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analysis (1973:76) . Again, peak ratio measurements partly
obviate these problems (ibid.: Figure 12). While absolute
quantitative results are problematical to obtain with energy
dispersive XRF in its crude form, it is argued that source
characterization studies dc not strictly require this level
of data treatment (see Nelson et al. 1975; Higashimura and
Warashina 1975; McCallum et al. 1979).

In summary, applications of radioisotope excitation have
been widely utilized in the study of archaeological and nis-
torical objects. The potential fcr routine analyses has been
successfully incorporated within autbmated facilities. The
problems in obtaining absolute.quantitative measures in both
SEFA and TEFA were shown to offer no hinderance in source
characterization research.

An additional assct of the technique freguently noted in
the literature is the potential portability of analysis sys-
tems which emplcy radioisotope excitation (for example, Bowey
et al. 1964; Frierman et al. 1968; Cesareo et al. 1972; 1975;
McKerrell 1974). Leach (1977a) presented the point of view
that a laboratory system developed with this technigue might
be easily modified to an ‘on site' facility for use in the
field (1977a:14).

The.lpng—lived radioisotope 241lpm (half-life 458 years)
has been»a‘particularly popular excitation source. One of
the advantages of this source is its ability to flucresce
intermediate to high Z elements. While Rb, Sr, Y and 7Zr are
within the capabilities of most X-ray tube energy dispersive

systems, americium allows the Ky fluorescence of additional
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elements up to lanthanum and cerium, with a theoretical
capability up to thulium, Z=69 (as demonstrated by Fig. 1).
A systém employing this radioisotope was developed for the

prcgramme of cbsidian characterization in this thesis.

241am EXCITATION SOURCE PARAMETERS

The radioisotope used in this research is a 50 mCi
americium-oxide source ceramic with an active diameter of
6.4mm. This gives a standard activity of 155.4 mCi/cm2
(Anon. 1975:2).

241pm decays by alpha emission. When a nucleus has a
neutron/proton ratio tcc low for stability, one of the ways
in which it decreases the excess number of protons is by

*+ nucleus

alpha decay. This consists of the expulsion cf a He?
from the parent at high energy (Adams and Gasparini 1970:4).
The total decay seguence for 241pm is very complex, involving
many daughter transitions (csee Lederer et al. 1967?430). For
the purposes of XRF, however, only a few of the dominant decay
emissions are of interest.

Table 5 lists the major decay emissions of 24lpm. oOf
primary interest is the 59.57 KeV gamma which represents 36%
of the emission vield per disintegration. It is this radia-
tion which makes americium suitable for mid to high Z-alpha
fluorescgpée.

Figure 3 shows a spactrun from 24)lpm source radiation
when presented directly tc the Otago laboratory detector.

Appropriate peaks are labelled. In sonme 241lpm sources, the

Np L scries X-rays are filtered out within the radioisotope




TABLE 5: PRINCIPLE UNSHIELDED 24lam RADIATIONS (AFTER

LEDERER ET AL. 1967:146).

Energy (KeV) Source $ Yield
59.57 241pm gamma 36
33.21 241an gamma 1
26.4 241Am gamma 3
20.8 Np Ly X-ray 5
17.8 Np Lg X-ray 18
13.9 : Np L, X-ray 14

N.B.: 24lam alpha-decay particles at 5.63 KeV are
filtered. Their contribution to the radiation
output has been ignored.
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FIGURE 3: Proportionate 24lam emissions from isoprobe
source when presented directly to Si(Li)

detector.
Table 5.

Compare with associated energies in
Full horizontal scale

= 512 channels.

Detection range is approximately 4-60KeV.
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spectrum. This in turn is recorded on DSDD (double sided,
double density) 1200 kilobyte floppy disks.

The MDL microcomputer is run under a CP/M operating
system with ANSI standard FORTRAN 80 and %80 assembler. Asso-

ciated output facilities include a 12 inch 4-shade graphics

monitor, JJ instruments XY plotter, and a Texas Instruments

OMNI 800 line printer. A block diagram of the instrumentation

system is shown in Figure 7.

SPECTRA ANALYSIS SOFTWARE
A significant portion cf the SEFA programme is relaﬁed
to the computerized operation of the facility. Both multiple-
sample analyses via the automated sample changer as well as
subsequent examiﬁation of collected spectra are performed by
the microcomputer link. All software was developed at the
University cf Otago Archaeometry Laboratory and is retained
in fioppy disk and printout form. The following section will
briefly outline the major computer programs used in this study.
Transfer of collected spectra from the MCA to the MDL
ig faciliitated in one of three ways. For single sample analy-
ses, FORTRAN*program'MCA dumps the spectrum into the RAM
(random access memory) of the MDL, converts the 1024 channels
into 512 by a moving means averaging procecs, and, finally,
writes thglspectrum onto floppy disk. The spectrum is dis-
played on the graphic monitor during this process, permitting
the analyst to make a cursory visual inspection. Program
MCA allows the operator to reccord a literal description (up

to 80 characters) and checks the run number assigned to the


































FIGURE 9: Effects of surface texture on fluorescence response

A- Taupo finely polished; B- Taupo 400 grit;

C- Taupo 80 grit; D- Taupo fiecked surface.



























Effects of saﬁple thickness on fluorescence

[..J

FIGURE 1
response for Mayor Island obsidian.

A- 10mm; B- 5mm; C- 3mm; D- 1.5mm.
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FIGURE 12: SEFA analysis of standard glass wafers

A- 500 ppm; B- 50 ppm; C- Net response.
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should be noted that the 241pm 26.4 KeV gamma-ray Compton
peak is overlapped by a Sn Ky peak. For this reason that
elemené appears to be more prominant than those peaks to
either side (at approximately channel 205) .

Further complications to spectrum interpretation are
effects such as excitation efficiency of the primary radia-
tion for elements of‘given Z (see Fig. 1 and also Woldseth
1973: Figures 2.23-2.24), and complex element enhancement
absorpticon effects co%peting within the sample itself (Bertin
1975:501-524, 648-651). Derivation of absolute guantitative
measures for obsidian samples by intérpolation from only two
standards is obviously no easy task. The spectra do, how-
ever, give an idea of the overall efficiéncy of the isoprobe
unit.

Nonetheless, some measure is regquired to determine
analytical values for specified elements in the obsidian
spectra. Ratio measures as employed by aforementioned wor-
kxers would secm ﬁo be a suitable course to take. A problem

with utilizing elemental ratios in this study, hocwever, is

that for the sample 'universe' considered, each cf the likely

elements (i.e. Fe, 2r or Ba) occur as detectably 'zero' for

a particular source or group. Their use as a constant denomi-

nator for other element activities is therefore i1l advised.
Consequently,. it was decided tc utilize a ratio measure

within the sawple spectra which was independent of trace ele- {

ment concentration. Such a measure has been employed by

Cormie (1981) and Cormie and Nelson (n.d.). The method in

this instance is to generate element ratios by taking calcu-
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lated element peak values over a Compton or Rayleigh scatter
value for the spectrum.

Cormie's (1981) work with the characterization of the
glass fractions from volcanic tuffs utilized a secbndary
target TEFA system as described by Nelson et al. (1975). The
scatter peaks occur at the high energy end of the spectrum
as the secondary target excitation is purely monochromatic
(and thus the highest energy represented). These high-energy
scatter peaks were found to be particularly variable with
changes in sample thickness using the 24lam source, that is,
as the effective scatter volume is deéreased. 241am does
however produce an additicnal scatter peak (referred toc here
as the 'mid-Compton') which is derived from the 26.4 KeV
gamma. This was found to produce a more balanced response with
fluorescence variation. Element window values were therefore
generated as ratios against the mid-Compton peak.

Net peak sreas above background were calculated by desig-
nating upper and lower channel positions for the K, peak of
particular elements. By arithmetically 'drawing a line'
between the background channels on either side of the element
peak and assuming linearity of background profile between the
measured adjacent background channels, the remaining area above
the line was taken-as the net peak value (Bertin 1975:386).
All peak vaiues, including the mid-Compton peak area, were
generated.in this manner.

The net element peaks were then taken as a ratio against
the net mid-Compton value, and the ratio assigned as a measure

of the proportionate element presence . All element values
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reported in this thesis were calculated accordingly.

COUNT TIMES AND SYSTEM REPRODUCIBILITY

Determining the sample analysis time required for this
study proved a difficult.task for two main reasons. Firstly,
low count rates (as shpwn in Figure 5) indicated that much
longer counting times would be required to achieve analytical
precision in the counting statistics. For a single measure
of ¥ counts, the inherent error in the measurement follows a
Poisson distribution. Over a series of repeated measurements
this will generate a standard deviatioﬁ in certainty equal to
YN (Bertin 1975:472-474). Therefore as N becomes larger (by
extending the count time) the proporticnate errcr associated
with the measurement is reduced. |

Secondly, while cursory evaluation of general differences
between the various source groups izdicated at least an order
of magnitude variation in some elements, other regions showed
very similar compositions over the range of elements analyzed.
Deciding upon a stancdard count time would have to consider
the value of increased discrimination against the reduction in

sample throughput.

It has been mentioned that an analysis rate of approxi-
matély a thousand samples per month was desirable. This is
equivalenE“tQ approximately 2000 seconds of anélysis time per
sample,'allowing for interspersed handling and data transfer.
Preliminary evaluation of counting statistics indicated that

this would be insufficient to prcduce reliable source charac-

terization on a broad level.
»
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A compromise between discrimination efficiency and sam-
ple turnover was imposed, and the basic counting time for
full soﬁrce reference comparison was set at 4000 seconds.
It is felt that this count time provides a good approxima-
tion of the isoprobe system's overall ability in source
discrimination though at some expense of sample throughput.
This rate allows some.20 samples per day to be analyzed and
recorded under full-time operation, and is on the same scale
as that achieved by Higashimura et al. (1981).

The system reproducibility cbtained by this count time
was determined by running a series of 10 non-consecutive 4000
second analyses on a standard piece of Taupo obsidian. The
piece was arbitrarily included with source group material
during the program of basic data collection. The raw data
are given in Table 6 and the basic statistics in Table 7. The
elements included are those which were found to occur in any
source in detectable amounts. The Compton/Rayleigh ratio (CR)
is the value of the 60 KeV inelastic/elastic scatter in the
sample. It has been shown by_Cormié and Nelson (n.d.) to have
some discriminative value for volcanic glass.

Table 7 shows that while there is less than 20% variation
(at one standard deviation) for the major barium peak ané the
CR ratio, lesser eleément peaks which at best are marginally
detectable have a greatly increased proporticnate uncertainty
(see also Figure 9a-d). Nonetheless it was judged that the
range of differences in these elements betwean various source
groups would aid discrimination in some instances and that it

was best to include them as reference elements.  These data are

°
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: 14 . . .
sample thickness limit was imposed for analysis of source material

SOURCE REGION EVALUATION

"A representative catalogue of source group épectra is
presented in Appendix A. The included overlays identify
element and scatter peak regions. The raw data for the
source localities examined are included in Appendix B. At
the outset of this section, it should be noted that while the
raw data for New Zealand obsidians have been retained in
their original source locality groupings (following the 18
major regions established by Ward 1972) in Appendix B, some
major groupings were made for all characterization and ‘'sour-
cing' procedures. Specifically, the sources cf Rotorua, Taupo,
Ongoroto and Maraetai have been grouped as Inland; the sources

£ Cooks Bay, Purangi, Hahei, Tairua, Maratoto and Waihi have
been grouped as Corcmandel; and Waiare and Pungaere have been
grouped as Northland (the Northland source of Weta remains

uncharacterized due to the lack of source samples). Great

\Barrier Island has been defined as a single source region

(combining Awana and Te Ahumata) as have the sub-groups of
Mayor Island, Huruiki, and Fanal Island. Canterbury pitchstone
has been included in the reference source data as well as
samples of unconfirmed provenience identified as Otago 'glass'.
Oceagié sources are presented as identified at the begin-
ning of the previous section with Rapanui, the Kermadecs, and
the Banks Island Group sources being considered as single
source regions respectively. Mauna Xea basalt was retain;d

as separate on both the basis of compositicn and petrologic
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type.

The justification for these primary groupings is based
upon the preliminary results obtained which reflect the
quality of data being produced by the technigue. For instance,
the similarity of the Inland and Coromandel source regions to
each other as well as between their composite localities is
striking, both in thé raw data and plotted spectra. Likewise,

the high degree of similarity of the other grouped sources

amongst their combined groups made them functionally indis-

tinguishable with the present facility. Table 8 shows the
element means and standard deviations for the working groups
used in the characterization program. The values indicated
are based on the raw data presented in Appendix B.

Cursory examination of Table 8 shows some broad similari-
ties even beyond the groupings already performed. These reflect
macro-similarities of the sources related to their location in
terms of plate tectcnics. The main division of obsidians is
between so-called oceanic and circum-oceanic types' (see for
example, Smith et «al. 1977:177—189; and Johnson 1979). Those
obsidians which contain high proportions of barium and much
smaller awmounts of Fe, Rb, Sr, ¥, %2r, La, and Ce are typically
circum-oceanic as analyzed in this study. The volcanic glasses
of Pitcairn, Rapanui, and Hawaii are oceanic, and show the
characteristic abundance of many elements besides barium.

Tafahi and Xermadec types appear transitional to circum-oOceanic,
and Mayor Island/Northland sﬁow distinct oceanic affinities.

-
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A BASIC CHARACTERIZATION TEST

To determine the degree of separation between sources
that cén be discerned from these data, it was decided to
employ a simple test of element overlap. Most recent sourc-
ing studies of New Zealand and Gceanic obsidians have been
concerned with‘complex neasures of 'similarity' between
sources and unknowns.(éee for example, Ward 1972:161; Duerden
et al. 1979; McCallum et al. 1979; Leach and Warren .1981;
Leach and Manly 1982) which employ either the D2 statistic
of Mahalanobis (1930) and Rao (1948) or as with McCallum et al.,
derivation of the mean Euclidean distance (M.E.D.) .

In light of the data generated by the facility, it was

felt that a more basic test of source separation was required,

such as can be determined by attempts at source rejection.
Ward (1977) concisely evpressed the fundamental difference of
this approach with measures of similarity-as they specifically
apply to archaeological problems of sourcing. He summarizes

thatp

"geochemical or petrographic similarity is insuffic-
ient argument fcr a similar source; but characteriza-
ticnal dissimilarity is a good argument for the
difference in geographic source. In other words, the
'identification' of sources of material can be made
suggestively but not absclutely; confidence in such
tentatlve 1dent1L1catlon is galned from rejection of

the other p0551ble identifications that can occur within
a universe of possibilities which is sometimes. difficult

to delimit"
(1977:192) .

-

It was with this intenticn that a method of screening
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which tried to reject an unknown spectrum as having been
pctentially derived from any given source group in the refer-
ence configuration was used. This more closely follows a
test applied by Nelson et al. (1975) and refined by Cormie
and Nelscn (n.d.).

The basis for the screening strategy is to compare the
value generated for each element of the unknown spectrum
against the 2 and 3 .standard deviation dispersion value for
that element in a given source. If the value of the unknown
exceeds or is below *2 or 30 for that element in the compared
source, then it is rejected at that level of certainty (i.e.
85 or 99%). By reference to Table 8 it is cbvious that a
fair degree of overlap exists between many of the sources at
the 2 and 30 level. The chances of rejecting the majority of
Inland spectra as having been derived from the Coromandel
source region are very small indeed with this technique. &
sobering point, for archaeologists interested in unambigu-
ously identifying the originating source of an artefact, is
that for many Oceanic and New Zealand sources the ability to
unegquiveocally reject either a given source sample as having
been derived from the other's region can be extremely limited.

In ar attempt to improve this screen, an additional set
of ratios between cértain elemants was generated in the hope
that this“QOuld increase the ability to reject inappropriate
sources. As menticned in the beginning of this chapter, some
source spectra record zero values for elements which might
otherwise be guite suitable denominators. »For this reason

it was necessary to segregate the ratio tests applied to the
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