378384	16.84546225	19.25547858	18.15942505	19.00534029	18.50491241	20.26292786	18.88456721	19.35489065	19.19828039		15.08211366	13.6206604 15.08211366	18.74129089 13.6206604 15.08211366	20.94827184 18.74129089 13.6206604 15.08211366	18.08197153 20.94827184 18.74129089 13.6206604 15.08211366	19.79301501 18.08197153 20.94827184 18.74129089 13.6206604 15.08211366	19.94508601 19.79301501 18.08197153 20.94827184 18.74129089 13.6206604 15.08211366	19.71622046 19.94506601 19.79301501 18.08197153 20.94827184 18.74129089 13.6206604 15.08211366	20.33847757 19.71622046 19.94508601 19.79301501 18.08197153 20.94827184 18.74129089 13.6206604 15.08211366	20.31899691 20.33847757 19.71622046 19.94508601 19.78301501 19.78301501 18.08197153 20.94827184 18.74129089 13.6206604 15.08211366	18.35108552 20.31899691 20.33847757 19.71622046 19.94508601 19.79301501 19.79301501 18.08197153 20.94827184 18.74129089 13.6206604 15.08211366	16.864.321.27 18.351.08652 20.31899691 20.33847757 19.71622046 19.71622046 19.94508601 19.79301501 18.08197153 20.94827184 18.74129089 13.6206604 15.08211366	18.09336841 16.86432127 18.35108552 20.31899691 20.33847757 19.71622046 19.94508601 19.94508601 19.79301501 18.08197153 20.94827184 18.74129089 13.6206604 15.08211366	19.98254928 18.09336841 16.86432127 18.35108552 20.33847757 19.71622046 19.94508601 19.94508601 19.79301501 18.08197153 20.94827184 18.74129089 13.6206604 15.08211366	19.61873325 19.98254928 18.08336841 16.86432127 18.35108552 20.31899691 20.31899691 20.31899691 19.71622046 19.94508601 19.94508601 19.79301501 18.08197153 20.94827184 18.74129089 13.6206604 15.08211366	20.94977986 19.61873325 19.98254928 18.09336841 16.86432127 18.35108552 20.31899691 20.31899691 20.33847757 19.71622046 19.94508601 19.745301501 18.74129089 13.6206604 15.08211366	20.29321273 20.94977986 19.61873325 19.98254928 18.08336841 18.08336841 18.35108552 20.31899691 20.31899691 20.33847757 19.71622046 19.94508601 19.79301501 18.74129089 13.6206604 15.08211366	19.716994,32 20.29321273 20.94977986 19.61873325 19.96254928 18.09336641 16.864,32127 18.35108652 20.31899691 20.31899691 20.33847757 19.71622046 19.71622046 19.71622046 19.745208601 18.74129089 13.6206604 15.08211366	18.41477264 19.71699432 20.28321273 20.94977986 19.61873325 19.61873325 19.61873325 19.61873325 19.61873325 19.61873325 20.338647 18.35108552 20.31896951 20.33847757 19.71622046 19.71622046 19.71622046 19.74129089 18.74129089 13.6206604 15.08211366	18.60874138 18.41477264 19.71699432 20.29321273 20.94977986 19.96254928 18.09336841 16.86432127 18.35108552 20.33847757 19.71622046 19.94508601 19.79301501 18.08197153 20.94827184 18.74129089 13.6206604 15.08211366
	173.5069893	187.9303436	180.7457443	172.6713742	166.5466062	181.3839271	177.8777638	174.0849487	176.7310189		152.1844743	137.1530688 152.1844743	178.7725051 137.1530688 152.1844743	174.2087932 178.7725051 137.1530688 152.1844743	181.1013338 174.2087932 178.7725051 137.1530688 152.1844743	183.8418845 181.1013338 174.2087932 178.7725051 137.1530688 152.1844743	181.26911 183.8418845 181.1013338 174.2087932 178.7725051 137.1530688 152.1844743	185.5808732 181.26911 183.8418845 181.1013338 174.2087932 178.7725051 178.7725051 137.1530688 152.1844743	187.7978461 185.5608732 181.26911 183.8418845 181.1013338 174.2087932 178.7725051 137.1530688 152.1844743	197.6960364 187.7978461 185.5608732 181.26911 183.8418845 181.1013338 181.1013338 181.1013338 181.7013368 174.2087932 178.7725051 137.1530688 137.1530688	194.5493808 197.6960364 187.7978461 185.5808732 185.26011 183.8418845 181.1013338 181.1013338 174.2087932 178.7725051 178.7725051 137.1530688 152.1844743	168.3650452 194.5493808 197.6960364 187.7978461 185.5608732 181.26911 183.8418845 181.1013338 181.1013338 174.2087932 178.7725051 137.1530688 152.1844743	179.6074712 168.3650452 194.5493808 197.6960364 187.7978461 185.5608732 181.26911 183.8418845 181.1013338 174.2087932 178.7725051 137.1530688 152.1844743	173.5837257 179.6074712 168.3650452 194.5493808 197.6860364 197.7878461 187.7978461 185.5608732 181.26911 183.8418645 181.1013338 174.2087932 178.7725051 137.1530688 152.1844743	181.5285541 173.5837257 179.6674712 168.3650452 194.5493808 197.6960364 197.6960364 197.6960364 187.7978461 183.841864532 181.1013338 174.2087932 178.7725051 137.1530688 152.1844743	185.1150775 181.5285541 173.5837257 179.6074712 188.3650452 194.5493808 197.6960364 197.6960364 197.6960364 187.7978461 185.5808732 181.26911 183.8418845 184.1013338 174.2087932 178.7725051 137.1530688	190.3745964 185.1150775 181.5285541 173.5837267 179.6074712 168.3650452 194.5493806 197.6960364 197.6960364 197.6960364 197.6960364 181.1013336 181.1013336 181.1013336 174.2087932 178.7725051 137.1530668	177.6546999 190.3745964 185.1150775 181.5285541 173.5837257 179.6074712 168.3650452 194.5493808 197.6960364 197.6960364 197.6960364 197.6960364 181.7978461 183.8418845 181.1013338 174.2087932 178.7725051 137.1530688	177.651042 177.6546999 190.3745964 185.1150775 181.5285541 173.6837257 179.6074712 168.3660452 194.5493808 197.6960364 197.6960364 197.6960364 197.6960368 197.6960364 197.1250691 181.1013338 174.2087932 178.7725051 137.1530688	166.6475391 177.851042 177.6546999 190.3745964 185.1150775 181.5285541 179.6074712 168.3850452 194.5493808 197.65600364 197.56600364 197.56600364 187.7978461 183.8418645 181.1013338 174.2087932 178.7725051 137.1530688
101 7550106	124.8403493	135.6422245	131.2445649	118.6063921	119.580799	125.5323272	117.3667213	119.3619754	124.4692148		85.71680084	72.3162858 85.71680084	119.1716817 72.3162858 85.71680084	115.4214566 119.1716817 72.3162858 85.71680084	118.8786328 115.4214566 119.1716817 72.3162858 85.71680084	122.5829995 118.8786328 115.4214566 119.1716817 72.3162858 85.71680084	126.0427192 122.5829995 118.8786328 115.4214566 119.1716817 72.3162858 85.71680084	126.228151 126.0427192 122.5829995 118.8786328 115.4214566 119.1716817 72.3162858 85.71680084	129.6004869 126.228151 126.0427192 122.5829995 118.8786328 115.4214566 119.1716817 72.3162858 85.71680084	132.300437 129.6004869 126.228151 126.0427192 122.5829995 122.5829995 122.5829995 122.5829995 122.5829995 123.521682986 119.1716817 72.3162858 85.71680084	131.3738108 132.300437 129.6004869 126.228151 126.0427192 122.5829995 122.5829995 122.5829995 122.5829995 123.4214566 115.4214566 119.1716817 72.3162858 85.71680084	114.4178295 131.3738108 132.300437 129.6004869 126.228151 126.228151 126.427192 122.5829995 118.8786328 115.4214566 119.1716817 72.3162858 85.71680084	121.8353691 114.4178295 131.3738106 132.300437 129.6004869 126.028151 126.0427192 122.5829995 122.5829995 118.8786528 115.4214566 119.1716817 72.3162858 85.71680084	118.5091234 121.8353691 114.4178295 131.3738108 132.300437 129.6004869 126.028151 126.028151 126.0427192 125.829995 122.5829995 118.8786328 115.4214566 119.1716817 72.3162858	124.6885434 118.5091234 121.853691 114.4178295 131.3738108 132.300437 129.6004869 126.028151 126.028151 126.0427192 125.823995 118.8786328 115.4214566 119.1716817 72.3162858 85.71680084	126.2334646 124.6885434 118.5091234 121.8353691 114.4178295 131.3738108 132.300437 129.6004869 126.228151 129.6004869 126.0427192 122.5829995 128.71682995 119.1716817 72.3162858	128.5706022 126.2334646 124.6885434 118.5091234 121.3535691 124.4178295 131.3738108 132.300437 129.6004869 126.228151 126.0427192 125.5829995 118.8786328 115.4214566 119.1716817 72.3162858	122.6107806 128.5706022 126.2334646 124.6885434 118.5091234 114.4178295 131.3738108 132.300437 129.6004869 129.6004869 126.228151 126.228152 126.228151 126.228152 126.288152 126.288152 126.288152 126.288152 126.288552 126.288552 126.288552 126.2885552 126.2885555555555555555555555555555555555	127.0929269 122.6107806 128.5706022 126.2334646 128.5091234 124.6885434 118.5091234 114.4178295 121.3738108 131.3738108 132.300437 129.6004869 132.582995 126.028151 126.028151 126.228151 126.228151 126.6228151 126.7182 125.4214566 119.1716817 72.3162858 85.71680084	119.143722 127.0929269 122.6107806 128.5706022 128.5706022 126.2334646 124.6885434 121.8353691 114.4178295 131.3738106 132.300437 132.300437 125.6004869 135.2300437 125.6004869 125.2829995 118.8786528 119.1716817 72.3162858
	14.29098339	13.16652583	13.32516053	13.64527587	13.03028758	15.04749943	12.85484552	14.08226995	12.9385684		15.1727873	14.42564496 15.1727873	12.55643321 14.42564496 15.1727873	16.71643185 12.55643321 14.42564496 15.1727873	15.5497045 16.71643185 12.55643321 14.42564496 15.1727873	13.80026767 15.5497045 16.71643185 12.55643321 14.42564496 14.42564496	14.63362165 13.80026767 15.5497045 16.71643185 12.55643321 14.42564496 15.1727873	13.73541898 14.63362165 13.80026767 15.5497045 16.71643185 12.55643321 14.42564496 15.1727873	14.32209812 13.73541898 14.63362165 13.80026767 15.5497045 16.71643185 12.55643321 14.42564496 15.1727873	14.92164473 14.32209812 13.73541898 14.63362165 13.80026767 15.5497045 16.71643185 12.55643321 14.425644396 14.42564439	16.33548163 14.92164473 14.32209812 13.73541898 14.63362165 13.80026767 15.5497045 16.71643185 12.55643321 14.42564496 14.42564496	13.53386251 16.33548163 14.92164473 14.32209812 13.73541898 14.63362165 13.80026767 15.5497045 16.71643185 16.71643185 12.55643321 14.42564496	13.38461577 13.53386251 16.33548163 14.92164473 14.32209812 13.73541888 14.63362165 13.80026767 15.5497045 16.71643185 16.71643185 12.55643321 12.55643321	14.74636723 13.38461577 13.53386251 16.35548163 14.92164473 14.92164473 14.32209812 13.75541898 14.63362165 13.80026767 15.5497045 16.71643185 16.71643185 12.55643321 14.42564496 15.1727873	13.85599897 14.74636723 13.38461577 13.53366251 16.33548163 14.92164473 14.92164473 14.92164473 14.63362165 13.80026767 15.5497045 15.7497045 12.55643321 14.42564436 14.42564436	16.1618194 13.85599897 14.74636723 13.38461577 13.38461577 13.338461577 13.53386251 14.92164473 14.92164473 14.922164473 14.93262165 13.73541898 14.63362165 15.5497045 15.75643321 14.42564499 14.42564499	13.9298822 16.1618194 13.85599897 14.74636723 13.38461577 13.38461577 13.35386251 14.92164473 14.92164473 14.92164473 14.92164473 14.63362165 13.73541898 13.73541898 14.63362165 15.5497045 15.75643321 14.42564498	14.01788159 13.9298822 16.1618194 13.85599897 14.74636723 14.74636723 14.326386251 14.32386451577 13.338461577 14.3238645163 14.92164473 14.92164473 14.92164473 14.92164473 14.92164473 14.9256439216 15.55643321 15.55643321 14.42564496 14.42564496	14.25698707 14.01788159 13.9298822 16.1618194 13.85599897 14.74636723 13.38461577 13.53386251 16.3548163 14.92164473 14.92164473 14.92164473 14.63362165 13.80026767 15.5497045 16.71643185 12.55643321 14.42564436 14.42564436	13.93024643 14.256898707 14.01788159 13.9298822 16.1618194 13.38461577 14.74636723 13.33461577 13.53386251 13.53386251 14.32164473 14.92164473 14.92164473 14.32209812 13.73541898 14.63362165 15.5497045 15.74643185 12.55643321 14.42564496 15.1727873
0 07 15476205	9 100.1795747	3 107.9910659	3 102.7438439	7 99.69673849	3 99.48584042	3 104.1450838	2 102.7874136	5 100.5906458	103.0778446		3 111.3022292																			
11.03709962	12.00067612	12.39518812	11.97871416	12.04827151	10.71355783	11.58496164	11.44883674	11.57064685	11.56819147		15.16930424	12.84687172 15.16930424	12.60358971 12.84687172 15.16930424	10.8214483 12.60358971 12.84687172 15.16930424	11.04992523 10.8214483 12.60358971 12.84687172 15.16930424	11.59433653 11.04992523 10.8214483 12.60358971 12.84687172 15.16930424	12.39012787 11.59433653 11.04992523 10.8214483 12.60358971 12.84687172 15.16930424	12.15693889 12.39012787 11.59433653 11.04992523 10.8214483 12.60358971 12.84687172 15.16930424	11.9859709 12.15693889 12.39012787 11.59433653 11.04992523 10.8214483 12.60358971 12.84687172 15.16930424	12.40055057 11.9859709 12.15693889 12.39012787 11.59433653 11.04992523 10.8214483 12.60358971 12.84687172 15.16930424	13.81078604 12.40055057 11.9859709 12.15693889 12.39012787 11.59433653 11.59433653 11.04992523 11.04992523 12.60358971 12.84687172 15.16930424	11.19912152 13.81078604 12.40055057 11.9859709 12.15693889 12.39012787 11.59433653 11.04992523 11.04992523 11.04992523 12.60358971 12.84687172 15.16930424	11.5281719 11.13912152 13.81078604 12.40055057 11.3859709 12.15693889 12.39012787 11.59433663 11.04992523 11.04992523 10.8214483 12.60358971 12.84687172 15.16930424	10.56451825 11.5281719 11.18912152 13.81078604 12.40055057 11.9859709 12.15693889 12.39012787 11.59433653 11.04992523 11.04992523 12.60358971 12.84687172 15.16930424	12.04375437 10.56451825 11.5281719 11.19912152 13.81078604 12.40055057 11.9859709 12.15693889 12.39012787 11.59433653 11.04992523 11.04992523 12.60358971 12.84687172 15.16930424	11.58185729 12.04375437 10.56451825 11.5281719 11.19812152 13.81078604 12.40055057 11.9859709 12.15693889 12.15693889 12.39012787 11.59433653 11.04992523 11.04992523 12.60358971 12.60358971 12.84687172	12.87147982 11.58185729 12.04375437 10.56451825 11.19912152 13.81078604 12.40055057 11.9859709 12.15693889 12.15693889 12.603589719 12.603589719 12.84687172 15.16930424	11.38227728 12.87147982 11.58185729 12.04375437 10.56451825 11.5281719 11.19812152 13.81078604 12.40055057 11.9859709 12.39012787 11.59433653 11.04992523 11.04992523 12.60358971 12.84687172 15.16930424	11.61847911 11.38227728 12.87147982 11.58185729 12.04375437 10.56451825 11.19012152 13.81078604 12.40055057 11.9859709 12.15693889 12.39012787 11.59433653 11.04992523 12.60358971 12.84687172 15.16930424	10.28608468 11.61847911 11.36227728 12.87147982 11.58185729 12.04375437 11.5281719 11.13912152 13.81078604 12.39012787 11.9859709 12.15693869 12.39012787 11.59433653 11.04992523 12.60358971 12.84687172 15.16930424

34.98518897 22.4495109 18.20300481 32.0658232 20.89775608 19.56264641 35.80513283 18.77893063 17.49105348
21.94960226 18.87074657 21.01576804 17.31582084
18.67251597
17.59592626
18.8403284
16.96402523
19.29163837
17.98473719
18.14390412
18.93560344
18.929576
20.03411637
16.87895752
17.86530502
17.58405257
11.46110281
14.86817537
13.64029057
18.2782348
19.00250201
20.03908692
16.61224357
17.56011546
19.70119248
16.9815811

11.1.02471 11.225008797 18.6.0374402 166.7681623 19.25508797 15.89012331 166.1897172 17.70038302 17.36870112 172.8638053 20.59274493 20.9198524 183.883543 21.41694126 17.44806293 186.2384538 21.41694126 17.44806293 186.2384538 21.41694126 17.44806293 186.2384538 21.41694126 17.44806293 186.2384538 21.41694126 17.44806293 186.2384538 21.41694126 17.44806293 186.2384538 21.6120477 20.2505635 181.8876688 21.630302663 19.87377288 167.6379618 18.03020663 19.8262444 180.766461 18.03020663 19.8262444 180.766461 22.71330561 18.11828789 177.2078542 22.27423462 19.74077968 184.5535159 24.39433022 19.74077968 184.5535159 24.39433022 19.74077968 184.5535159
11.5.60374402 18.60374402 15.89012331 17.36870112 20.9198524 17.44806293 20.2505835 15.97377288 19.8727464 19.8727464 19.8624444 19.91339381 15.98910211 18.74077968
11.3660374402 18.60374402 15.89012331 17.36870112 20.9198524 17.44806293 20.2505835 15.97377288 19.8727464 19.82624444 19.82624444 19.91339381 15.98910211
11.360374402 18.60374402 15.89012331 17.36870112 20.9198524 17.44806293 20.2505835 15.97377288 19.87277464 19.8727464 19.8727464 19.91339381 18.11828789
13.2501102 18.60374402 15.89012331 17.36870112 20.9198524 17.44806293 20.2505835 15.97377288 19.8727464 19.8727464 19.8727464 19.91339381
18.60374402 18.60374402 17.36870112 17.36870112 20.9198524 17.44806293 20.2505835 15.97377288 19.8727464 19.8727464
18.60374402 18.60374402 17.36870112 17.36870112 17.36870112 17.44806293 20.2505835 15.97377288 19.8727464
17.360374402 18.60374402 17.36870112 17.36870112 120.9198524 17.44806293 17.44806293 15.97377288
17.360374402 18.60374402 15.89012331 17.36870112 20.9198524 17.44806293 20.2505835
18.60374402 18.60374402 15.89012331 17.36870112 20.9198524 17.44806293
17.32001103 18.60374402 15.89012331 17.36870112 20.9198524
17.52001105 18.60374402 15.89012331 17.36870112
18.60374402
18.60374402
COLLOD7C' / L
17 2362112
21.83938478 18.82579607 177.9636469
21.2219808 16.07770217 169.9989755
18.84535896 17.2276423 171.9856394
19.6443482 19.34245347 172.4994274
21.96723472 20.08907745 176.2308756
15.13273541 17.33450943 159.0686845
19.15070016 16.43251468 167.161029
19.9742814 19.63854319 180.3849165
18.88481782 17.2646493 174.9505834
19.48863235 17.23391733 167.0877862
23.07193026 18.89195451 183.8709964
21.78559072 18.61526081 176.471672
19.38230977 18.18731344 176.2793325
22.02952344 19.68810502 184.3308752
18.47835152 16.50652955 164.6099323

0385b	0385a	0384c	0384b	0384a	0383c	03836	0383a	0380c	40860	0380a 4	0379c	0379b	0379a 4	0378c	0378b (0378a	0377b (0377a (0376c (0376b (0376a (0375c	0375b (0375a 4	0374c (0374b	0374a (0372c	0372b
388.5612306	296.5916688	348.1816017	375.081423	371.0008723	316.824999	349.3666227	340.4089871	369.2959118	474.1800785	469.9595532	443.8597199	391.3673045	438.5939193	549.2997988	549.8611823	544.8696872	372.8954253	355.3383785	374.2929146	369.4096301	356.5635784	445.932371	351.7286478	424.7416201	326.7139926	381.7103619	375.3123006	394.3402098	432.0368694
6136.643653	5948.217552	5464.068352	5701.912479	5757.445084	6081.941787	5841.615151	6028.689482	6205.73954	8302.829133	8422.877597	7596.377819	6763.57548	7133.262366	9132.485977	8949.532109	8704.576418	6444.686346	6468.941824	6349.721516	6032.668975	5862.91052	6716.101248	5790.614741	6785.063894	5429.206813	6379.304456	6291.995574	6591.986568	7076.859219
27.35151877	30.84464342	28.83922896	28.23298706	26.73254124	25.84734927	29.1446674	27.55736763	32.94583909	47.96706724	44.06569169	35.38081069	31.74052058	38.28694382	50.42826425	53.3147031	47.92200955	38.35932236	32.61671004	33.37382557	24.80238926	26.46916458	34.88241783	32.71236251	40.91999818	26.88309158	51.26572989	33.10970875	38.751696	35.11295666
22.14565978	20.27707865	18.38820227	15.67939858	17.1965966	20.2314498	20.31501361	20.61250871	23.9822095	28.94322798	31.60445801	28.47124222	28.16007857	26.68887562	32.1964932	31.56707302	30.30389329	25.36273351	23.67602299	21.05840659	18.67288491	18.84535514	25.37796415	21.75449114	23.35675764	19.30733495	20.58201074	21.41188305	25.32074887	24.63022835
19.93289122	18.22280537	16.61630871	17.47731868	18.81162475	18.97753428	17.19109132	19.69855048	19.30714561	23.08225124	25.88318668	23.30072033	21.09276415	23.10005749	25.33451292	24.89268701	24.46167316	20.49679371	19.1022656	19.66521773	19.69071879	18.72407033	21.4785117	16.6641547	19.02657241	18.28842274	18.25932102	19.15195263	20.54993171	22.78197241
181.1891639	174.6579797	160.6550797	170.8911344	173.9007492	179.781003	174.9428051	177.3466134	181.452029	223.7078071	229.9032972	213.0326076	196.4134665	210.1504373	235.2818413	243.4442042	236.4030188	190.2179855	189.4088037	185.7613398	176.1405148	173.0036698	192.2611412	170.8751792	196.6702775	162.2553048	176.6584717	184.2126261	183.3333379	203.3797884
123.4217439	119.5076714	108.4976837	115.6575616	119.6514818	119.7797156	119.0129269	122.0929853	122.8427433	147.9653537	147.7486398	143.7204517	137.2440383	141.0613855	153.2058726	159.3549304	157.6675538	129.8398171	132.312575	125.9250556	122.5822455	120.811049	131.7413845	117.2159257	134.6481469	112.1246673	121.0099845	128.7971364	128.2129474	138.8762074
14.98763645	15.296144	13.59556527	12.38491911	13.71007691	13.23538183	13.45815668	14.66688874	13.35550636	13.74458532	14.02899754	16.66990474	14.91494336	14.32812153	14.59705207	15.41079505	14.81415856	15.62749957	14.93239251	14.39835131	14.00899469	13.69683474	16.24143496	13.20077293	13.6925409	13.43010361	14.72515278	14.72280538	15.99614462	15.12786154
104.4239045	100.9479362	96.10574533	98.08622685	100.357989	102.5954052	101.232971	101.8329997	101.2697543	114.5984378	111.7828538	113.049927	108.7152927	112.8140258	119.0577817	122.0916786	119.3095407	108.4449162	107.0971673	102.7446231	101.7752289	99.12494008	108.3269789	99.41422972	111.2951574	95.87587625	102.0801309	102.1318872	104.6771431	110.0043761
11.62353987	11.40610643	10.48541944	9.907588349	10.25699342	12.71913337	10.60828441	11.62353288	13.27138298	13.35254107	14.20281013	13.31021191	12.89893842	13.65670781	15.84677176	14.3849651	15.03150922	11.65465964	12.57875847	12.56166264	11.74951236	10.87872804	12.04484183	10.87388885	13.3830608	10.79768482	11.3695891	11.22959115	12.92285835	13.0697393

		203.5389716 204.9182305		20.11039408 19.22241756	25.4650391 26.68585732	39.44756903 44.15793597	6875.001383 6898.299275	392.1214868 414.16595	0400a 0400b
111.7936217 14.7657430	15.38696605	144.3527356	212.99486	21.40215503	27.99813147	38.72409212	7371.615888	444.9898407	0397b
116.8336839	14.0195631	144.2583358	215.4641873	22.2714858	30.20802878	41.03136304	7416.323882	405.4615095	0397a
109.2684064	12.92588578	135.9992222	200.0449998	19.32357991	26.13431872	43.23809819	7165.386436	429.7452859	0396c
106.6279509	13.47563745	124.0001226	183.5409893	18.10081305	22.28172123	25.9158731	6292.93504	402.5423938	0396b
102.7122166	13.42563299	120.246047	178.9624507	17.04256598	22.85338736	31.65245153	5848.41519	372.9182606	0396a
102.2926376	13.01696096	118.3148609	179.3922406	18.5858224	20.23725797	26.88540575	5912.466249	300.4296741	0395c
102.6695112	13.89373662	125.7761547	182.6994647	18.57092861	20.30549543	27.14906528	6144.716807	354.0213914	0395b
106.9716225	14.66253968	126.9499701	190.1445347	19.96328195	23.90850119	32.69271301	6457.432941	373.9857146	0395a
102.3803987	13.96594383	124.0337578	183.7986894	18.25687638	23.19269315	35.00397681	6040.762133	420.6524768	0393c
107.0008065	15.3276716	124.9246648	182.0922343	20.29526576	22.18495586	31.55991873	6179.029381	381.5367116	0393b
100.797299	13.12322672	115.6560813	174.6605684	17.95198788	21.59949917	30.66901529	5684.281439	358.2251398	0393a
97.14298749	14.28709192	114.4324023	170.0804151	16.66861969	18.44706172	27.29789406	5743.840737	371.6182699	0392c
89.01847201	12.23738803	116.784755	152.5009121	16.25925015	14.82570366	20.61806181	5754.724857	281.4016473	0392a
96.13919647	13.6617072	116.9270312	169.2515172	15.92969175	17.44346201	28.70175527	5483.043274	276.2599591	0391c
98.47812514	12.78747381	115.5487674	169.507999	15.50343836	20.85204764	32.06512544	5451.327917	310.7506307	0391b
101.6514269	13.94122777	121.2156697	174.7188893	18.99584492	23.36074173	36.81218638	5854.595657	361.9191598	0391a
101.814615	13.63195276	122.3651011	181.0657933	19.44044169	19.52249179	28.44620739	6122.005675	410.492512	0390c
99.38358842	14.19684491	118.1822443	171.6537816	18.71632746	18.70411291	26.63455671	5717.440942	356.7912649	0390b
97.6950337	12.64844517	119.2533167	174.0774717	19.134187	19.39944138	28.28126822	5765.802084	379.790442	0390a
111.3349249	15.83251095	141.5601275	211.1090699	22.48819194	25.47848154	43.6808454	7167.282224	454.8189852	0389c
108.273256	16.4531036	132.8966083	192.2071795	20.1083109	22.91090104	285.4490676	6635.65743	359.9138179	0389b
116.0774226	14.65048143	136.8818744	205.1618464	21.60168054	26.49210753	326.2468695	7365.167585	363.3357658	0389a
111.8338812	13.83367212	135.6622912	201.5851587	23.10561678	27.64887311	45.0921679	7337.895897	403.3565996	0388c
111.876035	14.86108262	138.8763073	207.1757685	21.11425826	27.47459289	46.82062077	7373.483994	411.7902284	0388b
116.7503334	14.96396315	145.7473824	219.5051872	21.13931362	28.30208326	48.5769437	7702.194328	456.3224902	0388a
104.9357899	13.43163446	68.5589719	132.3498411	12.94157974	18.1537816	43.05875215	5783.99199	421.0585462	0387c
100.2416738	13.68932372	73.11002662	135.8921186	14.41550109	17.85526279	37.03253881	5539.405107	462.5687983	0387b
105.1328848	15.63093819	76.9181325	142.8177112	14.7971867	18.05862793	46.64494944	6169.354879	499.7198946	0387a
100.7357384	13.81950383	119.1064672	176.56538	19.22945311	18.4605776	28.00115307	5846.223805	313.7324336	0385c

0412a 39	0411c 3	0411b 39	0411a 4.	0409b 40	0409a 43	0408c 38	0408b 3	0408a 3	0407c 2	04076	0407a 4:	0406c 34	0406b 33	0406a 34	0405c 3	0405b 3.	0405a 31	0404c 30	0404b 33	0404a 3:	0403c	0403b 21	0403a 3	0402c 3-	0402b 3	0402a 3	0401c 40	0401b 4	0401a 30	
393.5624984	310.9243902	390.9727087	414.0581681	407.5581196	426.2289792	385.2635014	332.3213729	359.4131465	279.6345419	347.459421	414.6409647	345.0475557	335.3095423	346.5060615	359.0935447	372.5287025	379.3487163	306.7106374	327.1415154	330.9002961	356.671063	288.6847016	355.1484019	343.3131512	370.2672027	355.6714248	402.5974863	457.1187138	362.6817922	
6230.658123	5938.185895	6674.005368	7171.897914	6333.414974	6429.839865	6188.473321	6361.695438	6227.080508	4785.903935	6182.422775	6757.509576	7028.151259	5635.891926	6021.668836	5747.835993	5740.069278	6218.271324	5671.142343	5889.156765	5773.905965	6565.823634	5846.936231	6144.091289	5489.969336	5581.317078	5450.255969	6728.403784	6414.177885	7060.57923	
36.60850456	27.98961225	30.55074903	41.63336411	31.2307713	34.64570198	30.03285683	29.49397419	30.38531286	26.0005847	27.40167238	35.64699033	32.49317414	28.33498004	28.10506718	21.18862954	24.85670235	28.63997593	27.02406038	28.8670207	28.93714533	35.41475336	25.38905978	24.65335176	26.94601223	25.25892724	26.72898132	32.24776606	28.01445487	38.78630974	
23.34242975	20.53395561	22.89986871	24.4870342	22.68467619	25.37627628	19.81193889	23.16721172	22.66568493	17.36330493	21.69357995	24.09781065	20.81696973	18.77562924	19.64924001	19.08171173	19.62645766	18.9630726	15.89421774	20.16145541	16.20335289	22.19011235	17.90210321	19.36342505	14.7056044	19.708276	18.78401189	23.64846437	22.62519937	27.89698691	
17.97154981	17.8465142	20.33096607	23.98234758	18.45636949	20.70630701	19.83948856	18.59827464	19.33075071	14.35361522	17.20567107	21.26633901	17.72711895	18.40402654	18.52309486	18.1531745	17.06608093	20.30573541	18.18746803	18.92170172	18.38172611	18.96507456	16.43761278	17.52480373	16.23778437	16.88712615	16.63775978	22.73621091	20.43745926	20.32188987	
182.9366846	168.5358048	198.0380735	208.5195091	187.5276572	183.8055451	180.6101609	190.4056137	184.8434185	152.2038949	180.3505785	194.9629531	181.9678004	168.881441	176.1936815	169.0535284	176.3834043	179.7245804	162.2976595	174.0610317	171.6714556	187.1148172	160.3953818	173.4983558	166.8872993	169.3905087	167.7831195	199.7847275	192.2640086	202.6196769	
125.7634903	115.5928599	132.3208789	141.1801754	122.9151587	127.8801206	124.5091867	128.8851706	126.6173804	103.2753939	123.6478854	129.7187484	121.2107314	115.9137878	119.6567377	115.8912313	117.72597	124.4699038	110.5624475	115.7150868	117.5741945	126.1381794	109.993605	118.3495325	113.1237886	113.172815	112.8549948	135.7802517	131.5535592	137.6929715	
14.24273096	14.68154006	14.66640404	15.43762318	13.89002657	13.93251485	13.60177377	14.39625411	15.01738189	9.747438743	12.42452354	12.64448537	13.89841995	12.48173815	14.707882	13.44478485	14.02528408	13.04262447	13.5606723	14.42391207	14.58846389	13.77611336	11.75155716	12.92565319	13.28073132	12.35094374	12.96100439	14.08636711	12.56621131	16.12117795	
101.3615618	101.8813099	110.944066	113.051675	104.6280537	102.9935931	104.8010738	105.2942165	106.6100618	91.40319169	101.8517451	105.7262609	102.9662452	101.1152671	100.8763345	95.46419289	98.49319236	99.4462835	95.74242513	98.92909697	100.7642415	106.1259903	95.46229798	97.75960055	95.25543293	96.05382546	97.72007082	107.9880363	107.8818214	110.8596999	
12.41140317	11.16993597	13.03783989	12.88724852	11.22085759	11.95951035	11.02363281	11.45935864	12.23169583	11.1638115	12.76443556	12.3335604	12.48303599	10.18813119	12.04341804	11.64940227	10.98742844	11.97228145	10.99845082	10.63421429	10.32937176	11.86135141	11.21187445	11.00484566	10.48058026	10.29755037	10.86564446	13.14473618	12.76063895	11.6481302	

152.4591039 106.4923267 153.8279733 107.2649057	152.4591039 153.8279733	152	14.45820675 14.18256975	20.55977195 19.28399206	31.84055926 34.0141122	5518.187415 5587.600308	277.8761279 316.0851702	0422b 0422c
	124.6814509	183.5400893	20.25303168	21.05936831	31.90137648	6233.039197	343.1497259	0422a
	130.2018676	193.59323	17.27624236	22.01859611	37.23496164	6637.966804	399.7048806	0421c
	118.1313692	169.6397138	18.95124208	18.47644031	28.1246835	5896.257177	356.7169183	0421b
	121.5959012	173.7636556	18.59985348	19.21173413	32.1223289	6135.688545	351.3454395	0421a
(0)	125.6595579	179.4088828	20.24403076	22.27097623	33.85198873	6168.243792	351.4918581	0420b
4	120.8845974	174.4751563	18.62040557	22.25252378	33.28642456	6043.972965	353.8976922	0420a
88	118.3969198	177.06536	17.50650482	19.26236473	26.35541985	5798.878598	378.246933	0419c
2	116.165407	172.8718089	15.84131089	17.68237673	25.87489469	5661.327452	332.9857958	0419b
306	125.2112908	183.1025219	18.41192322	21.81982141	33.66663133	6501.089954	421.1127792	0419a
597	122.2885697	174.4402876	17.45290858	18.69148065	25.01189386	6120.254791	352.4938989	0418c
674	110.4810674	165.026588	16.44928821	18.64864845	29.21785481	5769.394051	329.6668186	0418b
984	113.3621984	165.6655268	15.58104115	20.11276693	32.10211559	5614.988938	277.9202443	0418a
432	105.791432	153.3855396	15.35965826	14.32548508	28.78967354	5244.6754	363.1908138	0417c
4703	110.5604703	164.8173759	18.4955279	14.65639358	30.21681345	5452.259725	380.8025871	0417b
8977	111.5758977	165.5338862	17.76629645	19.88933883	23.86136438	5810.129449	335.3162345	0417a
1125	113.31125	168.0549752	16.88340883	17.70635562	25.05855053	5535.66148	352.9178552	0416c
8584	115.0828584	170.0902511	18.6948552	18.61152641	22.6230171	5709.193008	355.9270791	0416b
0407	115.6720407	164.0129826	17.8808677	18.46022514	25.91262333	5512.05155	313.200315	0416a
3744	116.998744	172.4589843	17.06752024	15.98657262	33.28404879	5792.268949	294.7463089	0415c
368	118.3894895	169.1545337	17.45396322	18.91738041	29.64566375	5823.144907	366.9361231	0415b
992	113.672992	165.9399483	17.41501127	17.4475081	23.7080153	5564.273954	357.7986102	0415a
65	73.8426565	138.1328079	13.64704918	21.69301658	198.7915245	5660.040353	401.2611628	0414c
49	69.81561949	131.7545827	12.70152095	20.76592177	43.3688314	5581.189623	421.8221662	0414b
137	71.22502437	130.1721647	13.48606906	18.40435854	40.68898306	5488.001489	457.3163181	0414a
365	66.63292365	125.1060273	10.07519949	17.416531	32.7345577	5322.633063	425.530396	0413c
$\overrightarrow{\mathbf{n}}$	62.99688915	117.8282303	12.80111615	14.41494796	39.45656586	5174.438882	372.000002	0413b
20	72.40755729	128.0109055	12.52434366	16.122922	32.25587628	5629.017113	457.2112964	0413a
Ň	112.4248962	168.6945554	16.53662669	20.58641423	28.52306271	5534.162593	328.1592971	0412c
545	119.7376545	170.7503069	16.26396843	22.13166669	27.72954274	5862.860517	370.7649806	0412b

16.0642002 106.9111047 113.3377024 16.28636248 151.9148239 106.8412009 17.82134727 168.8211094 113.2063093
122.0237106 113.3577624
180.1794461 123.7731501
171.9481086 119.5897838
183.5278165 127.0058789
175.6040684 121.6691519
165.762652 115.2833967
168.8597478 121.4288136
191.7610076 130.8667694
203.5866995 138.5781786
198.9743909 134.4403515
196.5251315 132.8437974
177.9942843 122.9758606
188.3291881 125.0695638
186.4942314 130.6574201
188.4360756 128.7718191
190.4237999 127.9274084
195.8755333 133.0807273
190.2533983 128.6541395
192.943761 130.3165776
169.3871188 119.283093
172.4582683 120.8535356
189.7068665 128.0116777
172.489507 118.1170189
184.6051352 126.6704845
189.5072982 130.0811362
173.0479725 121.2919829
176.0784392 119.2197474
174.2013026 120.7348252

6490.026781 6215.382802 6559.208111 6201.328797
6644.608404 30.50630903
6603.471933 34.57615205
6068.06201 28.32918441
5983.365262 24.10300804
5856.633373 28.44172711
5806.369266 18.98492685
5845.6196 23.57424063
5928.896542 26.51895517
7029.052712 37.32765252
5910.701719 26.61206612
6134.523247 25.02879961
6376.848938 27.52712923
5834.104505 26.8599131
6150.603986 29.25758964
5493.928025 24.44691339

18.3386292 174.2379701 19.73709219 175.6331299 . 17.10176032 171.1445332	18.3386292 19.73709219 17.19176032		17.71973476 17.24471826 17.51729286		26.08594862 29.40283792 25.7024983	5766.608428 5918.609434 5633.641913	363.5431304 362.5704991 368.058718	0457a 0457b 0457c
9 14.79465443 2 13.73332294	130.7155299	197.4031948 207.4504847	20.69482085 22.01922035	24.34491186 26.43987708	25.68143516 38.35987292	6623.828253 7622.401111	359.6411389 383.4885589	0456b 0456c
6	137.3684196	201.7873051	20.40865024	25.89290171	37.63800718	6803.340039	394.8428312	0456a
	112.9710591	165.3520153	18.25587544	18.90962466	33.76832909	5853.589471	348.3919923	0455c
	119.6137018	182.1471115	17.42443132	21.52243034	39.40083238	6660.435564	303.050157	0455b
76	105.0608765	149.4017859	14.30991729	19.10425483	31.85616125	5045.166767	237.4450449	0455a
)28	121.5640285	175.5676501	19.64360292	22.59433688	36.91938376	6148.961701	342.2577648	0454c
605	118.5136056	173.2517866	17.36435656	20.2383505	40.99086461	6104.011981	373.1274712	0454b
5229	121.9652295	183.2344499	18.73840336	19.16423869	34.82914042	6128.401929	308.6946543	0454a
8080	128.2480807	186.7568649	19.65240723	23.5356741	28.87051722	6423.311816	368.7064605	0453c
0669	124.1169906	179.6454405	18.43382027	20.14886439	27.12127577	6237.916957	377.4138256	0453b
57825	136.7578258	206.7546959	21.3203494	25.054075	35.3222586	7171.030492	418.9182815	0453a
134.3898209	134.3	194.7966897	19.98761844	24.91998581	30.36513203	6810.275248	309.8260736	0452c
121.7851142	121.7	176.9615618	18.24553097	19.50542427	31.80626662	6338.811076	343.1066508	0452b
136.1103065	136.1	193.6471771	18.66403383	26.43214068	37.4985592	6853.265809	367.0379576	0452a
124.6469794	124.6	188.7274822	22.00014687	20.34431018	24.23271656	6290.452636	329.4849894	0451c
127.4941059	127.4	185.4248065	19.25858896	23.40065615	31.49561121	6157.791954	346.7693354	0451b
127.7241364	127.7	188.8932569	18.82374037	21.43634862	31.39024843	6151.517369	355.4023468	0451a
29645	119.7296456	173.7165754	18.5307748	21.487205	24.36431062	5996.709497	321.3542953	0450c
13720	120.4937202	174.3296157	16.35199254	20.28908901	31.22824347	5803.590512	378.2105192	0450b
31922	128.2319225	187.0859896	18.31061477	23.67145117	32.94307593	6368.699237	367.4032354	0450a
12886	126.2428865	186.8632443	21.32961945	21.34271112	32.61317886	6379.908252	337.3913392	0449c
91710	119.2917102	174.3278928	17.93162285	19.67668092	27.77501888	5711.218935	348.1089398	0449b
65374	122.7653748	180.8297022	20.2874733	25.42199672	32.49719595	6070.276804	337.5394477	0449a
0691	125.7706918	183.1709543	17.37428033	21.95434158	32.1384388	6498.371067	377.6968874	0448c
2804	125.7828044	177.9703889	19.66277774	19.4661688	28.96058433	6076.453115	356.2837247	0448b
3630	129.2036304	193.7343675	21.70182102	22.15208991	28.2594089	6569.861713	401.2680794	0448a
121.4036498		173.6015762	15.80305618	20.25329659	29.84733267	5890.529479	350.9310399	0447c

0475a 3	0473c 3:	0473b 3:	0473a 3	0472c 3	0472b 3	0472a 41	0471c 3	0471b 3	0471a 4	0469c 3	0469b	0469a 3	0468c 3	0468b 3	0468a 3	0464c 4	0464b 4	0464a 6	0461c 3	0461b	0461a 4:	0460c 3	0460b 3	0460a 3	0459c 3	0459b 4	0459a 4:	0458c 3	0458b 3:
396.9567779	323.5618028	331.2562113	315.4448944	384.8351299	387.5586831	402.4404136	371.8382599	369.3824545	476.0328921	396.2335679	339.648213	382.3052974	371.4095613	367.6406126	334.9008796	496.3574392	484.2307375	611.3419013	384.9745083	348.543954	434.5747399	360.4287151	370.4660318	340.2427308	398.8850094	402.7492613	427.8090867	390.1303592	327.5625553
7176.65058	6524.879577	5231.250408	5896.02719	6527.219267	6673.398382	7695.557072	6758.320066	6995.025837	7050.991839	6840.230632	6412.505052	6457.65799	6289.455974	6184.476946	6358.165748	6885.36409	6848.586767	6984.880821	7099.554039	6521.298571	7253.039388	5762.725594	6063.691234	6309.001189	7585.015905	7519.142806	7848.15881	6402.194264	7111.195342
37.95602862	33.05345161	18.52011599	26.45737926	30.09916536	35.40547259	53.42936067	34.68153074	32.56902917	37.53706537	34.27169969	32.17895474	28.0930578	30.91807045	28.84516088	32.24859769	60.51384484	52.11430336	56.55111148	39.39479268	33.55469745	38.54259204	27.06336798	24.50600852	32.76771509	26.53304905	29.25907346	39.15031013	33.62522975	40.15676209
26.80100933	20.96860558	18.95569361	19.16493423	26.27462185	23.58365371	28.58540389	25.15044745	23.33715684	26.54250556	23.92758428	22.40891827	22.28519739	20.79421362	24.14644922	23.05516038	24.96869146	26.71223489	23.29686193	25.12671067	23.38570461	26.76064097	19.83487389	22.61847088	20.34215033	20.32683931	19.11243899	21.9800135	20.90335449	23.26813625
19.66343878	17.94937571	15.15490768	16.67449646	18.05833745	18.9103652	24.8571932	21.23742656	21.19920699	21.1437306	23.27878216	19.94004236	19.13024242	20.76287202	20.12184825	18.47097565	14.50537206	13.39106306	14.9639393	21.48397499	19.79668317	21.21861199	17.79496007	19.6323514	21.10872079	19.46328604	18.44934867	18.92913576	19.5242819	18.93743248
207.455206	174.5242053	156.1211286	167.9665478	194.6360219	195.425453	219.0097812	196.0043923	203.6297429	196.512666	200.5004779	192.3741621	183.8481003	182.8708087	186.5719843	186.1336748	156.4593257	158.6290014	154.8536555	206.6947885	193.5713991	209.3141888	176.4720763	180.6175264	187.2709554	176.8265337	180.3836677	184.0730982	183.6469995	193.8784295
138.6506898	117.1557673	107.7911874	114.3295018	132.4206764	132.2550455	146.880753	134.791575	137.9356953	134.6845653	136.8971394	130.54622	130.1749889	127.8403067	128.1827817	128.554691	83.53292351	84.07926018	80.75663891	134.9090918	132.2847134	139.889133	117.4960142	121.9023738	127.4095752	128.5577557	129.9570253	135.717567	128.8921749	134.6652118
13.79048491	14.35233309	12.04640042	12.9197338	13.51220226	15.08438415	15.15856735	15.85222613	14.22447596	14.96527829	15.38585779	13.16192337	16.4136625	15.14965548	13.8630133	14.75845879	15.14886361	16.46037826	13.73803861	13.73214658	13.47372912	14.96194005	13.22433135	13.9350222	13.64093293	13.91352278	14.99237689	15.68882632	17.60416182	15.43657981
109.3965787	101.6957047	91.76135513	99.75714891	109.8054461	108.6800175	116.5739833	112.2082018	110.0193282	111.5524752	112.5911268	105.9380477	105.8607754	105.0450315	104.8539384	106.0516759	112.6444361	116.7189989	106.6425184	109.6488881	111.1164138	114.8916895	100.1591128	104.076129	107.5884454	103.0495561	100.634548	105.5752395	104.8450114	108.4733419
12.20052831	10.96874095	11.91195054	10.67696303	13.63125158	13.06062342	13.52719741	12.95740754	13.20813415	11.49375329	14.27964878	12.71275553	12.22997887	11.49977854	11.8058864	11.81410181	14.65909236	14.96801361	14.30285017	12.03912001	13.03361156	12.74005749	10.59536896	11.56190034	12.98730694	11.76114634	11.7609081	12.66189932	12.0901503	11.9683639

20.03339057 18.11573993 176.9874669 121.4923223 27.54840494 21.6967653 207.2019371 140.9181223 19.11882302 19.19849566 177.4888263 121.2730944
139.2946364
138.1903171
139.8653693
131.2890713
135.2588485
148.099488
119.6628479
113.9703443
181.1094721 124.7082567
172.7016699 115.4903605
171.8310015 117.5499986
173.0784145 115.0924618
206.1960278 137.6970186
176.4005884 119.78281
190.3718089 128.146777
174.6642597 119.5745417
177.5608794 119.6029867
113.3973089
122.5630226
115.7443742
118.154789
173.7309177 118.3545716
173.2670243 115.9302625
112.2152254
122.1688353
121.1741691
185.6785562 128.7774735

45 106.0755509 61 123.3885891	51 5	159.032245 181.5883861	17.46240185 17.49230387	18.54627838 20.2080845	23.82915745 29.18238185	5121.533451 5979.810636	339.81823 354.0933267	0513c 0514a
5 13.81531523	128.1798745	184.4554452	17.09133109	19.72099049	23.25096411	6135.161861	335.5704228	0513b
ω.	122.8052593	176.7569444	18.34214973	22.3710201	20.08241846	5903.640533	391.1616126	0513a
00	115.0369248	164.3667845	16.37440344	17.35147643	21.22836439	5403.481367	365.0517299	0512c
00	129.6373168	189.1909527	21.17793412	24.8469845	24.03622323	6346.458212	369.2190721	0512b
e	115.6511959	166.1852196	17.37260907	18.91168529	22.60986467	5510.465077	382.3950929	0512a
	138.8063881	207.9259277	20.91152338	25.69231922	550.9680262	7391.753848	391.073783	0511c
	135.6950408	214.8971121	21.42539114	27.55920695	564.463824	7272.024922	416.8542079	0511b
	126.4390986	183.4795753	19.6183328	19.41535327	193.8319871	6338.721176	385.6911949	0511a
	124.526863	180.5017134	20.00542491	19.37536869	28.07328325	6204.797035	387.4459278	0510c
Ψ	120.9384794	180.8655538	20.29248305	19.47504454	29.12393308	5925.05461	305.5506807	0510b
S.	117.3165297	174.827632	18.84199224	19.73683229	30.98580917	5755.056493	367.3014782	0510a
4	117.7430047	172.6765105	19.6557448	14.97800765	25.56650423	5751.535811	393.5435063	0509c
οų Ω	122.7798054	168.0124233	19.38006837	16.78994339	19.61344453	5706.677636	359.5751266	0509b
35	121.4572351	176.3745757	18.53419681	18.78655611	29.63458256	5942.744975	394.9051859	0509a
194	78.26984949	149.0515854	15.20870212	24.04897902	40.74028997	6186.534889	502.242832	0508c
72	71.90485721	139.7228749	11.10808929	22.44886035	36.28333278	5828.329668	494.5296599	0508b
671	79.3637678	146.6056853	12.73656482	23.17727424	38.9046632	6158.698747	448.624102	0508a
35	131.1706356	190.3615886	18.75835746	25.46273715	29.74581401	6309.532115	394.4716948	0507c
N.	131.1670427	191.069339	20.94244544	20.74341203	27.82367265	6331.456967	361.2134887	0507b
0	129.8459961	184.7380746	18.00460071	22.11588654	25.61225193	6284.401914	374.0271574	0507a
N	70.82169527	129.1125529	11.77929559	18.95318721	39.10806184	5578.725453	476.3673099	0506c
60	72.54396837	133.8052177	12.65219251	19.2611909	39.78415626	5578.933673	416.8670363	0506b
5	73.0054584	135.083233	12.42068773	19.49115029	35.2767994	5536.312428	424.3628943	0506a
00	130.2013483	194.7283345	20.10243881	23.37475872	39.6875192	6573.150694	352.1294564	0505c
-	130.6324416	195.7574159	18.03619782	24.90558983	29.97682455	6449.688928	400.9034151	0505b
	127.137637	189.92791	20.12604077	20.36639103	26.13905236	6356.098918	356.4212975	0505a
	137.2068464	198.103459	19.2355488	24.44458297	46.13649279	7219.096578	464.3571878	0504c
	124.9939115	190.3112684	20.59958641	23.85529261	34.27095231	6687.102126	401.7132682	0504b
	122.0261218	176.3448073	20.28168325	20.3960696	30.39412523	6106.534114	313.1539585	0504a

0524b 3	0524a 3	0523c 3	0523b 3	0523a	0522c 3	0522b 4	0522a 3	0521c	0521b 4	0521a 2	0520c 3	0520b 4	0520a 3	0519c 4	0519b	0519a 3	0518c 3	0518b 3	0518a 4	0517c 3	0517b	0517a 3	0516c 3	0516b 3	0516a	0515c 4	0515b 3	0515a 3	0514c 3	I
300.3304068	347.0992771	352.9625532	324.1896695	336.355689	385.6441094	412.6568544	317.8267136	364.819696	437.9399501	268.5946033	375.0799743	439.8777166	370.0337505	406.8049372	367.343119	373.0918651	355.4517446	394.6707815	423.5436547	375.7354282	383.515046	360.6652787	365.5309493	390.8901192	403.667988	412.5988926	360.4910951	358.1703729	355.9929034	
5621.983336	5653.75574	5712.251854	5656.572784	5674.481371	6983.810201	6648.977588	6315.703317	5809.460677	6169.385965	5802.296809	6574.793126	7184.603784	6425.433074	6081.427239	5743.722406	5995.035098	5729.635555	6605.537564	6828.466689	6173.917267	6216.254678	6657.210463	6198.432615	6161.156863	6481.617044	6600.522641	5789.626607	6054.977032	6280.529398	
22.14056198	25.29377804	27.75676361	25.73793251	23.2930457	29.17070214	31.2727361	28.36091935	31.1896175	29.82998205	25.64543987	91.73223088	33.47599089	27.721136	32.23828382	23.54935237	25.20321281	33.22212576	35.10115907	29.69505635	30.21666766	26.55636601	30.96498084	34.01954438	24.29742228	30.9322082	27.92507117	20.68786692	26.15012002	33.18419703	
17.51358334	18.07533527	18.99832003	19.3447579	20.44028518	26.9707785	26.514762	23.32545568	23.48955878	20.61832708	17.8147736	24.57683234	26.21147909	20.08586947	21.41302184	18.2817265	20.08522832	19.21935896	24.87795573	22.60645104	22.65705326	21.55054987	27.23270786	24.34790026	24.83509572	23.06014446	23.50441083	22.07421227	22.50573865	23.13746746	
17.48483153	18.18154696	16.42968432	18.35473505	18.11055932	21.43576617	20.59344753	19.2515852	17.03529083	18.72227513	19.35964455	18.75482721	21.28115387	18.72788469	19.80992849	18.13416529	17.99669509	17.83951161	19.05410062	19.93231036	18.29407852	18.58968618	18.87438215	20.31593006	22.47195642	19.44329041	19.7887294	19.2262157	19.47268039	19.75249607	
165.0112113	165.6000229	170.3030795	172.8564718	172.0016227	206.2924459	199.7919695	191.8686932	174.4246038	182.1849584	170.325126	192.5331734	208.3717872	196.1786169	180.7594252	176.8540557	175.8442324	172.9280785	191.2472283	191.2958023	187.0947763	185.7321209	198.5358839	184.5555288	187.8495512	194.1883241	197.4604098	175.1270102	186.4432702	180.1899464	
112.8230828	114.4220819	116.092053	118.2282044	117.8917737	138.4444473	137.3744036	131.3509563	120.320537	125.8860047	117.8354587	128.0926629	136.6766519	129.8585892	124.4277232	120.1979027	122.2720286	117.6773007	130.0742662	131.4131779	128.6117662	122.8122847	136.5158588	130.0358486	131.1217537	131.6610992	132.1614261	120.9383714	122.0735434	124.5900334	
12.8481817	13.38953428	12.89223528	13.39327699	14.26936402	16.26113366	15.1177774	14.08003109	14.2292853	14.00965986	13.69460702	14.51822542	15.12039923	14.02814161	13.75941602	13.2643566	13.95063906	14.13832385	12.70898383	14.58290887	13.36204089	15.18949897	15.55914805	12.64912404	14.65072583	17.37577715	14.41010889	14.29534106	13.43209836	14.81094795	
98.38677241	97.9338368	97.77844679	101.4230798	98.38486221	111.9834508	112.2878016	107.9013108	102.1751162	105.0102388	96.67390184	108.6735099	112.1243689	110.0086045	101.9341111	99.84685153	101.4490732	101.1581758	106.3353412	108.9866907	107.0101761	105.0507368	111.0042388	107.1006368	106.9817451	109.5285432	108.6792903	102.1442743	103.6075224	102.6776417	
11.13780165	11.69830116	10.33020229	11.02795369	10.90474318	13.32618266	12.92418937	13.51440823	11.80241828	12.50607763	11.73434776	12.44915558	13.000834	12.1800007	11.81503347	11.39252321	11.09250714	11.11257977	12.28380398	12.65178766	13.22641338	12.29667317	13.24379381	11.73766125	12.02721732	12.20337201	12.14644234	12.08732778	12.04850807	12.9685844	

295 120.5100285	295	172.6924839	18.44932564 16.61799221	19.88607684 23.24316766	30.65132948	5573.458377 5878.048104	320.1294436 334.3454858	0543b 0543c
2	117 518280	172 6024830	18 44932564	10 88607684	22 67252Ng7	5573 458377	320 1204436	05436
0	123.5211166	178.8300603	21.52144336	19.82523186	23.90820243	5916.753679	365.347846	0543a
ŝ	118.5671026	172.3249943	18.06082471	20.51196655	24.26897219	5725.015933	338.0644863	0542c
	113.9871147	166.9149889	17.80735253	17.05199454	27.19958563	5437.75808	306.7784522	0542b
	127.1418831	182.9308071	18.77972919	21.15583391	26.16796524	5981.262773	346.3686229	0542a
	122.3063807	178.918789	16.12312846	21.16283313	25.11057802	5787.796971	394.7133968	0541c
	136.8147695	187.27317	19.33737672	23.84770939	31.78551747	6121.073441	384.3937067	0541b
	141.7308011	186.8341887	18.42415509	24.85658668	39.53289546	6250.71029	351.8521236	0541a
9	117.8688397	171.5789281	17.66022944	19.08801632	26.07260799	5648.049698	305.9796361	0540c
~	116.1199372	169.5024906	18.44638747	17.69771976	27.42660582	5678.296124	306.1937658	0540b
4	116.2653844	169.6206497	16.98097573	20.85319824	28.70223143	5662.904894	341.6431966	0540a
9	121.3945892	179.2470748	19.31193284	20.21068344	27.58051537	5972.685497	336.8335433	0530c
N	120.619422	172.8532004	18.6474298	21.97429845	24.20707927	5929.852432	368.144472	0530b
6	118.3250764	177.8254143	20.82943567	21.84384404	24.9827566	5939.142008	359.1941539	0530a
10	126.6290106	183.0065758	17.92034473	21.98877962	31.39003186	6192.375315	355.6515265	0529c
377	123.1048776	178.0160414	19.11665754	21.78763125	33.39192655	6080.723827	330.2316652	0529b
85	135.5068855	196.4929201	18.81451738	23.26756859	29.17001569	6462.632235	343.5330709	0529a
71	119.2086715	175.0877704	17.84621451	20.71330294	26.00170782	5880.880003	339.0882828	0528c
80:	127.6300805	192.7815089	22.44542985	24.17702554	23.40529855	6308.44115	392.4927386	0528b
39	135.9455393	196.5649501	20.61797329	25.0122872	26.88288791	6656.900314	428.6975235	0528a
9	121.2913699	179.0657545	17.90315661	18.06210637	30.52221633	6068.93033	337.9763218	0527c
0	126.7293893	186.3340283	21.10605738	22.52929402	33.26559828	6343.603959	397.3302268	0527b
<u>Un</u>	116.1867856	169.3222431	17.18656808	15.65583694	26.89421501	5677.394306	358.2194445	0527a
CO	73.36651383	133.1473735	11.67596177	21.26662884	38.89875544	5550.986984	384.4410982	0526c
N	71.6613425	132.6166953	11.54833305	19.99006261	40.20077184	5567.170079	413.5700861	0526b
2	78.74755174	144.5521844	12.97851827	22.97172464	49.00961044	6173.586487	438.8716966	0526a
ω	126.3498633	185.2059376	20.39248944	21.69704962	27.63517543	6262.085618	356.7215517	0525c
	117.1850227	174.6301293	19.89904195	20.04755261	28.86604834	5819.004284	344.7912884	0525b
	116.0102118	174.6184234	17.0544879	19.99862619	32.27432545	5717.336278	331.3873501	0525a
é	114.7722495	165.8305184	17.74289391	16.71419645	25.83276691	5574.550193	329.2377419	0524c

0555a	0554c	0554b	0554a	0553c	0553b	0553a	0552c	0552b	0552a	0551c	0551b	0551a	0550c	0550b	0550a	0548c	0548b	0548a	0547c	0547b	0547a	0546c	0546b	0546a	0545c	0545b	0545a	0544c	0544b	0544a
409.9791958	367.7062438	350.3046729	373.4264072	314.2823941	401.4768027	367.4841202	405.4924452	391.271468	416.7345007	382.5328961	374.078881	437.9958917	381.9939412	381.9650383	345.1962649	381.0970672	337.1133215	368.4172941	342.4568111	353.0025131	367.9982863	367.0238201	382.4329362	314.574324	355.6591446	326.5812097	353.5742363	387.9447352	328.692668	000010000
6956.766461	5779.196465	5881.666546	6359.755067	5955.482356	5932.48895	5944.735805	7059.702159	6701.097134	6666.757525	6425.772177	6405.348837	6948.420634	6767.000231	5957.766113	6197.572954	6254.909949	5436.665358	6580.401911	5769.962944	5816.076592	6364.79022	5759.669683	5524.272592	5543.40348	5810.245766	5776.040146	5859.801338	6193.950728	5498.349192	0101.01010
34.4343167	25.42857988	27.11425751	26.33463739	451.9794017	28.8010551	24.73393772	32.0443001	33.34783932	27.30158511	27.6001718	28.33996249	34.71866197	34.3412399	24.81572643	27.30615316	31.85210073	28.85423219	42.61952708	19.16548658	22.84601482	33.20981431	20.46367923	20.0359902	26.32978655	25.26853152	24.07302629	23.07043323	30.19292849	27.32498236	
27.05015149	20.58739063	19.66304765	22.67370463	20.80464272	21.29124251	19.88476988	26.0647172	25.57417051	24.66265107	24.6395964	23.6330362	28.7948634	24.35249738	20.41106696	19.51637294	21.67688922	16.98925986	20.70903207	19.16727186	19.90925932	17.71755944	19.16885128	17.89393951	17.86913191	19.84651406	21.13509117	17.79095691	22.19080067	19.53773757	
21.52912771	19.6208343	16.90987628	21.12555416	18.18376882	18.30121448	18.42273933	20.22841366	20.69744971	21.02578046	18.43537308	20.94576801	21.74609862	20.47778118	18.30244869	19.11349092	18.6611002	16.75309841	18.09175835	18.66021868	17.30038464	20.34621848	16.49127564	16.24862613	15.57652615	17.66305626	17.87729546	19.82568464	19.14584779	17.46182915	10.10000000
201.4910489	176.3294865	179.8526998	189.2661531	180.1798158	178.0465979	181.0656734	201.9946401	199.6669425	195.2755986	192.6343521	194.5817778	202.2070994	196.6589562	177.7021405	179.4571355	185.1194296	165.6281682	187.5635687	174.811382	174.7538192	178.8474207	170.2380625	164.0777739	162.620109	172.7285207	175.5605026	176.8532571	185.9811088	166.7573073	
137.5268614	117.2281468	121.5950497	129.7926204	120.6581016	125.0004397	117.7271776	139.0300647	133.9499059	131.2755977	134.5138643	130.247172	140.2642172	136.4372211	121.6680397	126.6374796	125.9109728	111.0579533	124.0310101	116.107441	119.8867354	124.7031902	114.7624545	112.8313255	111.9511133	119.6857926	118.3642251	124.090316	126.6541031	111.8079784	120.1010000
16.75552426	14.56750477	14.44187082	14.72667358	13.38195919	14.85422506	12.86541611	14.75679483	15.16860106	14.93732746	15.48880096	12.8710231	15.20701973	14.38557505	14.50352093	14.56437317	13.95075195	13.76648061	15.66965026	12.13189345	15.5585158	13.93008426	15.15231271	11.90395148	14.52757933	13.56216946	12.49471833	14.76334147	14.8492375	12.27217313	0.00000000
107.2748622	101.4632743	101.1774907	105.3341774	102.1879591	101.5699564	101.7727172	110.440802	109.9508189	110.6065688	108.7608013	108.4081997	110.5893217	107.925076	104.5355906	102.614352	102.6915192	95.30895151	103.6650761	99.21853313	103.2313316	103.4763647	95.23130055	94.17493567	97.20656797	99.74250114	101.1469767	99.01571465	104.0651216	98.85684317	101.010007
13.08847077	11.55419038	10.74490848	12.98782836	12.40346227	12.08907112	11.96570064	12.95029983	12.62067061	13.0937217	12.30880626	11.62461731	13.8635136	12.39984191	11.33994244	11.33276929	11.80951836	10.57364353	12.84517014	10.51049673	11.47335201	12.1301354	10.76979349	10.77072118	11.86178473	11.3897245	10.93495586	12.51604853	12.32511153	10.66645869	L.UTEUTOEU

188.2734698 133.4902515	188.2734698		32812 77712	19.99962812 18.82377712	21.88910294 20.95841233	39.70812372 39.95113197	6407.545274 5978.687871	377.0296285 353.2194651	0566a 0566b
101.9180867	15.01474663	118.4744423	172.947471	18.87165236	18.5839229	27.07198501	5971.207034	342.5771795	0565c
98.45050046	14.38824748	118.3627376	173.75335	18.76230916	19.85650741	29.74155287	5878.735087	372.2634851	0565b
100.2617898	14.70653236	121.8131329	177.6673961	18.90442084	18.79468586	26.36621852	6132.772143	386.8989935	0564c
104.4147929	15.19415298	124.6876997	185.6132355	19.09239351	21.0112645	109.279303	6230.241434	366.6412257	0564b
104.8724644	15.19225104	124.1653975	181.7066256	20.69598286	20.07877504	29.65452894	6192.597336	393.3793592	0564a
100.2666397	14.80698601	117.45326	174.1747514	18.03943854	18.4763404	29.94849372	5906.94276	394.5795158	0563c
101.9860244	14.58407229	118.7454133	173.3845289	17.29527507	20.43350897	28.68258124	5893.704258	416.2089106	0563b
88.8282868	11.95845207	101.3147274	149.7048006	17.34773351	13.99614186	31.22387412	5240.612992	358.4997168	0563a
98.90906767	15.11059547	122.0839623	174.417193	19.66482646	19.90790894	21.67325193	5878.780567	314.3044521	0562c
99.26930258	13.81903278	117.3642903	173.2556826	18.44844875	16.36517698	30.6084642	5725.325674	342.102306	0562b
102.7696317	14.15127046	124.6853219	178.6670583	19.33783826	21.12730431	27.69344508	5923.728886	414.3166278	0562a
101.2494839	12.32307512	119.6554831	175.0037173	18.83785348	19.639639	29.86752763	5894.267983	340.8140773	0561c
99.83258777	13.19130726	118.8709946	177.6692091	19.65387927	18.80019445	26.95754736	5758.075069	315.102656	0561b
100.329713	14.02184399	119.6826137	175.9721325	17.66187526	19.43012769	25.9960945	5717.037703	342.7685981	0561a
92.47323179	11.90536256	110.2549098	159.6800864	15.79647243	17.90514022	20.33288161	5165.566936	340.6231242	0560c
95.45952991	12.09802169	114.635407	166.6425284	15.94674206	24.20119642	28.03624161	5437.27597	301.6501781	0560b
97.8683472	13.17052275	112.1137551	165.4438336	16.68797483	21.88814904	32.85438203	5597.950786	353.679294	0560a
99.18422931	13.20018223	117.2226613	173.0382927	18.9323366	19.65133937	24.14616064	5798.599275	365.3556743	0559c
99.09329243	12.73628244	117.5131211	174.753686	17.72826703	17.45778801	23.81554587	5646.980467	332.577841	0559b
99.90334452	13.61227786	117.6443287	170.6406353	17.69919043	18.88177718	28.27380118	5787.918905	348.4061769	0559a
103.4177422	14.8191429	124.8174485	183.2209444	19.54251441	21.56380933	26.49885943	6193.138076	358.6863189	0558c
97.33611035	13.32399213	119.7189059	172.2895576	18.65276046	17.83041866	28.32427356	5698.473493	301.8377623	0558b
101.4290393	13.35112869	119.3016117	173.8630782	19.36667428	21.73626404	22.14614049	5874.481524	339.2385712	0558a
102.20389	14.42690762	121.7458366	179.0614289	19.93564441	19.47024758	27.72539775	5895.693666	436.7786529	0556c
101.9997444	13.50361046	120.1339168	173.7346711	17.71152283	18.84729304	28.86683128	5768.141999	322.9625262	0556b
99.64064967	13.94151633	120.241698	176.3284916	19.59353039	19.48772094	28.17714488	5753.438178	347.5852004	0556a
104.1822054	15.90098011	127.0481987	179.7413904	18.72699132	23.70601826	33.32334563	6168.821516	369.921864	0555c
108.2959363	14.89587795	130.1057121	191.6869944	20.56819919	22.9946787	29.75087734	6418.119347	371.1973635	0555b

20.84359909 186.1804257	20.84359909 186.1804257 18.02249632 196.6849344	20.84359909 18.02249632		5346755 3322774	24.5346755 25.43322774 17 nn2n7691	729.6248367 28.14289682 25.65377169	6538.740472 6508.378495 5835.895088	388.6673836 367.3436998 368.3132292	0579b 0579c 0580a
110.4875695 110.3440374	15.27271388 15.54949074	132.8867632 127.9130052	201.5600129 195.1620372	19.94881593 21.10690421	22.82929932 24.51450853	43.21014766 41.8656803	7043.67056 6556.937851	467.3271731 440.6957557	0577c 0579a
108.7790043	16.52652628	136.2451823	197.9331619	20.9279426	26.97143284	42.96317602	7118.827232	373.903402	0577b
100.9336029	13.31818875	120.850547	174.3239721	16.97065115	20.90454467	33.76719388	5897.659365	346.8515787	0577a
105.9281721	13.85340509	127.4233048	187.9835107	19.81681438	21.5911198	29.70551598	6325.596887	357.0690751	0576c
98.15779999	14.21397335	117.0535086	170.7154502	17.56112677	19.60776512	187.5208204	5550.455775	306.6261193	0576b
107.8913573	14.15339455	128.8170993	193.4580515	18.21950465	24.32436906	35.60909348	6594.327932	344.7230419	0576a
112.1381342	14.70283991	140.3291075	214.2166515	23.82904077	28.08340386	31.76919189	7204.540137	441.6673643	0575c
103.5947282	13.80456571	130.2344586	191.2381493	20.3621455	21.07108851	81.66034171	6229.478084	361.2607108	0575b
107.3978038	13.57641949	129.0991086	196.618221	21.45598348	27.33063742	66.74129855	6525.22238	412.960835	0575a
100.9501181	12.64810626	119.294498	178.9023309	18.10623189	18.76458015	32.59655234	5880.619127	371.8104086	0574c
96.87945924	12.91639839	112.114726	161.0903961	17.60535431	17.64549293	24.11744244	5425.097004	341.4649893	0574b
99.32786131	11.78735242	113.9896036	168.9478066	17.16580253	18.69501329	24.04218652	5609.786171	361.661134	0574a
101.5818425	15.37265407	123.2359319	171.1564027	17.02574715	20.2780158	25.47340418	5906.618451	355.4934829	0573c
69698958.56	13.39501152	110.8171238	160.2147668	17.10222408	17.62691581	23.30861268	5368.108847	335.7098094	0573b
99.63386327	14.71183105	120.1259927	176.34564	19.42677958	17.58708402	29.36064198	5958.110417	387.6280927	0573a
115.3684864	15.50439379	139.5039778	213.2667465	20.83266351	26.71611716	50.14556237	7294.569392	411.0974517	0571c
105.8844209	15.33808298	131.4827458	186.8976344	19.32818972	24.21069258	220.1563866	6453.964284	379.3409447	0571b
106.7383311	12.88427097	133.5662006	197.2452388	20.58022197	22.83074001	35.89535453	6662.682807	467.1377623	0571a
112.9656895	14.84173522	140.2990448	208.5311376	20.84168813	28.46060436	36.59362614	7076.993753	415.949573	0570c
107.0979371	13.17603088	129.3342089	192.985582	19.69960093	26.14458585	856.8861605	6234.18322	361.5871721	0570b
115.6798921	15.86138068	145.8215481	212.4219936	21.43551149	28.71706097	364.2530344	7429.630415	438.1047163	0570a
103.1113373	13.13151852	119.1556649	179.4830378	18.18966615	18.25642612	27.94883332	5939.013782	364.7416958	0568b
86955086 66	13.99811645	118.0538461	175.2656798	18.44813307	20.88321279	26.41557166	5772.290648	334.6016614	0568a
97.87520488	14.37663003	116.9392099	167.3564679	16.58133374	17.94390086	39.45272585	5940.518399	317.5044512	0567c
92.85637609	13.25053519	103.0166604	153.3944915	16.6843863	18.34923637	26.28606012	5343.673705	329.5564061	0567b
89.22650217	13.19580397	102.0236445	152.4495508	15.99389327	14.61401035	29.00058252	5106.923793	292.8030836	0567a
102.4052274	14.86108161	122.256573	182.0297366	19.07394369	19.64098405	27.31009054	5967.652126	364.9013912	0566c

0591b 4(0591a 49	0590c 37	0590b 2	0590a 42	0588c	0 588b 34	0588a 32	0587c 31	0 587b 34	0587a 42	0586c 35	0586b 37	0586a 30	0585c	0585b 33	0585a 34	0584c 32	0584b 30	0 584a 28	0583c 36	0 583b 3∠	0583a 34	0582c 35	0582b 3(0582a 30	0581c 39	0581b	0581a 35	0580c 36	
403.7061101	490.5081392	375.8131631	442.393871	424.8321017	297.498741	341.7851219	323.3805233	317.0745768	345.2136472	427.7940701	356.5925613	376.5116605	393.5167442	355.037504	323.3991341	343.0465913	328.0696738	334.0173655	283.5342103	362.3687491	345.0558752	343.2198971	350.4073158	308.3297896	337.9838056	393.9538114	349.377644	350.2283312	366.7984485	
6714.952906	7183.336018	6458.838291	7100.96683	7497.001526	6452.950604	6335.670634	6097.084412	5750.5419	5955.149005	6371.937321	5948.43296	6020.977738	5934.702456	5905.947813	5619.60224	5691.460567	5448.843345	5216.987154	5753.056062	5434.675684	6257.710782	5738.214651	5301.231006	5607.103392	5707.585051	6212.06536	5881.677527	5780.26639	6063.672824	
34.59045024	38.42087529	29.86690739	33.45704421	39.26555186	24.54732567	32.05843006	22.94978374	26.03180269	26.07379137	30.97848154	34.57750004	30.66843318	24.19752946	30.37408794	25.72356632	27.53249318	28.67446755	27.46784424	29.47982914	25.4612225	26.53602192	24.33776628	25.6680033	28.88044951	27.15094669	36.88898686	27.74998037	24.8948869	29.59139935	
22.72341634	23.35837402	24.54477869	27.67199324	27.32395789	25.37077351	23.1776493	22.84100812	16.80289314	18.53712544	21.994937	20.16589437	18.84597559	21.4200739	17.86018224	18.60229252	19.82413116	15.63937558	18.40031278	18.1725356	17.34026499	20.30037416	20.72614218	16.44651676	17.05255783	18.63246721	22.32275537	18.06271687	15.23532132	16.66090099	
20.69043511	21.98196601	19.5929038	22.14395767	26.92979954	22.72522729	18.82661429	19.67140073	17.18064239	19.70288763	20.31762306	20.7583352	17.92903781	17.56379937	17.94554556	15.05339764	16.4648593	15.56592311	14.57295519	19.42558982	16.22019432	21.06187954	15.86637794	15.34224695	17.39425928	19.17430474	18.6466733	18.08074095	20.07307843	20.49236302	
193.8764702	196.5781065	196.1860979	209.7657202	216.6336864	194.7827903	188.8973658	182.5526066	174.3958307	181.350487	188.6776402	178.2234284	170.4537749	175.2864743	170.4590534	166.7216366	165.3401893	161.6068587	155.6526742	173.5486958	158.8555937	185.368045	171.6837585	158.6707268	164.7461278	168.8435867	184.3516041	180.2678899	169.8343684	176.9789732	
127.0706029	136.9744988	130.7654219	142.3316189	146.8930234	130.3572704	129.3654098	124.2021467	117.7429632	119.2686527	126.2763851	119.3048592	119.8296093	120.6209923	115.9399904	110.6535788	112.6228389	110.6447136	106.5159304	117.3747651	108.8660032	124.638669	116.9818064	108.6498495	111.0670576	113.4786493	126.5434049	120.9519881	120.1284611	118.2737608	
14.61995178	15.12554171	13.40026275	13.48637739	14.41815957	15.69785977	14.67091419	14.49197956	12.33678487	14.66905525	13.21175113	14.65818101	13.54344276	14.5648614	13.4470463	13.83313929	13.54930131	11.6209675	13.19325795	14.39519318	13.36372597	13.42307736	13.40176164	12.48499971	13.27363216	12.65094516	14.95813532	12.316952	14.1761841	13.78199112	
105.7525215	107.9424554	111.583568	112.8789137	115.7241288	108.1686984	106.3970601	105.4462185	98.25214686	101.158513	103.5011132	100.9523957	101.1124491	97.73524964	96.99824589	97.6484143	95.92687178	92.68968395	93.37882562	99.36267758	94.89645237	103.449312	96.14254414	93.14454799	96.4413097	100.8380772	107.1528982	102.9517432	99.46866588	99.16531478	
12.73799416	12.54953138	13.16059814	12.70588761	12.99067252	12.77135296	12.1491328	12.73658455	11.6608772	11.5911281	12.28049648	10.88173043	11.03822692	10.8557035	10.64258059	10.84687529	10.65109478	11.14697724	11.58403928	11.09917095	10.7336005	13.04002282	10.37250115	10.49595351	10.21437622	10.67482404	13.00668026	11.48826658	11.33039175	12.36210584	

69.24405777
124.2613875 65.16403387
194.8888254 134.0176648
185.8352145 128.6841366
187.8773593 123.609913
172.9888549 119.4294401
161.6190108 112.0344681
170.8420551 117.0605047
185.0163705 126.0661339
185.6004949 127.6371713
173.3268323 117.1784769
196.8145179 135.0094582
190.7138236 132.1598901
200.1284835 138.5053344
176.6541968 119.4505747
171.1039586 119.5696631
186.908817 125.4146228
174.4199921 116.8202801
172.9347168 119.6956911
176.741625 120.0656319
184.9442713 124.0378429
212.4542457 149.5599287
205.2950145 143.2873764
185.305357 127.4606665
199.909884 134.5011943
191.0846213 129.9917839
175.5570003 124.2705984
175.0580078 118.7129052
185.113862 124.8349502
200.3305911 141.0910562

11.54745391 140.5588501 77.56161198 14.24697042 20.5130412 190.5664193 135.4472172 16.96255158
73.16476068
121.0652725
167.7300958 113.7068727 12.11130355
164.9908875 112.7800166
200.3664433 134.0423793 11.24988524
176.5668705 119.9881411 13.70797276
188.7030406 129.169355
211.8045585 144.000325
201.0587604 136.8622118 15.23796675
200.186146 136.520454
206.1698863 139.1329483 14.25261092
200.6476228 138.3307534 14.40015595
215.3658468 149.9225857
173.7370743 150.4383378
164.1822156 136.5466611 17.41597651
166.4276356 141.6160808
162.9929944 112.0350827
173.2659291 117.89905 12.39431933
163.2538119 109.1876022
167.4507193 115.4214395
172.2755998 116.4350131 12.64485877
166.541242 118.1203584
181.2462485 130.2286171
183.0509381 128.6309733 14.27669872
183.924417 120.8470563
186.4269146 127.0611114
191.2035054 127.8202779 12.90362373
190.4459922 132.4571312

117.0311713	\square	174.6167588	16.45129294 18.693894	19.78848953	22.46959946 26.67851014	6121.814654	366.6345911 358.4405587
171	117 031-	171 7570856	16 451 20204	10 48660557	22 46050046	5628 505187	366 6345011
119.7224757	119.	170.4437971	18.26449878	21.93050161	28.11449834	5788.740508	318.6640049
110.2172447	1	162.7894513	15.61679443	16.60821839	28.26747244	5486.311374	304.7149147
109.9505436	_	161.6121319	16.22200137	20.2540905	25.29666927	5529.88715	286.5996313
118.0656814		169.2965105	18.61503384	20.8344174	23.28592987	5921.943957	343.2475671
69.79150667		128.9628871	10.0597652	17.14299124	37.00101875	5556.722707	471.0924165
66.03161931	3.0	121.7927373	11.84179914	17.78921791	33.45109988	5156.50705	420.8941492
68.48577456	1533	123.9322209	10.4517865	15.5845606	34.53337506	5350.585792	435.1287134
116.2864546		170.9908483	17.62416649	17.95516879	31.51911704	5810.549381	318.7766888
112.7650593		167.1179485	17.76566873	16.17105178	23.17024237	5477.499544	391.2845308
109.7232223		164.8497503	18.5107273	17.8401935	23.65730097	5596.510696	266.4324997
135.1997314		200.6601365	26.29099514	24.72952721	46.10118647	7146.756364	423.9098133
139.2790907		196.5620403	24.77302002	24.83960077	34.92196172	7211.154091	449.1457699
138.8219797		204.7247235	20.14469899	23.56158067	49.89335958	7131.534488	415.9230862
83.7506207		158.3128083	14.90922991	28.20107025	1093.807981	6599.080228	523.6504362
84.60164957	-	154.4682899	13.24529913	25.92718453	56.34979886	6636.028516	561.5711966
106.5557282		157.6726993	17.65238467	16.24636356	32.44144242	5142.855118	307.4110004
118.8023896	-	175.9898589	19.38537558	23.27033833	940.5279076	6105.988612	374.8148491
121.1348957		179.58043	19.02281897	22.72275755	931.3837359	5919.113692	370.1050647
130.9733752		185.0044188	15.645143	23.83519319	32.63699942	6348.81274	414.7863787
128.3269433		183.9574627	19.56573042	22.60822744	32.48539541	6373.235548	338.2329216
115.4249896		170.9746166	16.56008181	19.23035315	26.3989088	5811.649039	291.3210752
123.8532268		177.6663951	19.18380198	18.83596528	29.97812425	6341.016992	370.6265972
119.9344577		173.4674449	17.73065124	19.89659521	395.651882	5832.591286	350.5445138
130.3368724		190.0177922	22.81993298	23.4875288	35.68054697	6440.311772	401.4780958
127.8635493		189.3457397	21.23678708	22.75487063	28.53697242	6460.565152	369.7433194
124.153652		185.611188	19.31140053	22.63287571	100.8795706	6038.286841	377.0107688
129.9459732		189.3893058	20.28684547	24.25639757	29.4678294	6281.522475	383.0852012
129.8526228		191.6628668	18.65018029	22.66194002	26.72249299	6303.862985	347.0844233
136.853984		202.4868235	20.63565226	24.77412323	27.15111949	6603.316357	408.3670718

0639c	0639b	0639a	0638c	0638b	0638a
440.2443807	401.7713116	464.8977007	381.1770258	314.858119	315.4361779
7496.659191	6767.529984	7050.20683	5814.133866	5639.144595	5471.513411
83.7120677	33.95385594	35.8926346	30.93972901	26.28985719	43.67498284
28.291413	27.5360383	26.67916625	19.31321059	16.55801772	19.45236369
21.6479164	19.43207286	21.54751336	18.59449715	18.63012195	17.87349417
209.3589531	192.0353902	206.4881104	174.6128363	167.7458997	167.4218696
142.4793989	132.4359581	138.4096756	116.7941615	116.3335849	114.3271979
15.07068115	13.46985523	15.50042035	12.57587384	13.90451717	
15.07068115 113.2932824	109.7356853	111.5837058	100.922329	97.23246814	12.18258704 95.40170919
14.13729187	13.80717408	14.19868312	10.99666084	11.31317788	10.88975319

APPENDIX II

ATTRIBUTE RESULTS

	Count
A (A4-B4)	14 (2.23%)
A (A5)	1 (0.16%)
A (B4)	4 (0.64%)
A (C9)	3 (0.48%)
A (D9)	2 (0.32%)
B (A4-B4)	6 (0.95%)
B (A5)	4 (0.64%)
B (A6)	3 (0.48%)
B (A8-B8-B9)	1 (0.16%)
B (B4)	5 (0.80%)
B (C6)	8 (1.27%)
B (C9)	1 (0.16%)
B (D7-D8)	15 (2.39%)
B (D9)	1 (0.16%)
B (E10)	2 (0.32%)
C (A5)	29 (4.62%)
C (A6)	43 (6.87%)
<i>C (B4)</i>	10 (1.59%)
С (В5-В6)	1 (0.16%)
<i>C</i> (<i>C</i> 6)	2 (0.32%)
<i>C (C9)</i>	4 (0.64%)
C (D7-D8)	3 (0.48%)
C(NA)	2 (0.32%)
D (A5)	11 (1.75%)
D (A6)	11 (1.75%)
D (A8-B8-B9)	2(0.32%)
D (B4)	8 (1.27%)
D (B5-B6) D (C5)	20 (3.18%) 11 (1.75%)
D (C6) D (D7-D8)	74 (11.78%) 1 (0.16%)
$\frac{D}{D} (D^{2} - D^{3})$	16 (2.55%)
D(D) D(NA)	4 (0.64%)
$\frac{E(A5)}{E(A5)}$	10 (1.59%)
E(A3) $E(B4)$	17 (2.70%)
E (B5-B6)	9 (1.43%)
$\frac{E(D5 \ D5)}{E(C5)}$	6 (0.95%)
E (C6)	7 (1.16%)
<i>E</i> (C9)	1 (0.16%)
E (D9)	102 (16.24%)
F (E10)	13 (2.07%)
G (B4)	5 (0.80%)
G (C6)	4 (0.64%)
H(B4)	13 (2.07%)
	. /

J (B4)	2 (0.32%)
J (E10)	7 (1.16%)
K (B4)	2 (0.32%)
M (B4)	3 (0.48%)
N (B4)	3 (0.48%)
P (B4)	8 (1.27%)
S (A5)	4 (0.64%)
S (C6)	40 (6.37%)
N/A (A5)	21 (3.34%)
N/A (A6)	5 (0.80%)
N/A (B5-B6)	6 (0.95%)
N/A (C6)	1 (0.16%)
N/A (C9)	2 (0.32%)
N/A (F)	10 (1.60%)
N/A (N/A)	5 (0.80%)
TOTAL	628 (100%)

Appendix 2.1. Obsidian count by capa. (Sub-sector in parentheses.)

	Sector I	Sector II	Sector III	Total
Biface	0 (0%)	13 (2.07%)	9 (1.43%)	22 (3.50%)
Core	0 (0%)	1 (0.16%)	0 (0%)	1 (0.16%)
Flake	11 (1.75%)	237 (37.73%)	113 (17.99%)	361 (57.48%)
Fragment	8 (.80%)	154 (24.52%)	56 (8.92%)	218 (34.71%)
Nodule	0 (0%)	1 (0.16%)	0 (0%)	1 (0.16%)
Point	0 (0%)	13 (2.07%)	11 (1.75%)	24 (3.82%)
Uniface	1 (0.16%)	0 (0%)	0 (0%)	1 (0.16%)
Total	20 (3.18%)	419 (66.72%)	189 (30.09%)	628 (100%)
Ammandin 2.2	A stife at a great	here the man a met a set of	-	

Appendix 2.2. Artifact count by type and sector.

	Sector I	Sector II	Sector III	Total
Biface	0 (0%)	13 (59.10%)	9 (40.90%)	22 (100%)
Core	0 (0%)	1 (100%)	0 (0%)	1 (100%)
Flake	11 (3.04%)	237 (65.65%)	113 (31.31%)	361 (100%)
Fragment	8 (3.69%)	154 (70.63%)	56 (25.68%)	218 (100%)
Nodule	0 (0%)	1 (100%)	0 (0%)	1 (100%)
Point	0 (0%)	13 (54.16%)	11 (45.84%)	24 (100%)
Uniface	1 (100%)	0 (0%)	0 (0%)	1 (100%)

Appendix 2.3. Artifact types as a proportion of artifact type assemblage, across sectors.

	Biface	Core	Flake	Frag	Nodule	Point	Uniface	Total
A4-B4	0 (0%)	0 (0%)	11	8	0 (0%)	0 (0%)	1	20
			(1.7%)	(1.27%)			(0.16%)	(3.18%)
A5	1	0 (0%)	29	46	0 (0%)	4	0 (0%)	80
	(0.16%)		(4.61%)	(7.32%)		(0.64%)		(12.74%)
A6	2	0 (0%)	34	24	0 (0%)	2	0 (0%)	62
	(0.32%)		(5.41%)	(3.82%)		(0.32%)		(9.87%)
B 4	0 (0%)	0 (0%)	54	21	1	4	0 (0%)	80
			(8.60%)	(3.34%)	(0.16%)	(0.64%)		(12.74%)
<i>B5-B6</i>	1	0 (0%)	16	18	0 (0%)	1	0 (0%)	36
	(0.16%)		(2.55%)	(2.87%)		(0.16%)		(5.73%)
<i>C5</i>	2	0 (0%)	8	7	0 (0%)	0 (0%)	0 (0%)	17
	(0.32%)		(1.27%)	(1.11%)				(2.71%)
<i>C6</i>	7	1	91	35	0 (0%)	2	0 (0%)	136
	(1.11%)	(0.16%)	(14.49%)	(5.57%)		(0.32%)		(21.66%)
A8-	0 (0%)	0 (0%)	2	1	0 (0%)	0 (0%)	0 (0%)	3
B8-B9			(0.32%)	(0.16%)				(0.48%)
С9	0 (0%)	0 (0%)	5	6	0 (0%)	0 (0%)	0 (0%)	11
			(0.80%)	(0.95%)				(1.7%)
D7-	1	0 (0%)	16	2	0 (0%)	0 (0%)	0 (0%)	19
D 8	(0.16%)		(2.55%)	(0.32%)				(3.03%)
D9	8	0 (0%)	68	37	0 (0%)	8	0 (0%)	121
	(1.27%)		(10.83%)	(5.89%)		(1.27%)		(19.27%)
E10	0 (0%)	0 (0%)	14	8	0 (0%)	0 (0%)	0 (0%)	22
			(4.27%)	(1.27%)				(3.50%)
N/A	0 (0%)	0 (0%)	13	5	0 (0%)	3	0 (0%)	21
			(2.07%)	(0.80%)		(0.48%)		(3.34%)
Total	22	1	361	218	1	24	1	628
	(3.5%)	(0.16%)	(57.48%)	(34.71%	(0.16%)	(3.82%)	(0.16%)	(100%)
)				

Appendix 2.4. Artifact count by type and sub-sector.

	Biface	Core	Flake	Fragment	Nodule	Point	Uniface
A4-B4	0 (0%)	0 (0%)	11	8 (3.67%)	0 (0%)	0 (0%)	1
			(3.05%)				(100%)
A5	1	0 (0%)	29	46	0 (0%)	4	0 (0%)
	(4.55%)		(8.03%)	(21.10%)		(16.67%)	
A6	2	0 (0%)	34	24	0 (0%)	2	0 (0%)
	(9.09%)		(9.42%)	(11.01%)		(8.33%)	
B 4	0 (0%)	0 (0%)	54	21	1	4	0 (0%)
			(14.96%)	(9.63%)	(100%)	(16.67%)	
B5-B6	1	0 (0%)	16	18	0 (0%)	1	0 (0%)
	(4.55%)		(4.43%)	(8.26%)		(4.17%)	
<i>C5</i>	2	0 (0%)	8	7 (3.21%)	0 (0%)	0 (0%)	0 (0%)
	(9.09%)		(2.22%)				
С6	7	1	91	35	0 (0%)	2	0 (0%)
	(31.82%)	(100%)	(25.21%)	(16.06%)		(8.33%)	
A8-D8-	0 (0%)	0 (0%)	2	1 (0.46%)	0 (0%)	0 (0%)	0 (0%)
A9			(0.55%)				
С9	0 (0%)	0 (0%)	5	6 (2.75%)	0 (0%)	0 (0%)	0 (0%)
			(1.38%)				
D7-D8	1	0 (0%)	16	2 (0.92%)	0 (0%)	0 (0%)	0 (0%)
	(4.55%)		(4.43%)				
D9	8	0 (0%)	68	37	0 (0%)	8	0 (0%)
	(36.36%)		(18.84%)	(16.97%)		(33.33%)	
<i>E10</i>	0 (0%)	0 (0%)	14	8 (3.67%)	0 (0%)	0 (0%)	0 (0%)
			(3.88%)				
N/A	0 (0%)	0 (0%)	13	5 (2.29%)	0 (0%)	3	0 (0%)
			(3.60%)			(12.5%)	
Total	22	1	361	218	1	24	1
	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100%)

Appendix 2.5. Artifact types as a proportion of artifact type assemblage, across sub-sectors.

	Tempora l Phase	Biface	Core	Flake	Frag	Nodule	Point	Unif ace
A (C9)	Wari B	0 (0%)	0 (0%)	2 (0.76%)	1 (0.72%)	0 (0%)	0 (0%)	0 (0%)
A (D9)	Wari B	0 (0%)	0 (0%)	1 (0.38%)	0 (0%)	0 (0%)	1 (7.14%)	0 (0%)
B (A6)	Wari B	0 (0%)	0 (0%)	1 (0.38%)	2 (1.45%)	0 (0%)	0 (0%)	0 (0%)
B (A8- B8-A9)	Wari A, Wari B	0 (0%)	0 (0%)	0 (0%)	1 (0.72%)	0 (0%)	0 (0%)	0 (0%)
B (C9)	Huarpa, Wari A	0 (0%)	0 (0%)	1 (0.38%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
B (D7- D8)	Huarpa, Wari A, Wari B	1 (5.88%)	0 (0%)	12 (4.58%)	2 (1.45%)	0 (0%)	0 (0%)	0 (0%)
B (D9)	Huarpa, Wari A	0 (0%)	0 (0%)	1 (0.38%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)

C (A6)	Wari A,	1	0 (0%)	26	14	0 (0%)	2	0
0 (110)	Wari B	(5.88%)	0 (070)	(9.92%)	(10.14%)	0 (070)	(14.29%)	(0%)
C (B4)	Huarpa,	0 (0%)	0 (0%)	7	3	0 (0%)	0 (0%)	0
0 (2.)	Wari A	0 (0,0)		(2.67%)	(2.17%)	0 (0,0)	0 (0,0)	(0%)
С (В5-	Huarpa,	0 (0%)	0 (0%)	0 (0%)	1	0 (0%)	0 (0%)	0
B6)	Wari A				(0.72%)			(0%)
C (C9)	Huarpa,	0 (0%)	0 (0%)	1	3	0 (0%)	0 (0%)	0
	Wari A			(0.38%)	(2.17%)			(0%)
С (D7-	Huarpa,	0 (0%)	0 (0%)	3	0 (0%)	0 (0%)	0 (0%)	0
D8)	Wari A			(1.15%)				(0%)
D (A5)	Wari A,	0 (0%)	0 (0%)	5	6	0 (0%)	0 (0%)	0
	Wari B			(1.91%)	(4.35%)			(0%)
D (A6)	Huarpa,	1	0 (0%)	6	4	0 (0%)	0 (0%)	0
	Wari A	(5.88%)		(2.29%)	(2.90%)			(0%)
D (A8-	Wari A	0 (0%)	0 (0%)	2	0 (0%)	0 (0%)	0 (0%)	0
B8-B9)				(0.76%)				(0%)
D (B4)	Huarpa	0 (0%)	0 (0%)	4	4	0 (0%)	0 (0%)	0
	**	0 (00)	0 (00()	(1.53%)	(2.90%)	0 (00()	0.(00/)	(0%)
D (B5-	Huarpa	0 (0%)	0 (0%)	10	10	0 (0%)	0 (0%)	0
<i>B6)</i>	IL	1	0 (00/)	(3.82%)	(7.25%)	0 (00/)	0.(00/)	(0%)
D (C5)	Huarpa	1	0 (0%)	4	6	0 (0%)	0 (0%)	$\begin{bmatrix} 0 \\ (00()) \end{bmatrix}$
	Unormo	(5.88%) 2	1	(1.53%) 48	(4.35%) 22	0(00/)	1	(0%)
D (C6)	Huarpa, Wari A		1 (100%)	48 (18.32%)		0 (0%)	(7.14%)	0(0%)
ת) ת		(11.76%) 0 (0%)	0 (0%)	(18.5270)	(15.94%) 0 (0%)	0 (0%)	(7.14%) 0 (0%)	0
D (D7- D8)	Huarpa	0 (0%)	0 (0%)	(0.38%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
D (D 9)	Huarpa,	2	0 (0%)	(0.3876)	9	0 (0%)	2	0
<i>D</i> (<i>D</i>))	Wari A	(11.76%)	0 (070)	(1.15%)	(6.52%)	0 (070)	(14.29%)	(0%)
E (A5)	Huarpa,	0 (0%)	0 (0%)	4	6	0 (0%)	0 (0%)	0
L (110)	Wari A	0 (070)	0 (070)	(1.53%)	(4.35%)	0 (070)	0 (070)	(0%)
E (B4)	Huarpa	0 (0%)	0 (0%)	12	3	1	1	0
- ()				(4.58%)	(2.17%)	(100%)	(7.14%)	(0%)
E (B5-	Huarpa	1	0 (0%)	3	5	0 (0%)	0 (0%)	0
B6)	1	(5.88%)		(1.15%)	(3.62%)			(0%)
E (C5)	Huarpa	1	0 (0%)	4	1	0 (0%)	0 (0%)	0
	-	(5.88%)		(1.53%)	(0.72%)			(0%)
E (C6)	Huarpa,	1	0 (0%)	6	0 (0%)	0 (0%)	0 (0%)	0
	Wari A	(5.88%)		(2.29%)				(0%)
E (C9)	Huarpa	0 (0%)	0 (0%)	1	0 (0%)	0 (0%)	0 (0%)	0
				(0.38%)				(0%)
E (D9)	Huarpa	6	0 (0%)	63	28	0 (0%)	5	0
		(35.29%)		(24.05%)	(20.29%)		(35.71%)	(0%)
G (B4)	Huarpa	0 (0%)	0 (0%)	4	1	0 (0%)	0 (0%)	0
A (A)	**	0.(00)	0 (001)	(1.53%)	(0.72%)	0 (001)	0.(00)	(0%)
G (C6)	Huarpa	0 (0%)	0 (0%)	3	1	0 (0%)	0 (0%)	0
TT 200 11	T T	0 (00/)	0 (00 ()	(1.15%)	(0.72%)	0 (00 ()	1	(0%)
H (B4)	Huarpa	0 (0%)	0 (0%)	9	3 (2.170()	0 (0%)	1 (7.1.49/)	0
ΙΟΛ	II	0 (00/)	0 (00/)	(3.44%)	(2.17%)	0 (00/)	(7.14%)	(0%)
J (B4)	Huarpa	0 (0%)	0 (0%)	2	0 (0%)	0 (0%)	0 (0%)	$\begin{bmatrix} 0 \\ (09/) \end{bmatrix}$
				(0.76%)				(0%)

K (B4)	Huarpa	0 (0%)	0 (0%)	1	1	0 (0%)	0 (0%)	0
				(0.38%)	(0.72%)			(0%)
M (B4)	Huarpa	0 (0%)	0 (0%)	3	0 (0%)	0 (0%)	0 (0%)	0
				(1.15%)				(0%)
N (B4)	Huarpa	0 (0%)	0 (0%)	3	0 (0%)	0 (0%)	0 (0%)	0
				(1.15%)				(0%)
P (B4)	Huarpa	0 (0%)	0 (0%)	6	1	0 (0%)	1	0
				(2.29%)	(0.72%)		(7.14%)	(0%)
TOTAL		17	1	262	138	1	14	0
		(100%)	(100%)	(100%)	(100%)	(100%)	(100%)	(100
								%)

Appendix 2.6. Artifact types by *capa* and temporal context. Proportional representation of artifact types within artifact type assemblage.

	Biface	Core	Flake	Fragmen t	Nodule	Point	Count
Huarpa	9 (2.08%)	0 (0%)	133 (30.72%)	64 (14.78%)	1 (0.23%)	8 (1.85%)	215 (49.65%)
Huarpa, Wari A	6 (1.39%)	1 (0.23%)	80 (18.48%)	48 (11.09%)	0 (0%)	3 (0.69%)	138 (31.87%)
Wari A	0 (0%)	0 (0%)	2 (0.46%)	0 (0%)	0 (0%)	0 (0%)	2 (0.46%)
Wari A, Wari B	1 (0.23%)	0 (0%)	31 (7.16%)	21 (4.85%)	0 (0%)	2 (0.46%)	55 (12.70%)
Wari B	0 (0%)	0 (0%)	4 (0.92%)	3 (0.69%)	0 (0%)	1 (0.23%)	8 (1.84%)
Huarpa, Wari A, Wari B	1 (0.23%)	0 (0%)	12 (2.77%)	2 (0.46%)	0 (0%)	0 (0%)	15 (3.46%)
Total	17 (3.92%)	1 (0.23%)	262 (60.51%)	138 (31.87%)	1 (0.23%)	14 (3.23%)	433 (100%)

Appendix 2.7. Artifact type by temporal context.

	Unretouched Flake	Retouche d Flake	Unretouched Fragment	Retouched Fragment	Count
Huarpa	128 (29.56%)	5 (1.15%)	43 (0.24%)	21 (4.85%)	197 (45.50%)
Huarpa, Wari A	77 (17.78%)	3 (0.69%)	36 (8.31%)	12 (2.77%)	128 (29.56%)
Wari A	2 (0.46%)	0 (0%)	0 (0%)	0 (0%)	2 (0.46%)
Wari A, Wari B	30 (6.93%)	1 (0.23%)	12 (2.77%)	9 (2.08%)	52 (12.10%)
Wari B	4 (0.92%)	0 (0%)	3 (0.69%)	0 (0%)	7 (1.62%)
Huarpa, Wari	12 (2.77%)	0 (0%)	2 (0.46%)	0 (0%)	14 (3.23%)
A, Wari B					
Total	253 (58.43%)	9 (2.08%)	96 (22.17%)	42 (9.70%)	400 (92.37%)

Appendix 2.8. Retouched and unretouched flakes and fragments by temporal context. (Chi-square for flakes: value=0.702, df=5, p<0.983).(Chi-square for fragments: value=4.559, df=4, p<0.336).

Sector I	Sector II	Sector III	Total
2 (0.55%)	0 (0%)	0 (0%)	2 (0.55%)
1 (0.28%)	10 (2.77%)	2 (0.55%)	13 (3.60%)
5 (1.39%)	132 (36.57%)	60 (16.62%)	197 (54.57%)
3 (0.83%)	95 (26.32%)	51 (14.13%)	149 (41.26%)
11 (3.05%)	237 (65.65%)	113 (31.30%)	361 (100%)
	2 (0.55%) 1 (0.28%) 5 (1.39%) 3 (0.83%)	2 (0.55%) 0 (0%) 1 (0.28%) 10 (2.77%) 5 (1.39%) 132 (36.57%) 3 (0.83%) 95 (26.32%)	2 (0.55%) 0 (0%) 0 (0%) 1 (0.28%) 10 (2.77%) 2 (0.55%) 5 (1.39%) 132 (36.57%) 60 (16.62%) 3 (0.83%) 95 (26.32%) 51 (14.13%)

Appendix 2.9. Flake size-grade by sector.

	Sector I	Sector II	Sector III	Total
< 6.35mm	2 (100%)	0 (0%)	0 (0%)	2 (100%)
6.35–12.7mm	1 (7.70%)	10 (76.92%)	2 (15.38%)	13 (100%)
12.7–25.4mm	5 (2.53%)	132 (67.01%)	60 (30.46%)	197 (100%)
> 25.4mm	3 (2.01%)	95 (63.76%)	51 (34.23%)	149 (100%)

Appendix 2.10. Flake size-grade by as a proportion of size-grade assemblage.

	< 6.35mm	6.35– 12.7mm	12.7– 25.4mm	> 25.4mm	Total
A4-B4	2 (0.55%)	1 (0.28%)	5 (1.39%)	3 (0.83%)	11 (3.05%)
A5	0 (0%)	0 (0%)	20 (5.54%)	9 (2.49%)	29 (8.03%)
A6	0 (0%)	0 (0%)	24 (6.65%)	10 (2.77%)	34 (9.42%)
B 4	0 (0%)	8 (2.22%)	28 (7.76%)	18 (4.99%)	54 (14.96%)
<i>B5-B6</i>	0 (0%)	0 (0%)	7 (1.94%)	9 (2.49%)	16 (4.43%)
<i>C5</i>	0 (0%)	0 (0%)	2 (0.55%)	6 (1.66%)	8 (2.22%)
<i>C6</i>	0 (0%)	2 (0.55%)	48 (13.30%)	41 (11.36%)	91 (25.21%)
A8-B8-A9	0 (0%)	0 (0%)	2 (0.55%)	0 (0%)	2 (0.55%)
С9	0 (0%)	0 (0%)	2 (0.55%)	3 (0.83%)	5 (1.39%)
D7-D8	0 (0%)	0 (0%)	10 (2.77%)	6 (1.66%)	16 (4.43%)
D9	0 (0%)	0 (0%)	31 (8.59%)	37 (10.25%)	68 (18.84%)
<i>E10</i>	0 (0%)	2 (0.55%)	11 (3.05%)	1 (0.28%)	14 (3.88%)
N/A	0 (0%)	0 (0%)	7 (1.94%)	6 (1.66%)	13 (3.60%)
Total	2 (0.55%)	13	197	149 (41.27%)	361 (100%)
		(3.60%)	(54.57%)		

Appendix 2.11. Flake size-grade by sub-sector.

	<	6.35-	12.7–	> 25.4mm
	6.35mm	12.7mm	25.4mm	
A4-B4	2 (100%)	1 (7.69%)	5 (2.54%)	3 (2.01%)
A5	0 (0%)	0 (0%)	20 (10.15%)	9 (6.04%)
A6	0 (0%)	0 (0%)	24 (12.18%)	10 (6.71%)
B4	0 (0%)	8 (61.54%)	28 (14.21%)	18 (12.08%)
<i>B5-B6</i>	0 (0%)	0 (0%)	7 (3.55%)	9 (6.04%)
<i>C5</i>	0 (0%)	0 (0%)	2 (1.02%)	6 (4.03%)
С6	0 (0%)	2 (15.38%)	48 (24.37%)	41 (27.52%)
A8-B8-	0 (0%)	0 (0%)	2 (1.02%)	0 (0%)
A9				
С9	0 (0%)	0 (0%)	2 (1.02%)	3 (2.01%)
D7-D8	0 (0%)	0 (0%)	10 (5.08%)	6 (4.03%)
D9	0 (0%)	0 (0%)	31 (15.74%)	37 (24.83%)
<i>E10</i>	0 (0%)	2 (15.38%)	11 (5.58%)	10 (6.71%)
N/A	0 (0%)	0 (0%)	7 (3.55%)	6 (4.03%)
Total	2 (100%)	13 (100%)	197 (100%)	149 (100%)

Appendix 2.12. Flake size-grade by as a percentage of size-grade assemblage.

	< 6.35mm	6.35– 12.7mm	12.7–25.4mm	> 25.4mm	Total
Huarpa	0 (0%)	7 (2.67%)	63 (24.05%)	63 (24.05%)	133 (50.76%)
Huarpa, Wari A	0 (0%)	3 (1.15%)	42 (16.03%)	35 (13.36%)	80 (30.53%)
Wari A	0 (0%)	0 (0%)	2 (0.76%)	0 (0%)	2 (0.76%)
Wari A, Wari B	0 (0%)	0 (0%)	22 (8.40%)	9 (3.44%)	31 (11.83%)
Wari B	0 (0%)	0 (0%)	2 (0.76%)	2 (0.76%)	4 (1.52%)
Huarpa, Wari	0 (0%)	0 (0%)	8 (3.05%)	4 (1.52%)	12 (4.58%)
A, Wari B					
Total	0 (0%)	10 (3.82%)	139 (53.05%)	113 (43.13%)	262 (100%)

Appendix 2.13. Flake size-grade by time period.

	< 6.35mm	6.35– 12.7mm	12.7– 25.4mm	> 25.4mm
Huarpa	0 (0%)	7 (70%)	63 (45.32%)	63 (55.75%)
Huarpa, Wari A	0 (0%)	3 (30%)	42 (30.22%)	35 (30.97%)
Wari A	0 (0%)	0 (0%)	2 (1.44%)	0 (0%)
Wari A, Wari B	0 (0%)	0 (0%)	22 (15.83%)	9 (7.96%)
Wari B	0 (0%)	0 (0%)	2 (1.44%)	2 (1.77%)
Huarpa, Wari A, Wari B	0 (0%)	0 (0%)	8 (5.76%)	4 (3.54%)
Total	0 (0%)	10 (100%)	139 (100%)	113 (100%)

Appendix 2.14. Flake size-grade by time period, percentage of size-grade assemblage.

	0% Cortex	1–49%	50-99%	100%	Total
		Cortex	Cortex	Cortex	
12.7–25.4mm	5 (41.67%)	0 (0%)	0 (0%)	0 (0%)	5 (41.67%)
> 25.4mm	4 (33.33%)	3 (25%)	0 (0%)	0 (0%)	7 (58.33%)
Total	9 (75%)	3 (25%)	0 (0%)	0 (0%)	12 (100%)

Appendix 2.15. Cortex present on flake artifacts with edge retouching. (Chi-square: value=0.310; df=2; p<0.857).

	0% Cortex	1–49% Cortex	50–99% Cortex	100% Cortex	Total
Sector I	5 (1.40%)	5 (1.40%)	1 (0.28%)	0 (0%)	11 (3.07%)
	188 (52.52%)	39 (10.89%)	7 (1.96%)	0 (0%)	234 (65.36%)
Sector III	84 (23.46%)	29 (8.10%)	0 (0%)	0 (0%)	113 (31.56%)
Total	277 (77.37%)	73 (20.39%)	8 (2.23%)	0 (0%)	358 (100%)
1. 0.1	(()				

Appendix 2.16. Cortex present on flakes by Sector.

	0% Cortex	1-49% Cortex	50-99% Cortex	100% Cortex	Total
A4-B4	5 (1.40%)	5 (1.40%)	1 (0.30%)	0 (0%)	11 (3.07%)
A5	18 (5.03%)	8 (2.23%)	3 (0.84%)	0 (0%)	29 (8.10%)
<i>A6</i>	26 (7.26%)	8 (2.23%)	0 (0%)	0 (0%)	34 (9.50%)
B 4	44 (84.62%)	6 (1.68%)	0 (0%)	0 (0%)	52 (14.53%)
<i>B5-B6</i>	11 (3.07%)	5 (1.40%)	0 (0%)	0 (0%)	16 (4.47%)
<i>C</i> 5	6 (1.68%)	2 (0.56%)	0 (0%)	0 (0%)	8 (2.23%)
<i>C6</i>	79 (22.07%)	10 (2.79%)	2 (0.56%)	0 (0%)	91 (25.42%)
A8-B8-A9	1 (0.30%)	1 (0.30%)	0 (0%)	0 (0%)	2 (0.56%)
<i>C</i> 9	4 (1.12%)	1 (0.30%)	0 (0%)	0 (0%)	5 (1.40%)
D7-D8	15 (4.19%)	1 (0.30%)	0 (0%)	0 (0%)	16 (4.47%)
D9	47 (13.13%)	21 (5.87%)	0 (0%)	0 (0%)	68 (18.99%)
<i>E10</i>	12 (3.35%)	2 (0.56%)	0 (0%)	0 (0%)	14 (3.91%)
N/A	9 (2.51%)	3 (0.84%)	0 (0%)	0 (0%)	12 (3.35%)
Total	277	73	8 (2.23%)	0 (0%)	358 (100%)
	(77.37%)	(20.39%)			

Appendix 2.17. Flake cortex by sub-sector.

Fotal
31 (50.38%)
80 (30.77%)
2 (0.77%)
81 (11.92%)
l (1.54%)
2 (4.62%)
260 (100%)
1

Appendix 2.18. Flake cortex by time period.

	0% Cortex	1–49% Cortex	50–99% Cortex	100% Cortex	Total	
Count	195 (90.70%)	18 (8.37%)	2 (0.93%)	0 (0%)	215 (100%)	
Appendix 2.19. Cortex present on fragment artifacts.						

Appendix 2.19. Cortex present on fragment armacis.

	0% Cortex	1–49%	50-99%	100%	Total	
		Cortex	Cortex	Cortex		
Count	60 (93.75%)	4 (6.25%)	0 (0%)	0 (0%)	64 (100%)	
Appendix 2.20 Cortex present on reteuched fragment artifacts						

Appendix 2.20. Cortex present on retouched fragment artifacts.

	Feathered	Hinged, Stepped, Overshot	Total
Sector I	4 (11.17%)	7 (1.96%)	11 (3.07%)
Sector II	126 (35.20%)	108 (30.17%)	234 (65.36%)
Sector III	63 (17.60%)	50 (13.97%)	113 (31.56%)
Total	193 (53.91%)	165 (46.09%)	358 (100%)

Appendix 2.21. Flake termination on flakes by Sector.

	Feathered	Hinged, Stepped, Overshot	Total
A4-B4	4 (1.12%)	7 (1.96%)	11 (3.07%)
A5	15 (4.19%)	11 (3.07%)	26 (7.26%)
<i>A6</i>	18 (5.03%)	16 (4.47%)	34 (9.50%)
B 4	30 (8.38%)	24 (6.70%)	54 (15.08%)
<i>B5-B6</i>	7 (1.96%)	9 (2.51%)	16 (4.47%)
<i>C5</i>	6 (1.68%)	2 (0.56%)	8 (2.23%)
<i>C6</i>	45 (12.57%)	46 (12.85%)	91 (25.42%)
A8-B8-A9	1 (0.28%)	1 (0.28%)	2 (0.56%)
<i>C</i> 9	2 (0.56%)	3 (0.84%)	5 (1.40%)
D7-D8	11 (3.07%)	5 (1.40%)	16 (4.47%)
D9	35 (9.78%)	33 (9.22%)	68 (18.99%)
<i>E10</i>	8 (2.23%)	6 (1.68%)	14 (3.91%)
N/A	11 (3.07%)	3 (0.84%)	13 (3.63%)
Total	193 (53.91%)	165 (46.09%)	358 (100%)

Appendix 2.22. Flake termination by sub-sector.

	Feathered	Hinged, Stepped, Overshot	Total
Huarpa	76 (29.01%)	57 (21.76%)	133 (50.76%)
Huarpa, Wari A	40 (15.27%)	40 (15.27%)	80 (30.53%)
Wari A	1 (0.38%)	1 (0.38%)	2 (0.76%)
Wari A, Wari B	13 (4.96%)	18 (6.87%)	31 (11.83%)
Wari B	2 (0.76%)	2 (0.76%)	4 (1.53%)
Huarpa, Wari A,	7 (2.67%)	5 (1.91%)	12 (4.58%)
Wari B			
Total	139 (53.05%)	123 (46.95%)	262 (100%)

Appendix 2.23. Flake termination by time period.

	Flat	Complex	Cortical	Total		
Sector I	7 (2.36%)	2 (0.67%)	1 (0.34%)	10 (3.37%)		
Sector II	63 (21.21%)	113 (38.05%)	20 (6.73%)	196 (65.99%)		
Sector III	40 (13.47%)	39 (13.13%)	12 (4.04%)	91 (30.64%)		
Total	110 (37.04%)	154 (51.85%)	33 (11.11%)	297 (100%)		
Annendin 2.24. Elelectempinetien en flebeg he Sector						

Appendix 2.24. Flake termination on flakes by Sector.

	Flat	Complex	Cortical	Total
A4-B4	7 (2.36%)	2 (0.67%)	1 (0.34%)	10 (3.37%)
A5	6 (2.02%)	12 (4.04%)	4 (1.35%)	22 (7.41%)
<i>A6</i>	9 (3.03%)	13 (4.38%)	4 (1.35%)	26 (8.75%)
B 4	5 (1.69%)	30 (10.10%)	6 (2.02%)	41 (13.80%)
<i>B5-B6</i>	5 (1.69%)	7 (2.36%)	4 (1.35%)	16 (5.39%)
<i>C5</i>	4 (1.35%)	2 (0.67%)	2 (0.67%)	8 (2.69%)
<i>C6</i>	32 (10.77%)	47 (15.82%)	0 (0%)	79 (26.60%)
A8-B8-A9	1 (0.34%)	1 (0.34%)	0 (0%)	2 (0.67%)
С9	2 (0.67%)	2 (0.67%)	2 (0.67%)	6 (2.02%)
D7-D8	3 (1.01%)	8 (2.69%)	8 (2.69%)	19 (6.40%)
D 9	27 (9.09%)	19 (6.40%)	19 (6.40%)	65 (21.89%)
<i>E10</i>	3 (1.01%)	8 (2.69%)	8 (2.69%)	19 (6.40%)
N/A	6 (2.02%)	3 (1.01%)	3 (1.01%)	12 (4.04%)
Total	110 (37.04%)	154	33	297 (100%)
		(51.85%)	(11.11%)	

Appendix 2.25. Flake termination by sub-sector.

	Flat	Complex	Cortical	Total
Huarpa	37 (16.97%)	55 (25.23%)	17 (7.80%)	109 (50%)
Huarpa, Wari A	31 (14.22%)	35 (16.06%)	3 (1.38%)	69 (31.65%)
Wari A	1 (0.46%)	1 (0.46%)	0 (0%)	2 (0.92%)
Wari A, Wari B	6 (2.75%)	13 (5.96%)	6 (2.75%)	25 (11.47%)
Wari B	2 (0.92%)	1 (0.46%)	1 (0.46%)	4 (1.83%)
Huarpa, Wari	1 (0.46%)	6 (2.75%)	2 (0.92%)	9 (4.13%)
A, Wari B				
Total	78 (35.78%)	111 (50.92%)	29 (13.30%)	218 (100%)
A 1: 0.00 EL	1	· . · · · ·		

Appendix 2.26. Flake termination by time period.

0 Flake	1 Flake	2-5 Flake	> 5 Flake	Total
Scars	Scar	Scars	Scars	
7 (1.96%)	2 (0.56%)	2 (0.56%)	0 (0%)	11 (3.07%)
65 (18.16%)	62 (17.32%)	57 (15.92%)	50 (13.97%)	234 (65.36%)
31 (8.66%)	34 (9.50%)	24 (6.70%)	24 (6.70%)	113 (31.56%)
103 (28.77%)	98 (27.37%)	83 (23.18%)	74 (20.67%)	358 (100%)
	Scars 7 (1.96%) 65 (18.16%) 31 (8.66%)	ScarsScar7 (1.96%)2 (0.56%)65 (18.16%)62 (17.32%)31 (8.66%)34 (9.50%)	ScarsScarScars7 (1.96%)2 (0.56%)2 (0.56%)65 (18.16%)62 (17.32%)57 (15.92%)31 (8.66%)34 (9.50%)24 (6.70%)	ScarsScarScarsScars7 (1.96%)2 (0.56%)2 (0.56%)0 (0%)65 (18.16%)62 (17.32%)57 (15.92%)50 (13.97%)31 (8.66%)34 (9.50%)24 (6.70%)24 (6.70%)

Appendix 2.27. Flake termination on flakes by Sector.

	0 Flake Scars	1 Flake Scar	2-5 Flake Scars	> 5 Flake Scars	Total
A4-B4	7 (1.96%)	2 (0.56%)	2 (0.56%)	0 (0%)	11 (3.07%)
A5	8 (2.23%)	13 (3.63%)	5 (1.40%)	3 (0.84%)	29 (8.10%)
<i>A6</i>	14 (3.91%)	10 (2.79%)	6 (1.68%)	4 (1.12%)	34 (9.50%)
<i>B4</i>	8 (2.23%)	11 (3.07%)	19 (5.31%)	14 (3.91%)	52 (14.53%)
<i>B5-B6</i>	3 (0.84%)	2 (0.56%)	3 (0.84%)	8 (2.23%)	16 (4.47%)
<i>C5</i>	5 (1.40%)	3 (0.84%)	0 (0%)	0 (0%)	8 (2.23%)
С6	26 (7.26%)	21 (5.87%)	24 (6.70%)	20 (5.59%)	91 (25.42%)
A8-B8-A9	1 (0.30%)	1 (0.30%)	0 (0%)	0 (0%)	2 (0.56%)
С9	3 (0.84%)	2 (0.56%)	0 (0%)	0 (0%)	0 (0%)
D7-D8	5 (1.40%)	2 (0.56%)	6 (1.68%)	3 (0.84%)	16 (4.47%)
D9	16 (4.47%)	23 (6.42%)	9 (2.51%)	20 (5.59%)	68 (18.99%)
<i>E10</i>	1 (0.30%)	5 (1.40%)	8 (2.23%)	0 (0%)	14 (3.91%)
N/A	6 (1.68%)	3 (0.84%)	1 (0.30%)	2 (0.56%)	12 (3.35%)
Total	103	98	83	74 (20.67%)	358 (100%)
	(28.77%)	(27.37%)	(23.18%)		

Appendix 2.28. Flake termination by sub-sector.

	0 Flake Scars	1 Flake Scar	2-5 Flake Scars	> 5 Flake Scars	Total	
Huarpa	29 (11.15%)	38 (14.62%)	28 (10.77%)	36 (13.85%)	131 (50.38%)	
Huarpa, Wari A	27 (10.38%)	15 (5.77%)	21 (8.08%)	17 (6.54%)	80 (30.77%)	
Wari A	1 (0.38%)	1 (0.38%)	0 (0%)	0 (0%)	2 (0.77%)	
Wari A, Wari B	14 (5.38%)	9 (3.46%)	4 (1.54%)	4 (1.54%)	31 (11.92%)	
Wari B	2 (0.77%)	2 (0.77%)	0 (0%)	0 (0%)	4 (1.54%)	
Huarpa, Wari	5 (1.92%)	1 (0.38%)	5 (1.92%)	1 (0.38%)	12 (4.62%)	
A, Wari B						
Total	78 (30%)	66 (25.38%)	58 (22.31%)	58 (22.31%)	260 (100%)	
A 1. 0.00 EI						

Appendix 2.29. Flake termination by time period.

APPENDIX III

PXRF RESULTS

	Sector I	Sector II	Sector II	Total
Alca	0 (0%)	10 (58.82%)	7 (41.18%)	17 (100%)
Puzolana	0 (0%)	1 (100%)	0 (0%)	1 (100%)
Quispisisa	16 (3.30%)	320 (65.98%)	149 (30.72%)	485 (100%)
N/A	0 (0%)	2 (66.67%)	1 (33.33%)	3 (100%)
		-		-

Appendix 4.1. Obsidian source-type by sector, percentage is of source-type assemblage.

Sub-sector	Alca	Puzolana	Quispisisa	N/A
A4-B4	0 (0%)	0 (0%)	16 (3.29%)	0 (0%)
A5	3 (17.65%)	0 (0%)	55 (11.34%)	0 (0%)
A6	0 (0%)	0 (0%)	44 (9.07%)	1 (33.33%)
A-B8-D9	0 (0%)	0 (0%)	3 (0.62%)	0 (0%)
B 4	1 (5.88%)	1 (100%)	65 (13.40%)	0 (0%)
<i>B5-B6</i>	0 (0%)	0 (0%)	29 (5.98%)	0 (0%)
<i>C5</i>	1 (5.88%)	0 (0%)	11 (2.27%)	0 (0%)
<i>C6</i>	4 (23.53%)	0 (0%)	112 (23.09%)	1 (33.33%)
С9	0 (0%)	0 (0%)	10 (2.06%)	0 (0%)
D7-D8	1 (5.88%)	0 (0%)	15 (3.09%)	0 (0%)
D9	6 (35.29%)	0 (0%)	95 (19.59%)	1 (33.33%)
<i>E10</i>	0 (0%)	0 (0%)	15 (3.09%)	0 (0%)
N/A	1 (5.88%)	0 (0%)	15 (3.09%)	0 (0%)
Total	17 (100%)	1 (100%)	485 (100%)	3 (100%)

Appendix 4.2. Obsidian source-type by sub-sector, percentage is by source-type.

	Alca	Puzolana	Quispisisa
A (A4-B4)	0 (0%)	0 (0%)	13 (2.57%)
A (A5)	0 (0%)	0 (0%)	1 (0.20%)
A (B 4)	0 (0%)	0 (0%)	4 (0.79%)
A (C9)	0 (0%)	0 (0%)	2 (0.40%)
A (D9)	1 (0.20%)	0 (0%)	1 (0.20%)
B (A4-B4)	0 (0%)	0 (0%)	3 (0.59%)
B (A5)	1 (0.20%)	0 (0%)	3 (0.59%)
B (A6)	0 (0%)	0 (0%)	1 (0.20%)
B (A8-B8-B9)	0 (0%)	0 (0%)	1 (0.20%)
B (B4)	0 (0%)	0 (0%)	4 (0.79%)
B (C6)	0 (0%)	0 (0%)	7 (1.38%)
B (C9)	0 (0%)	0 (0%)	1 (0.20%)
B (D7-D8)	0 (0%)	0 (0%)	13 (2.57%)
B (D9)	0 (0%)	0 (0%)	1 (0.20%)
B (E10)	0 (0%)	0 (0%)	2 (0.40%)

C (A5)	2 (0.40%)	0 (0%)	21 (4.15%)
C (A6)	0 (0%)	0 (0%)	31 (6.13%)
C (B4)	0 (0%)	0 (0%)	9 (1.78%)
C (B5-B6)	0 (0%)	0 (0%)	1 (0.20%)
C (C6)	0 (0%)	0 (0%)	2 (0.40%)
C (C9)	0 (0%)	0 (0%)	4 (0.79%)
C (D7-D8)	1 (0.20%)	0 (0%)	1 (0.20%)
C (NA)	0 (0%)	0 (0%)	2 (0.40%)
D (A5)	0 (0%)	0 (0%)	8 (1.58%)
D (A6)	0 (0%)	0 (0%)	9 (1.78%)
D (A8-B8-B9)	0 (0%)	0 (0%)	2 (0.40%)
D (B4)	0 (0%)	0 (0%)	5 (0.99%)
D (B5-B6)	0 (0%)	0 (0%)	17 (3.36%)
D (C5)	1 (0.20%)	0 (0%)	7 (1.38%)
D (C6)	2 (0.40%)	0 (0%)	64 (12.65%)
D (D7-D8)	0 (0%)	0 (0%)	1 (0.20%)
D (D9)	3 (0.59%)	0 (0%)	11 (2.17%)
D (NA)	0 (0%)	0 (0%)	3 (0.59%)
E (A5)	0 (0%)	0 (0%)	7 (1.38%)
E (B4)	1 (0.20%)	1 (0.20%)	14 (2.77%)
E (B5-B6)	0 (0%)	0 (0%)	7 (1.38%)
E (C5)	0 (0%)	0 (0%)	4 (0.79%)
E (C6)	0 (0%)	0 (0%)	3 (0.59%)
E (C9)	0 (0%)	0 (0%)	1 (0.20%)
E (D9)	2 (0.40%)	0 (0%)	82 (16.21%)
F (E10)	0 (0%)	0 (0%)	8 (1.58%)
G (B4)	0 (0%)	0 (0%)	4 (0.79%)
G (C6)	0 (0%)	0 (0%)	3 (0.59%)
H (B4)	0 (0%)	0 (0%)	10 (1.98%)
J (B4)	0 (0%)	0 (0%)	2 (0.40%)
J (E10)	0 (0%)	0 (0%)	5 (0.99%)
K (B4)	0 (0%)	0 (0%)	2 (0.40%)
M (B4)	0 (0%)	0 (0%)	3 (0.59%)
N (B4)	0 (0%)	0 (0%)	3 (0.59%)
P (B4)	0 (0%)	0 (0%)	5 (0.99%)
S (A5)	0 (0%)	0 (0%)	3 (0.59%)
S (C6)	2 (0.40%)	0 (0%)	32 (6.32%)
N/A (A5)	0 (0%)	0 (0%)	12 (2.37%)
N/A (A6)	0 (0%)	0 (0%)	3 (0.59%)
N/A (B5-B6)	0 (0%)	0 (0%)	4 (0.79%)
N/A (C6)	0 (0%)	0 (0%)	1 (0.20%)
N/A (C9)	0 (0%)	0 (0%)	2 (0.40%)
N/A (F)	0 (0%)	0 (0%)	0 (0%)
N/A (N/A)	1 (0.20%)	0 (0%)	2 (0.40%)
TOTAL	17 (3.36%)	1 (0.20%)	485 (95.85%)
nnondiv 12 Ob	idian count by	r cana and so	urca tuna (Sub sa

Appendix 4.3. Obsidian count by *capa* and source-type (Sub-sector in parentheses.)

	Alca	Puzolana	Quispisisa	N/A
Huarpa	4 (36.36%)	1 (100%)	170 (50%)	1 (50%)
Huarpa, Wari A	6 (54.54%)	0 (0%)	111 (32.65%)	1 (50%)
Huarpa, Wari	0 (0%)	0 (0%)	13 (3.82%)	0 (0%)
A, Wari B				
Wari A	0 (0%)	0 (0%)	2 (0.59%)	0 (0%)
Wari B	1 (9.09%)	0 (0%)	4 (1.18%)	0 (0%)
Wari A, Wari B	0 (0%)	0 (0%)	40 (11.76%)	0 (0%)
Total	11 (100%)	1 (100%)	340 (100%)	2 (100%)

Appendix 4.4. Obsidian source-type by time period, percentage by source-type assemblage.

	Alca	Puzolana	Quispisisa	N/A
Biface	0 (0%)	0 (0%)	22 (4.54%)	0 (0%)
Core	0 (0%)	0 (0%)	1 (0.21%)	0 (0%)
Flake	8 (47.06%)	0 (0%)	255 (52.58%)	1 (33.33%)
Fragment	7 (41.18%)	0 (0%)	186 (38.35%)	1 (33.33%)
Nodule	0 (0%)	1 (100%)	0 (0%)	0 (0%)
Point	2 (11.76%)	0 (0%)	20 (4.12%)	1 (33.33%)
Uniface	0 (0%)	0 (0%)	1 (0.21%)	0 (0%)
Total	17 (100%)	1 (100%)	485 (95.85%)	3 (100%)

Appendix 4.5. Obsidian source-type by artifact type, percentage is by source-type.

	Alca	Puzolana	Quispisisa	N/A	Total
6.35–12.7mm	0 (0%)	0 (0%)	2 (100%)	0 (0%)	2 (100%)
12.7–25.4mm	2 (1.61%)	0 (0%)	122 (98.39%)	0 (0%)	124 (100%)
>25.4mm	6 (4.35%)	0 (0%)	131 (94.93%)	1 (0.73%)	138 (100%)

Appendix 4.6. Obsidian source-type by flake size-grade, percentage by flake size-grade assemblage.

	Alca	Puzolana	Quispisisa	<i>N/A</i>	Total
0% Cortex	0 (0%)	1 (100%)	0 (0%)	0 (0%)	1 (100%)
1–49% Cortex	0 (0%)	0 (0%)	7 (100%)	0 (0%)	7 (100%)
50–99% Cortex	0 (0%)	0 (0%)	78 (100%)	0 (0%)	78 (100%)
100% Cortex	15 (4%)	0 (0%)	358 (95.47%)	2 (0.53%)	375 (100%)
1. 1. 1. 01	• 1•	. 1			

Appendix 4.7. Obsidian source-type by cortex.

	Alca	Puzolana	Quispisisa	N/A	Total
Feathered	7 (5.22%)	0 (0%)	126 (94.03%)	1 (0.75%)	134 (100%)
Hinged, Stepped,	1 (0.79%)	0 (0%)	125 (99.21%)	0 (0%)	126 (100%)
Overshot					

Appendix 4.8. Obsidian source-type by flake termination, percentage is of termination assemblage.

	Alca	Puzolana	Quispisisa	<i>N/A</i>	Total	
Flat	0 (0%)	0 (0%)	80 (100%)	0 (0%)	80 (100%)	
Complex	6 (5.41%)	0 (0%)	104 (93.69%)	1 (0.90%)	111 (100%)	
Cortical	0 (0%)	0 (0%)	30 (100%)	0 (0%)	30 (100%)	
Annandiy 4.0 Obsidion source time by striking platform, persentage is of platform as						

Appendix 4.9. Obsidian source-type by striking platform, percentage is of platform assemblage.

	Alca	Puzolana	Quispisisa	N/A	Total
0 Flake Scars	1 (0.91%)	1 (0.91%)	107 (97.27%)	1 (0.91%)	110 (100%)
1 Flake Scar	2 (2.33%)	0 (0%)	83 (96.51%)	1 (1.16%)	86 (100%)
2-5 Flake Scars	2 (2.13%)	0 (0%)	92 (97.87%)	0 (0%)	94 (100%)
> 5 Flake Scars	10 (5.85%)	0 (0%)	161 (94.15%)	0 (0%)	171 (100%)

Appendix 4.10. Obsidian source-type by flake scar, percentage is assemblage of flake scar.